CN104059206A - Preparation method of multifunctional medicinal polylactic acid (PLA) derivative ABC triblock polymer - Google Patents

Preparation method of multifunctional medicinal polylactic acid (PLA) derivative ABC triblock polymer Download PDF

Info

Publication number
CN104059206A
CN104059206A CN201410321019.6A CN201410321019A CN104059206A CN 104059206 A CN104059206 A CN 104059206A CN 201410321019 A CN201410321019 A CN 201410321019A CN 104059206 A CN104059206 A CN 104059206A
Authority
CN
China
Prior art keywords
lactic acid
pla
poly
pdma
star
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410321019.6A
Other languages
Chinese (zh)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Green Kht Science And Technology Ltd
Original Assignee
Chengdu Green Kht Science And Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Green Kht Science And Technology Ltd filed Critical Chengdu Green Kht Science And Technology Ltd
Priority to CN201410321019.6A priority Critical patent/CN104059206A/en
Publication of CN104059206A publication Critical patent/CN104059206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The invention discloses a preparation method of a multifunctional medicinal polylactic acid (PLA) derivative ABC triblock polymer. The preparation method comprises the following steps of with L-lactide as a raw material, synthesizing three-arm or multi-arm star-shaped PLA by using a classical stannous octoate catalyzed ring-opening method, and due to the existence of hydroxyl at the terminal of a polymer, enabling three-arm or multi-arm star-shaped PLA to react with bromoisobutyryl bromide in ice bath to obtain a star-shaped macroinitiator SPLA-Br of a bromo-terminal functional group; carrying out ring opening polymerization on the macroinitiator and DMA (Dimethyl Adipate) according to a certain ratio to obtain a star-shaped PDMA (Poly(dimethyl acrylamide)) block polymer with PLA as a core, then, adding N-isopropylacrylamide, and carrying out ATRP (Atom Transfer Radical Polymerization) to obtain a triblock copolymer; adding PDMA with low-molecular weight, and dissolving the PDMA with water by means of the amphipathicity of the block copolymer to form a nanoporous material. The block copolymer is of a hexagonal prism shaped structure, contains PLA as a continuous phase and is provided with nano-grade micropores. The material has the following advantages that the material is provided with the nano-grade micropores; the defect of poor processability of the traditional linear PLA material is overcome; no toxic or side effect is generated; the material can be used as a drug carrier material, a medical implant material and an in-vivo continuous dosing device part material.

Description

The preparation method of the multi-functional polylactic acid derivative pharmaceutically acceptable polymer of ABC tri-block
Affiliated technical field
The present invention relates to a kind of preparation method of star block copolymer porous drug carrier, particularly relate to a kind of preparation method with nanometer level microporous block macromolecular material.Belong to polymer chemistry and technical field of polymer.
Background technology
Poly(lactic acid) (Polylactic acid, PLA) be that a new generation of developing rapidly the nineties in 20th century can degradable macromolecular material, it has good biocompatibility, class bio-medical material and environment-friendly materials of food and drug administration (Food and Drug Adiministration, FDA) accreditation.From the sixties in 20th century, scientific worker starts to pay close attention to the degradation property of poly-lactic acid material, and first using poly-lactic acid material as degradable operation stitching wire material.1966, (the Kricheldorf H. R. such as Kulkarni chemospherein 2001,43,49-54., propose first: low-molecular-weight PLA can degradation in vivo, and final meta-bolites is CO 2and H 2o, harmless, environmentally safe.Simultaneously, find by the research to poly(lactic acid) vivo degradation process, the intermediate product lactic acid of degraded is the product of eubolism in body, can not accumulate in vivo, therefore PLA can not produce detrimentally affect to organism after degrading in vivo, has caused thus the beginning using this class material as bio-medical material.In recent years, it in medicine sustained and controlled release system, has more and more received the concern of scientists as pharmaceutical carrier.
But common line style poly(lactic acid) (Linear polylactic acid, LPLA) there are some shortcomings, for example its solution and bulk viscosity are higher, degree of crystallinity is large, material fragility is high, thermostability is low and low degradation speed, limit to a certain extent its widespread use in fields such as medical, agricultural and packagings, particularly at the application aspect Thermosensitive Material Used for Controlled Releasing of Medicine (Wang L., Dong C. M. j. Polym. Sci. PDMArt A:Polym. Chem.2006,44 (7), 2226-2236.).Star-like poly(lactic acid) (Star-shaped polylactic acids, SPLA) there is the short and molecular weight advantages of higher of side chain, its solution and bulk viscosity are more much lower than same molecular amount LPLA, mobility and solubility property improve, and its degradation speed is but fast than same molecular amount LPLA, thermostability is higher, is conducive to its processed and applied in the bio-medical materials such as medicament slow release.
No matter although line style or star-like poly-lactic acid material have been widely used in Thermosensitive Material Used for Controlled Releasing of Medicine and tissue engineering material aspect, but due to the restriction of himself hydrophobic structure, also part comes with some shortcomings, for example its wetting ability is not good, degradation rate is slower, degradation cycle is difficult to regulation and control, and implant inner posterior quadrant easily adheres to material surface etc.Scientists has been carried out the research of the modification of structure aspects to PLA material for these problems.In order to increase the wetting ability of PLA, common material modified have polyoxyethylene glycol (Polyethylene glycol, PEG) (Moffatt S., Cristiano R. j. Int. J. Pharm.2006,317,10-13.), polyvinyl alcohol (Poly vinyl alcohol, PVA), dextran (dextran), chitosan and polypeptide (polypeptide) etc.Because polypeptide (also referred to as polyamino acid) is the biodegradable polymer of a class, have low toxicity, good biocompatibility, biodegradable, easily absorbed by body and the advantage such as metabolism, Amino Acid Unit structure can be selected, hydrophilicity and hydrophobicity is adjustable, started to be applied in the study on the modification of poly(lactic acid), but only had little report.
On the other hand, multiporous biological degradable material is the brand-new material system that development in recent years is got up, and is a kind of material with network structure being made up of mutual perforation or blind hole hole, and the border of hole or surface are made up of pillar or flat board.It has regularly arranged and big or small adjustable pore passage structure, relative density is low, specific tenacity is high, porosity and surface-area large, perviousness and excellent adsorption and good biocompatibility, the features such as environmental friendliness, in bulky molecular catalysis, absorption and separate, the field such as nanomaterial assembly, biological chemistry, molecular recognition and pharmaceutical carrier is all with a wide range of applications.To the consulting of documents and materials, also there is no so far that a kind of poly-lactic acid material has that processing characteristics is high simultaneously, the feature such as wetting ability, good biodegradability, nanometer level microporous, high Drug loading capacity by us.
Summary of the invention
The object of the invention is to set up a kind of preparation method of degradable multiporous poly(lactic acid), this polymer materials has the following advantages: good processability, wetting ability, good biodegradability, nanometer level microporous, high Drug loading capacity.
This poly-lactic acid material is a kind of star-like poly(lactic acid)/PDMA segmented copolymer; Taking L-rac-Lactide as raw material, utilize stannous octoate catalysis open loop method to synthesize three arm poly(lactic acid); Prepare macromole evocating agent; With methacrylic acid N, N-dimethylaminoethyl (DMA) carries out atom transfer radical polymerization and obtains the star block copolymer taking PLA as core PDMA as arm; Add lower molecular weight PDMA, utilize the amphiphilic water of segmented copolymer to be dissolved, form nanoscale porous material.
The technology of preparing scheme of porous poly-lactic acid material is as follows:
1) star-like poly(lactic acid) is synthetic
2) macromole evocating agent is synthetic
3) preparation of star block copolymer
By above technical scheme, tool of the present invention has the following advantages: 1) degradable multiporous poly(lactic acid) has nano micropore structure capable;
2) degradable multiporous poly(lactic acid) has hexagonal columnar structure;
3) degradable multiporous poly(lactic acid) has high drug loading amount, and good biocompatibility;
4) degradable multiporous poly(lactic acid) has pharmaceutical carrier function and discharges pharmic function, can effectively reduce medicine normal tissue organ toxic side effect.
Brief description of the drawings
Fig. 1 is the vesicular structure schematic diagram of this polymer materials;
Fig. 2 is the electron photomicrograph of this polymer materials.
Embodiment
Provide embodiment below so that the present invention is specifically described; but it is worthy of note that following examples are only used to further illustrate the present invention; can not be interpreted as limiting the scope of the invention, some nonessential improvement that the person skilled in the art in this field makes the present invention according to the invention described above content and adjustment still belong to protection scope of the present invention.
Embodiment 1:
1. prepare star block copolymer
Taking L-rac-Lactide as raw material, utilize classical stannous octoate catalysis open loop method to synthesize three arms or multi-arm star-shaped poly(lactic acid), due to the existence of the hydroxyl of polymer ends, react in ice bath with bromo isobutyl acylbromide, obtain the star-like macromole evocating agent SPLA-Br of bromine terminal functionality.Macromole evocating agent and DMA are carried out to ATRP polymerization by a certain percentage, obtain the star block copolymer taking PLA as core PDMA.
2. the sign of star block copolymer material self-assembled structures and performance
The chemical structure of polymkeric substance and shape characteristic are the bases of the every character of Study Polymer Melts.This problem intends utilizing gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR) and nucleus magnetic resonance (NMR) method detect chemical structure and the polymerization degree of polymkeric substance, utilize thermogravimetric analyzer (TGA) to study the thermal characteristics of polymkeric substance, the transformation mutually, the liquid crystal behavior that use differential scanning calorimeter (DSC) research segmented copolymer, utilize one dimension, two-dimentional wide-angle x-ray diffraction instrument (WAXD) to determine the phase structure of each segment in segmented copolymer.The star block copolymer proposing in this problem more easily forms micro phase separation structure, can utilize atomic force microscope (AFM) and transmission electron microscope (TEM) to observe the self-assembled structures of star block copolymer at substrate surface, utilize little angle one dimension, two-dimentional x-ray diffractometer (SAXS) to study the micro phase separation structure of star block copolymer.
3. the preparation of porous material
Obtain after required poly(lactic acid)/PDMA star block copolymer, we will observe its body self-assembly behavior, mainly study its micro phase separation structure.Because the body microphase-separated self-assembled structures of segmented copolymer is relevant with the relative proportion of composition component, by research block component the phase of the factor such as content, molecular weight on micro phase separation structure and the impact of size, we can determine may be applicable segmented copolymer to carry out aftertreatment.Particularly for the segmented copolymer that forms (six sides) column phase or co-continuous double helix phase, when material forms nano pore, and micro phase separation structure is arranged when even, material is higher for the release efficiency of medicine, during as embedded material and the contact area of body fluid increase, be conducive to improve the degradation speed of material.We as the impact on material micro phase separation structure such as solvent species, solvent evaporates speed, make the PDMA block in polymkeric substance outside form column or double-spiral structure to obtain top condition research material preparation condition.
By the synthetic PLA-obtaining in a certain amount of lower molecular weight PDMA homopolymer and above-mentioned route b-PDMA star block copolymer carries out blend, can obtain the hexagonal columnar phase micro phase separation structure that we need, and phase structure can be by the confirmation such as low-angle scattering of X-rays and high-resolution electron microscope.The phase of composition etc. by research blend on micro phase separation structure and the impact of size, we can select suitable blend to carry out aftertreatment.On the other hand, if multipolymer forms co-continuous double helix phase, also may be used as porous material.Then we,, by having the film water treatment of column phase or co-continuous double helix phase structure, dissolve PDMA homopolymer, just obtain the star-like polylactic acid modified porous material containing hydrophilic nano duct, can be used as the carrier of pharmaceutical model compound.
4. porous star block copolymer is as the research of pharmaceutical carrier
This experiment is intended by existence form and the concentration of steady-state fluorescence spectral characterization and mensuration pyrene, with prove this based block copolymer whether can be in water solution system stable micro-molecular compound, and then discharge in EPC liposome, thereby explore the potential application of this type of macromolecular material as pharmaceutical carrier from the complex body of high-molecular block copolymer-pyrene.Main employing steady-state fluorescence spectroscopic analysis: the spectrum of all samples all records by right angle light path in 4 mL cuvettes.The spectrum of solid-state pyrene crystal is measured by solid support.While doing fluorescence emission spectrum mensuration, emission spectrum wavelength region is 350~650 nm, and excitation wavelength is 336 nm.Excitation spectrum records at emission wavelength 374 nm and 470 nm that represent pyrene monomer and excimer transmitting respectively.All scanning exciting light slits are made as 5 nm, and utilizing emitted light slit is made as 2.5 nm, and PMT voltage is all made as 400 volts, and sweep velocity is 240 nm/min, and spectrum correction is all made as the wavelength dependency of opening to eliminate grating and monitor response.Each Sample Scan is averaged for three times.Be determined at 25 ounder C, carry out.
Finally it should be noted that, above embodiment is only unrestricted in order to technical scheme of the present invention to be described, although the present invention is had been described in detail with reference to preferred embodiment, those of ordinary skill in the art should understand, can a point technical scheme for invention be modified or be replaced on an equal basis, and not departing from the spirit and scope of technical solution of the present invention, it all should be encompassed in the middle of claim scope of the present invention.

Claims (7)

1. a degradable multiporous poly(lactic acid), its constitutional features is: described macromolecular material is the star copolymer being formed by hydrophobicity polylactic acid chain segment and the coupling of wetting ability PDMA segment.
2. a method of preparing degradable multiporous poly(lactic acid) claimed in claim 1 is carried out as follows:
1), taking L-rac-Lactide as raw material, utilize stannous octoate catalysis open loop method to synthesize three arm poly(lactic acid);
2) prepare macromole evocating agent;
3) carry out by a certain percentage ATRP polymerization with DMA, obtain the star block copolymer taking PLA as core PDMA;
4) add lower molecular weight PDMA, utilize the amphiphilic water of segmented copolymer to be dissolved, form nanoscale porous material.
3. the preparation method of a kind of degradable multiporous poly(lactic acid) according to claim 2, is characterized in that the catalyzer that in aforesaid method, star-type polymer that step 1) is closed uses is stannous octoate.
4. the preparation method of a kind of degradable multiporous poly(lactic acid) according to claim 2, is further characterized in that the polymerization single polymerization monomer that in aforesaid method, step 3) is used is DMA.
5. the preparation method of a kind of degradable multiporous poly(lactic acid) according to claim 2, is further characterized in that in the ring-opening polymerization that in aforesaid method, step 3) is carried out and uses isobutyl bromide to carry out polyreaction as initiator.
6. the degradable multiporous poly(lactic acid) of one according to claim 2, is further characterized in that: this macromolecular material is the porous material that poly(lactic acid) and PDMA form.
7. the degradable multiporous poly(lactic acid) of one according to claim 2, is further characterized in that: described porous polymer materials has hexagonal columnar structure clearly.
CN201410321019.6A 2014-07-08 2014-07-08 Preparation method of multifunctional medicinal polylactic acid (PLA) derivative ABC triblock polymer Pending CN104059206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410321019.6A CN104059206A (en) 2014-07-08 2014-07-08 Preparation method of multifunctional medicinal polylactic acid (PLA) derivative ABC triblock polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410321019.6A CN104059206A (en) 2014-07-08 2014-07-08 Preparation method of multifunctional medicinal polylactic acid (PLA) derivative ABC triblock polymer

Publications (1)

Publication Number Publication Date
CN104059206A true CN104059206A (en) 2014-09-24

Family

ID=51547158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410321019.6A Pending CN104059206A (en) 2014-07-08 2014-07-08 Preparation method of multifunctional medicinal polylactic acid (PLA) derivative ABC triblock polymer

Country Status (1)

Country Link
CN (1) CN104059206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072698A (en) * 2014-07-08 2014-10-01 成都市绿科华通科技有限公司 Drug-carrying block macromolecular material with star-shaped and porous structure
CN113205862A (en) * 2021-04-09 2021-08-03 南通大学 An inducing agent A (BC)3Method for phase change of hybrid arm star copolymer structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072698A (en) * 2014-07-08 2014-10-01 成都市绿科华通科技有限公司 Drug-carrying block macromolecular material with star-shaped and porous structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072698A (en) * 2014-07-08 2014-10-01 成都市绿科华通科技有限公司 Drug-carrying block macromolecular material with star-shaped and porous structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072698A (en) * 2014-07-08 2014-10-01 成都市绿科华通科技有限公司 Drug-carrying block macromolecular material with star-shaped and porous structure
CN113205862A (en) * 2021-04-09 2021-08-03 南通大学 An inducing agent A (BC)3Method for phase change of hybrid arm star copolymer structure

Similar Documents

Publication Publication Date Title
Fustin et al. Triblock terpolymer micelles: A personal outlook a
Naeini et al. Poly (citric acid)-block-poly (ethylene glycol) copolymers—new biocompatible hybrid materials for nanomedicine
Lambermont-Thijs et al. Selective partial hydrolysis of amphiphilic copoly (2-oxazoline) s as basis for temperature and pH responsive micelles
Wu et al. Fast-dissolving sweet sedative nanofiber membranes
WO2014206044A1 (en) Amphiphilic 4/6 miktoarm star-shaped ph-responsive copolymer and preparation method thereof
Nguyen et al. Reverse micelles prepared from amphiphilic polylactide-b-poly (ethylene glycol) block copolymers for controlled release of hydrophilic drugs
Chen et al. Amphiphilic poly (ethylene glycol)-b-poly (ethylene brassylate) copolymers: One-pot synthesis, self-assembly, and controlled drug release
Adami et al. PLA–PEG copolymers micronization by supercritical assisted atomization
CN103992475A (en) Biocompatible degradable porous polyethylene glycol material
CN104059207A (en) Acrylic acid and polyactic acid (PAA) contained functional polymer material
CN104086722A (en) Method for preparing biological porous material
CN104072707A (en) Method for preparing star-shaped block copolymer porous drug carrier
EP2150237A1 (en) Method for the preparation of biocompatible polymeric nanoparticles for drug delivery and nanoparticles prepared thereby
CN103980487A (en) Preparation method for degradable porous polyethylene glycol
CN104059206A (en) Preparation method of multifunctional medicinal polylactic acid (PLA) derivative ABC triblock polymer
Cunningham et al. Polymers made of bile acids: From soft to hard biomaterials
CN104086723A (en) Multiblock multifunctional medicinal macromolecular material
CN104072701A (en) Method for synthesizing ABC multiblock copolymer drug polymer
Yang et al. Self-assembling of biocompatible BAB amphiphilic triblock copolymers PLL (Z)–PEG–PLL (Z) in aqueous medium
CN104448807A (en) Degradable porous poly lactic acid preparation method
CN104072697A (en) Polylactic acid (PLA) medicinal polymer with hexagonal columnar porous structure
CN104072700A (en) Amphiphilic multifunctional multiblock polylactic acid (PLA)
CN104072706A (en) Multifunctional polylactic acid (PLA) derivative drug carrier material
CN104059205A (en) Methylacrylic acid (MAA) contained medical polylactic acid (PLA) derivative material
CN104072698A (en) Drug-carrying block macromolecular material with star-shaped and porous structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140924