CN104086002A - 微生物异养和硫自养协同降解水中高氯酸盐的方法 - Google Patents

微生物异养和硫自养协同降解水中高氯酸盐的方法 Download PDF

Info

Publication number
CN104086002A
CN104086002A CN201410344763.8A CN201410344763A CN104086002A CN 104086002 A CN104086002 A CN 104086002A CN 201410344763 A CN201410344763 A CN 201410344763A CN 104086002 A CN104086002 A CN 104086002A
Authority
CN
China
Prior art keywords
heterotrophism
perchlorate
section
carbon source
autotrophy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410344763.8A
Other languages
English (en)
Other versions
CN104086002B (zh
Inventor
万东锦
刘永德
张健
邰双汭
张良波
李莹
王依依
牛振华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201410344763.8A priority Critical patent/CN104086002B/zh
Publication of CN104086002A publication Critical patent/CN104086002A/zh
Application granted granted Critical
Publication of CN104086002B publication Critical patent/CN104086002B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明涉及一种去除水中污染物高氯酸盐的方法,属于水处理技术的应用领域。本发明的技术原理是,将污染物降解过程分解为微生物异养还原过程和硫自养还原过程,在异养还原过程中,控制有机碳源的添加量,使之低于化学计量比添加,该过程中,由于碳源添加量不足,导致高氯酸盐不能完全去除,残余的高氯酸盐在后续的硫自养还原过程中进一步得以还原降解。本发明克服了异养和硫自养还原高氯酸盐现行技术存在的缺陷,使二者协同作用,严格控制异养段碳源的添加量,有效避免多余碳源造成二次污染,同时调配异养段和硫自养段负荷比例,控制副产物的产生。本发明去除水中高氯酸盐处理单元简化,效率高,易于操作,占地面积小。

Description

微生物异养和硫自养协同降解水中高氯酸盐的方法
技术领域
本发明涉及一种去除水中污染物高氯酸盐的方法,属于水处理技术的应用领域。本发明的技术原理是利用微生物异养和硫自养协同还原作用,将水中污染物高氯酸盐去除。本发明的反应装置分为异养和自养段,在异养段添加不足量的碳源,该段未去除掉的高氯酸盐可在硫自养段被微生物还原去除,异养段和自养段的负荷可灵活调配,可有效避免异养添加的碳源造成二次污染,同时灵活控制硫自养段副产物(如硫酸根)的产生。
技术背景
高氯酸盐被认为是一类普遍存在的水体污染物。高氯酸盐污染主要来源于固体燃料的氧化剂、实验室化学试剂、电镀液、橡胶制品以及染料涂料等工业产品的生产加工过程。因其具有较好的水溶性和化学稳定性,且难被土壤及矿物吸附,很容易向地下水层沥滤,造成水体污染。由于分析测试方法的限制,水体高氯酸盐污染及其控制在1997年以后才被各国研究者所重视并逐渐形成研究热潮。高氯酸盐对人体健康的危害主要表现在干扰甲状腺的正常功能,影响碘的吸收方面,造成对发育系统特别是对大脑发育的影响,导致新陈代谢失调,儿童生长发育方面的有关疾病。因此,美国环保局于1998年把ClO4 -列入饮用水候补污染物清单。在2005年2月EPA发布的ClO4 -毒理学评价草案中,规定其人体健康参考剂量(referencedose,RfD)为每天0.7μg/kg体重,即等同于饮用水中24.5μg/L。加利福尼亚州EPA对饮用水中的ClO4-公共健康含量阈值限定为6μg/L,对该州110处地下水调查显示,33处地下水高氯酸盐浓度超过18μg/L,最高浓度达到280μg/L。2005年美国自来水协会AWWA调查发现美国现有26个州的水体受到不同程度ClO4-的污染,高氯酸盐污染状况不容乐观。
用于去除ClO4 -离子的方法主要包括离子交换法、膜分离法、化学催化法和生物法。其中,离子交换法和膜分离法仅仅是将其进行了转移或浓缩,并没有实现污染物的形态转化,同时,存在着树脂再生困难和浓盐水排放等问题。化学催化法多采用贵金属作为催化剂,成本较高,同时催化剂易失活,反应条件苛刻,不适于大规模应用。
生物法作为最具应用前景的方法,具有高效率、低成本等优点,且实现了污染物的形态转化,已成为研究热点。研究表明,许多单一型和混合型细菌能把ClO4 -离子作为新陈代谢的电子受体(氧化剂)。要使高氯酸盐被充分的还原降解,常常需要投加充足的电子供体(还原剂)。根据所需电子供体的不同,ClO4 -被生化还原主要分为异养和自养还原。对于异养还原ClO4 -,常用的有机电子供体主要有:乙醇、乙酸(盐)、甲醇、乳酸等。对于异养还原ClO4 -来说,有机电子供体的投加量是进行反应的关键。一般来讲,有机电子供体的投加量应该按照化学反应计量关系适量投加,但在实际操作中,往往存在一定的困难:如果电子供体投量不足,则污染物不能得到有效的去除;如果添加过多,有机质则残余在水中,形成二次污染。硫自养还原主要是指微生物利用无机碳(如碳酸盐)作为生化反应所需碳源,所需电子供体主要指单质硫磺。与异养还原降解相比,硫自养还原降解ClO4 -的突出优点是避免了多余有机物在水体中残留造成二次污染,微生物增殖过快等问题,但该方法也存在一定的问题,如硫自养过程产生副产物SO4 2-离子,出水pH值降低等。
发明内容
本发明基于以上技术背景,提供一种微生物异养和硫自养协同作用去除高氯酸盐的方法。本发明克服了异养和硫自养还原高氯酸盐现行技术存在的缺陷,使二者协同作用,严格控制异养段碳源的添加量,有效避免多余碳源造成二次污染,同时调配异养段和自养段负荷比例,控制副产物的产生。
本发明的技术原理是,将污染物降解过程分解为异养还原过程和硫自养还原过程,在异养还原过程中,控制有机碳源的添加量,使之低于化学计量比添加,该过程中,由于碳源添加量不足,导致高氯酸盐不能完全去除,残余的高氯酸盐在后续的硫自养还原过程中进一步得以还原降解。
为了实现如上技术原理,本发明采用如下技术方案:
本发明所述的异养还原过程为低碳源异养过程,施加的有机碳源包括可溶于水的液体碳源如醇类、羧酸类、糖类、酵母味素中的任意一种或几种,也可以是可被微生物分解利用固体有机碳源如纤维素、木质素的任意一种或几种,碳源的添加量低于化学计量比的理论值(即根据高氯酸盐与其的反应公式计算出所需的碳源的理论添加量)。如当乙酸作为有机碳源时,高氯酸盐的降解反应如下所示:CH3COOH+ClO4 -→Cl-+2CO2+2H2O,根据该式,乙酸的施加量/待去除的高氯酸盐(物质的量之比)=1∶1,按照本发明方案,乙酸按不足量施加,也即乙酸的施加量/待去除的高氯酸盐(物质的量之比)<1∶1。
本发明所述的硫自养还原过程,主要是指微生物以单质硫为电子供体进行高氯酸盐的还原反应,所述单质硫包括块状、颗粒状及粉末状硫单质,将硫单质装填成固定床或流化床反应装置,在其表面驯化高氯酸盐还原菌,将异养段的出水引入本段,使硫自养反应去除异养段未去除完全的高氯酸盐。
按照本发明的协同去除高氯酸盐的方法,需建立异养与硫自养协同作用的反应系统,在该反应系统中,受污原水首先经过异养段进行缺碳源异养还原,而后进入硫自养段进行硫自养还原反应直至最终出水。异养段和硫自养段可分别建立而后将二者串联,也可共建于一个反应器中。两段反应器均可采用固定床、流化床、膜生物反应器等多种形式,液体有机碳源可直接添加至进水中,固体有机碳源及硫磺颗粒可作为生物载体。对于共建反应器,可采用一个单独的硫自养生物滤柱(床),进水中添加适量有机碳源,自养和异养菌共生在硫磺颗粒表面,异养菌利用有机碳源,自养菌利用硫磺颗粒作为电子供体进行高氯酸盐的还原反应。
按照本发明去除高氯酸盐的方法,在建立反应器后,需进行微生物驯化。由于高氯酸盐还原菌广泛存在于自然界中,可采用污水处理厂活性污泥对反应器接种,将受污原水保持一定流速持续流进反应器,驯化过程中,维持碳源添加量为一固定值(低于计量比),两段反应器处理能力恒定时即可认为驯化成功。
按照本发明去除高氯酸盐的方法,异养段和硫自养段负荷可调配,具体是:在施加碳源量低于化学计量比的前提下,增大异养段的碳源施加量及微生物浓度即可提高异养段负荷;增大硫自养段停留时间或增大硫磺颗粒的比表面积即可提高硫自养段负荷。
本发明可用于处理地下水、地表水及工业污水中的高氯酸盐。
本发明突出的优点是:异养段控制碳源添加量,避免了有机物过量添加产生的二次污染问题;可通过两段负荷调配,控制硫自养副产物硫酸根的产生;生物处理单元简化,易于操作,占地面积小。此外,本发明反应器可以多组并联使用以扩大其处理能力。
附图说明:
图1本发明反应器示意图(两段均为固定床)
图2本发明反应器示意图(两段共建于一个反应器中)
附图标记:
1 原水桶;2 液体有机碳源施加;3 进水泵;4 生物填料;5 异养反应器;6 硫磺;7 硫自养反应器;8 出水;9 原水桶;10 液体有机碳源施加;11 进水泵;12 硫磺;13 出水
具体实施方式
实施例1:
进水高氯酸盐浓度为50mg/L,建立如图1所示反应器,异养段和自养段均为固定床式反应器,采用有机玻璃柱制成(直径10cm,高60cm,装填高度50cm,异养段装填弹性纤维填料,硫自养段装填粒径为3-4mm的硫磺颗粒),异养段添加20mg/L的乙酸钠作为碳源,两段微生物驯化成功后,总水力停留时间为8h,出水高氯酸盐浓度低于0.05mg/L且无乙酸钠的残余。
实施例2:
进水高氯酸盐浓度为20mg/L,建立如图1所示反应器,异养段和自养段均为固定床式反应器,采用有机玻璃柱制成(直径9cm,高50cm,装填高度40cm,异养段装填弹性纤维填料,硫自养段装填粒径为2-3mm的硫磺颗粒),异养段添加8mg/L的乙酸作为碳源,两段微生物驯化成功后,总水力停留时间为2h,出水高氯酸盐浓度低于0.05mg/L且无乙酸钠的残余。
实施例3:
进水高氯酸盐浓度为30mg/L,建立如图2所示反应器,采用有机玻璃柱制成(直径9cm,高50cm,装填粒径为3-4mm的硫磺颗粒,装填高度40cm),异养段添加10mg/L的乙酸作为碳源,共生微生物驯化成功后,总水力停留时间为3h,出水高氯酸盐浓度低于0.05mg/L且无乙酸钠的残余。

Claims (5)

1.一种微生物异养和硫自养协同作用去除高氯酸盐的方法,其特征是将高氯酸盐的微生物降解过程分解为异养还原过程和硫自养还原过程;受污原水首先经过异养段进行缺碳源异养还原,而后进入硫自养段进行硫自养还原反应直至最终出水;二者协同作用,严格控制异养段碳源的添加量,有效避免异养段多余碳源造成二次污染,同时调配异养段和自养段负荷比例,控制硫自养副产物的产生。
2.如权利要求1中所述的异养还原过程,施加的有机碳源包括可溶于水的液体碳源如醇类、羧酸类、糖类、酵母味素中的任意一种或几种,也可以是可被微生物分解利用固体有机碳源如纤维素、木质素的任意一种或几种,碳源的添加量低于化学计量比的理论值(即根据高氯酸盐与其的反应公式计算出所需的碳源的理论添加量)。
3.如权利要求1中所述的硫自养还原过程,主要是指微生物以单质硫为电子供体进行高氯酸盐的还原反应,所述单质硫包括块状、颗粒状及粉末状硫单质。
4.如权利要求1中所述的协同作用去除高氯酸盐的方法,异养段和硫自养段负荷可调配,其特征是:在施加碳源量低于化学计量比的前提下,增大异养段的碳源施加量及微生物浓度即可提高异养段负荷;增大硫自养段停留时间或增大硫磺颗粒的比表面积即可提高硫自养段负荷。
5.如权利要求1中所述的协同作用去除高氯酸盐的方法,需建立异养与硫自养协同作用的反应系统,异养段和硫自养段可分别建立而后将二者串联,也可共建于一个反应器中。
CN201410344763.8A 2014-07-21 2014-07-21 微生物异养和硫自养协同降解水中高氯酸盐的方法 Active CN104086002B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410344763.8A CN104086002B (zh) 2014-07-21 2014-07-21 微生物异养和硫自养协同降解水中高氯酸盐的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410344763.8A CN104086002B (zh) 2014-07-21 2014-07-21 微生物异养和硫自养协同降解水中高氯酸盐的方法

Publications (2)

Publication Number Publication Date
CN104086002A true CN104086002A (zh) 2014-10-08
CN104086002B CN104086002B (zh) 2016-04-13

Family

ID=51633799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410344763.8A Active CN104086002B (zh) 2014-07-21 2014-07-21 微生物异养和硫自养协同降解水中高氯酸盐的方法

Country Status (1)

Country Link
CN (1) CN104086002B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104843953A (zh) * 2015-06-08 2015-08-19 河南工业大学 电化学与生物氢自养协同作用深度转化水中高氯酸盐的方法和反应器
CN105236590A (zh) * 2015-11-11 2016-01-13 河南工业大学 微生物异养和电化学氢自养协同深度降解水中高氯酸盐的方法
CN106830355A (zh) * 2017-02-07 2017-06-13 福建三炬生物科技股份有限公司 一种茶园灌溉水的高氯酸盐的去除方法及其装置
CN107892397A (zh) * 2017-12-04 2018-04-10 天津城建大学 异养‑自养联合降解高浓度高氯酸盐的系统及调控方法
CN109133339A (zh) * 2018-08-24 2019-01-04 天津城建大学 降解高浓度高氯酸盐废水的abr系统及调控方法
CN117003402A (zh) * 2023-08-30 2023-11-07 中国环境科学研究院 硫自养型耦合异养型还原菌处理废水中高氯酸盐的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302285A (en) * 1993-09-20 1994-04-12 The United States Of America As Represented By The Secretary Of The Air Force Propellant wastewater treatment process
CN102153238A (zh) * 2011-04-15 2011-08-17 南开大学 一种修复地下水高氯酸盐污染的方法
US8323496B2 (en) * 2008-10-13 2012-12-04 Envirogen Technologies, Inc. Methods for treatment of perchlorate contaminated water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302285A (en) * 1993-09-20 1994-04-12 The United States Of America As Represented By The Secretary Of The Air Force Propellant wastewater treatment process
US8323496B2 (en) * 2008-10-13 2012-12-04 Envirogen Technologies, Inc. Methods for treatment of perchlorate contaminated water
CN102153238A (zh) * 2011-04-15 2011-08-17 南开大学 一种修复地下水高氯酸盐污染的方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104843953A (zh) * 2015-06-08 2015-08-19 河南工业大学 电化学与生物氢自养协同作用深度转化水中高氯酸盐的方法和反应器
CN104843953B (zh) * 2015-06-08 2017-07-18 河南工业大学 电化学与生物氢自养协同作用深度转化水中高氯酸盐的方法
CN105236590A (zh) * 2015-11-11 2016-01-13 河南工业大学 微生物异养和电化学氢自养协同深度降解水中高氯酸盐的方法
CN106830355A (zh) * 2017-02-07 2017-06-13 福建三炬生物科技股份有限公司 一种茶园灌溉水的高氯酸盐的去除方法及其装置
CN107892397A (zh) * 2017-12-04 2018-04-10 天津城建大学 异养‑自养联合降解高浓度高氯酸盐的系统及调控方法
CN107892397B (zh) * 2017-12-04 2020-03-17 天津城建大学 异养-自养联合降解高浓度高氯酸盐的系统及调控方法
CN109133339A (zh) * 2018-08-24 2019-01-04 天津城建大学 降解高浓度高氯酸盐废水的abr系统及调控方法
CN109133339B (zh) * 2018-08-24 2021-05-18 天津城建大学 降解高浓度高氯酸盐废水的abr系统及调控方法
CN117003402A (zh) * 2023-08-30 2023-11-07 中国环境科学研究院 硫自养型耦合异养型还原菌处理废水中高氯酸盐的方法

Also Published As

Publication number Publication date
CN104086002B (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
CN104086002B (zh) 微生物异养和硫自养协同降解水中高氯酸盐的方法
Sun et al. Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters
CN107151050B (zh) 一种混合营养型反硝化填料及其制备和应用方法
CN105347515B (zh) 一种可渗透反应墙用填充介质及其在原位治理地下水硝酸盐污染方面的应用和方法
CN101941758A (zh) 聚氨酯固定硝化细菌处理电厂含氮废水的方法
CN112110625A (zh) 一种基于过氧化钙类芬顿强化技术去除污染底泥难降解有机物的方法及应用
Wang et al. Revealing the mechanisms of Triclosan affecting of methane production from waste activated sludge
CN102249365A (zh) γ辐照降解水中磺胺嘧啶的方法
Zan et al. Diversion of food waste into the sulfate-laden sewer: Interaction and electron flow of sulfidogenesis and methanogenesis
Pérez-Pérez et al. Performance of EGSB reactor using natural zeolite as support for treatment of synthetic swine wastewater
CN103011517A (zh) 城市污水再生利用安全保障的装置及控制方法
Yang et al. Effects of simultaneous denitrification and desulfurization and changes of microbial community structure with corncob solid slow-release carbon source under different S/N ratios
Li et al. Removal of antibiotics and antibiotic resistance genes in the synthetic oxytetracycline wastewater by UASB-A/O (MBR) process
CN104071957B (zh) 一种原位修复受有机物污染黑臭底泥的生物化学联用工艺
CN105621819B (zh) 一种重金属尾矿库渗滤液多元组合生态处理系统和方法
CN105236590A (zh) 微生物异养和电化学氢自养协同深度降解水中高氯酸盐的方法
CN205892984U (zh) 一种光伏能源企业生产生活废水处理系统
CN211999386U (zh) 一种制药废水处理设备
CN203079788U (zh) 城市污水再生利用安全保障的装置
Wu et al. Start-up of the combined anaerobic ammonium oxidation and solid phase denitrification process and microbial characterization analysis
CN205398404U (zh) 一种新型家用养殖废水处理装置
CN204529597U (zh) 农村污水处理系统
CN104496080B (zh) 一种低阶煤提质废水深度处理方法
CN204097278U (zh) 矿区污水简易型处理装置
CN203319818U (zh) 一种碱性煤矿矿井废水处理设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant