CN104048600A - 基于光耦探测器x射线三维显微镜重建体素尺寸标定方法 - Google Patents

基于光耦探测器x射线三维显微镜重建体素尺寸标定方法 Download PDF

Info

Publication number
CN104048600A
CN104048600A CN201410263478.3A CN201410263478A CN104048600A CN 104048600 A CN104048600 A CN 104048600A CN 201410263478 A CN201410263478 A CN 201410263478A CN 104048600 A CN104048600 A CN 104048600A
Authority
CN
China
Prior art keywords
detector
ray
distance
optical
radiographic source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410263478.3A
Other languages
English (en)
Inventor
胡小唐
胡晓东
邹晶
须颖
赵金涛
牛鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201410263478.3A priority Critical patent/CN104048600A/zh
Publication of CN104048600A publication Critical patent/CN104048600A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明涉及X射线CT技术领域,为提供重建图像像素尺寸的标定方法。为此,本发明采取的技术方案是,基于光耦探测器X射线三维显微镜重建体素尺寸标定方法,首先利用标准栅格板进行高分辨显微CT的光学放大标定,然后利用标准的球棒进行三维显微镜整体放大倍数标定,通过计算获取几何放大倍数,进一步建立几何放大倍数与射线源、样品台和探测器相对于各自零位的位置的关系的公式,根据该公式即可简单方便的计算射线源和探测器位置发生变化的几何放大比,利用CCD像素尺寸除以几何放大比和光学放大比的乘积,得到最终的体素尺寸。本发明主要应用于X射线CT设备的设计、制造。

Description

基于光耦探测器X射线三维显微镜重建体素尺寸标定方法
技术领域
本发明涉及X射线CT技术领域,具体讲,涉及基于光耦探测器X射线三维显微镜重建体素尺寸标定方法。 
技术背景
X射线CT是无损检测领域的重要技术手段,其分辨力一般处于毫米量级。基于光耦探测器的X射线三维显微镜以其高的空间分辨力,在MEMS器件封装和装配误差分析、半导体器件封装和内部缺陷检测、石油地质勘探等方面起到了越来越重要的作用。 
X射线显微镜扫描成像过程是:射线源发射出的X射线穿透所述待测样品后投射至所述探测器上,完成一幅投影图像的采集;通过在360度范围内的系列均匀采样,并利用相应的成像算法即可获取三维立体图像。 
分辨率是X射线显微镜的一个非常重要的技术指标。而这个指标是由体素尺寸决定。体素尺寸越小,分辨率越高。X射线显微镜三维重建结果可以视为一系列代表物质衰减系数的小立方体组成,这些小立方是以像素为单位的,因此无法直接得到体素尺寸。将像素尺寸转换为实际的体素尺寸是X射线显微镜成像中的重要过程。在实际扫描成像过程中,射线源、样品台和探测器的相对位置发生变化时,体素的尺寸也在发生变化,因此自动标定体素尺寸十分必要。 
中国专利申请号201310109460.3提出了“锥束3D-CT扫描系统重建体素尺寸的自动标定方法”。该专利不需要进行几何放大比的直接计算、校正程序简单、实用。但是该方法是基于平板探测器的X射线CT系统,而且只适用于射线源和探测器位置固定的情况。本专利则是针对基于光耦探测器的高分辨显微CT系统,关于其标定方法目前国内外的文献资料中并未查找到相关报道。 
发明内容
为克服现有技术的不足,提供重建图像像素尺寸的标定方法。为此,本发明采取的技术方案是,基于光耦探测器X射线三维显微镜重建体素尺寸标定方法,首先利用标准栅格板进行高分辨显微CT的光学放大标定,然后利用标准的球棒进行三维显微镜整体放大倍数标定,通过计算获取几何放大倍数,进一步建立几何放大倍数与射线源、样品台和探测器相对于各自零位的位置的关系的公式,根据该公式即可简单方便的计算射线源和探测器位置发生变化的几何放大比,利用CCD像素尺寸除以几何放大比和光学放大比的乘积,得到最终的体素尺寸。 
利用标准栅格板进行高分辨显微CT的光学放大标定具体为: 
步骤101:将光耦探测器前端的闪烁体更换为栅格板,通过调节栅格板的位置,使其在CCD上成清晰像,此时栅格板所在位置即为原先闪烁体所在位置; 
步骤102:通过Canny算子对栅格板显微图像进行边缘提取,计算出平行栅格之间的距离; 
步骤103:利用栅格之间的距离进行光学放大倍数的标定:利用平行栅格之间的距离除以平行栅格之间的实际距离,即得光学放大倍数; 
步骤104:求取多行多列的光学放大倍数,将结果取平均得最终的光学放大倍数。 
利用标准的球棒进行三维显微镜整体放大倍数标定: 
步骤201采集标准球棒的显微CT投影图像; 
步骤202使用Canny算子提取标准球棒中双球的投影图像的边缘; 
步骤203使用Hough变换确定标准球棒中双球的圆心的位置,并且计算出球心距离; 
步骤204利用计算出的球心距离除以标准球棒的实际距离,即得总放大倍数。 
通过计算获取几何放大倍数具体为: 
步骤301用总放大倍数除以前面标定的光学放大倍数,即得此时的几何放大倍数; 
步骤302标定出的几何放大倍数和此时射线源、样品台和探测器相对于各自零位的位置,解算出它们处于各自零位时的SDD0和SOD0; 
步骤303建立几何放大倍数与各位置读数的公式如下: 
SDD 0 - Ls - Ls SOD 0 - Ls + Lo = β geo - - - ( 1 )
其中,Ls,Lo和Ld分别为射线源、样品台和探测器成像时相对于各自零位的坐标,由光栅尺给出;βgeo为此时的几何放大倍数;SDD0和SOD0为射线源、样品台和探测器在各自零位时的射线源到探测器中心距离SDD(distance of source to detector)和射线源到转台中心距离SOD(distance of source to object); 
步骤304通过读取射线源、样品台和探测器成像时相对于各自零位的坐标,根据公式(1)即可计算出几何放大比。 
体素尺寸计算具体为: 
步骤401利用CCD像素尺寸除以几何放大比和光学放大比的乘积。 
与已有技术相比,本发明的技术特点与效果: 
本发明的优点在于:(1)系统确定后,光学放大就确定了,因此光学放大倍数只进行一次标定即可。(2)由于系统整体的放大倍数是根据标准球棒的球心距进行的标定,避免了球边界界定引起的误差,标定的放大比精确度较高。(3)系统确定后,射线源和探测器位置可以根据实际需要进行位置调节,而且几何放大的标定只需要将射线源、样品台和探测器相对于各自零位的位置代入公式即可。(4)本文方法简单,不需要进行CT扫描标定,只需要对标准的栅格板、标准球棒进行若干次投影数据采集即可。 
附图说明
图1基于光耦探测器的显微CT结构示意。 
图2为光耦探测器部分的示意图。 
图3为栅格板的DR图像。 
图4为球棒的DR图像。 
图5为球棒的轮廓图像。 
具体实施方式
本发明的目的在于提供一种基于光耦探测器的高分辨显微CT系统的重建图像像素尺寸的标定方法。利用标准的球棒首先进行光学放大倍数标定,然后进行三维显微镜整体放大倍数标定,通过计算获取几何放大倍数,进一步建立几何放大倍数与射线源、样品台和探测器相对于各自零位的位置的关系的公式。根据该公式即可简单方便的计算射线源和探测器位置发生变化的几何放大比。利用CCD像素尺寸除以几何放大比和光学放大比的乘积,得到最终的体素尺寸。 
本发明的技术方案如下: 
步骤一:进行光学放大倍数标定 
步骤101:将光耦探测器前端的闪烁体更换为栅格板,通过调节栅格板的位置,使其在CCD上成清晰像。此时栅格板所在位置即为原先闪烁体所在位置,这样可以保证标定得到的光学放大倍数与实际使用时的一致。 
步骤102:通过Canny算子对栅格板显微图像进行边缘提取,计算出平行栅格之间的距离。 
步骤103:利用栅格之间的距离进行光学放大倍数的标定。利用平行栅格之间的距离除以平行栅格之间的实际距离,即得光学放大倍数。 
步骤104:求取多行多列的光学放大倍数,将结果取平均得最终的光学放大倍数。 
步骤二:三维显微镜整体放大倍数标定 
步骤201采集标准球棒的显微CT投影图像。 
步骤202使用Canny算子提取标准球棒中双球的投影图像的边缘。 
步骤203使用Hough变换确定标准球棒中双球的圆心的位置,并且计算出球心距离。 
步骤204利用计算出的球心距离除以标准球棒的实际距离,即得总放大倍数。 
步骤三:几何放大倍数标定 
步骤301用总放大倍数除以前面标定的光学放大倍数,即得此时的几何放大倍数。 
步骤302标定出的几何放大倍数和此时射线源、样品台和探测器相对于各自零位的位置,解算出它们处于各自零位时的SDD0和SOD0。 
步骤303建立几何放大倍数与各位置读数的公式如下: 
SDD 0 - Ls - Ls SOD 0 - Ls + Lo = β geo - - - ( 1 )
其中,Ls,Lo和Ld分别为射线源、样品台和探测器成像时相对于各自零位的坐标,由光栅尺给出;βgeo为此时的几何放大倍数;SDD0和SOD0为射线源、样品台和探测器在各自零位时的SDD(射线源到探测器中心距离,distance of source to detector)和SOD(射线源到转台中心距离,distance of source to object)。 
步骤304通过读取射线源、样品台和探测器成像时相对于各自零位的坐标,根据公式(1)即可计算出几何放大比。 
步骤四:体素尺寸计算 
步骤401利用CCD像素尺寸除以几何放大比和光学放大比的乘积。 
本发明的特征在于包括以下步骤: 
(1)利用标准栅格板进行高分辨显微CT的光学放大标定。 
(2)利用标准球棒标定三维显微镜整体放大倍数标定。(3)通过公式直接计算射线源、样品台和探测器位置变化后的几何放大倍数。 
(4)简单方便的获取重建图像像素尺寸。 
本发明的优点在于:(1)系统确定后,光学放大就确定了,因此光学放大倍数只进行一次标定即可。(2)由于系统整体的放大倍数是根据标准球棒的球心距进行的标定,避免了球边界界定引起的误差,标定的放大比精确度较高。(3)系统确定后,射线源和探测器位置可以根据实际需要进行位置调节,而且几何放大的标定只需要将射线源、样品台和探测器相对于各自零位的位置代入公式即可。(4)本文方法简单,不需要进行CT扫描标定,只需要对标准的栅格板、标准球棒进行若干次投影数据采集即可。 
结合实施例对本发明做进一步说明,具体步骤如下: 
(1)将图X中光耦探测器前端的闪烁体更换为如图3所示的标准栅格板(黑线中心间距为100μm),调整栅格板的位置使其在CCD上成清晰像。 
(2)通过Canny算子对栅格板显微图像进行边缘提取,获取平行栅格直接的距离。 
(3)根据CCD像素尺寸,计算网格放大后尺寸,再除以网格实际尺寸,即得光学放大倍数。 
(4)将栅格板更换为原来的闪烁片。 
(5)将球棒放置在样品台中心位置,获取球棒的投影图像。 
(6)使用Canny算子提取图像边缘。 
(7)使用Hough变换确定标准球棒中双球的圆心的位置,并且计算出球心距离。利用计算出的球心距除以球棒的两个球心的实际距离,即得总放大倍数 
(7)用总放大倍数除以前面标定的光学放大倍数,即得此时的几何放大倍数。 
(8)选取了3组射线源和探测器的位置,每组中对样品在光轴上12个不同位置进行投影,采用最小二乘法求解SDD0和SOD0,结果如表2所示。 
记录射线源、样品台和探测器相对于各自零位的位置,解算出它们处于各自零位时的SDD0和SOD0。 
表1SDD0和SOD0标定数据(单位:mm) 
(9)射线源、样品台和探测器可以进行调整,其几何放大比可以通过如下公式计算得出 
SDD 0 - Ls - Ls SOD 0 - Ls + Lo = β geo - - - ( 1 )
其中,Ls,Lo和Ld分别为射线源、样品台和探测器成像时相对于各自零位的坐标,由 光栅尺给出;βgeo为此时的几何放大倍数;SDD0和SOD0为射线源、样品台和探测器在各自零位时的SDD和SOD。 
(10)利用CCD像素尺寸除以几何放大比和光学放大比的乘积,即得出像素尺寸。 

Claims (5)

1.一种基于光耦探测器X射线三维显微镜重建体素尺寸标定方法,其特征是,首先利用标准栅格板进行高分辨显微CT的光学放大标定,然后利用标准的球棒进行三维显微镜整体放大倍数标定,通过计算获取几何放大倍数,进一步建立几何放大倍数与射线源、样品台和探测器相对于各自零位的位置的关系的公式,根据该公式即可简单方便的计算射线源和探测器位置发生变化的几何放大比,利用CCD像素尺寸除以几何放大比和光学放大比的乘积,得到最终的体素尺寸。
2.如权利要求1所述的基于光耦探测器X射线三维显微镜重建体素尺寸标定方法,其特征是,利用标准栅格板进行高分辨显微CT的光学放大标定具体为:
步骤101:将光耦探测器前端的闪烁体更换为栅格板,通过调节栅格板的位置,使其在CCD上成清晰像,此时栅格板所在位置即为原先闪烁体所在位置;
步骤102:通过Canny算子对栅格板显微图像进行边缘提取,计算出平行栅格之间的距离;
步骤103:利用栅格之间的距离进行光学放大倍数的标定:利用平行栅格之间的距离除以平行栅格之间的实际距离,即得光学放大倍数;
步骤104:求取多行多列的光学放大倍数,将结果取平均得最终的光学放大倍数。
3.如权利要求1所述的基于光耦探测器X射线三维显微镜重建体素尺寸标定方法,其特征是,利用标准的球棒进行三维显微镜整体放大倍数标定具体为:
步骤201采集标准球棒的显微CT投影图像;
步骤202使用Canny算子提取标准球棒中双球的投影图像的边缘;
步骤203使用Hough变换确定标准球棒中双球的圆心的位置,并且计算出球心距离;
步骤204利用计算出的球心距离除以标准球棒的实际距离,即得总放大倍数。
4.如权利要求1所述的基于光耦探测器X射线三维显微镜重建体素尺寸标定方法,其特征是,通过计算获取几何放大倍数具体为:
步骤301用总放大倍数除以前面标定的光学放大倍数,即得此时的几何放大倍数;
步骤302标定出的几何放大倍数和此时射线源、样品台和探测器相对于各自零位的位置,解算出它们处于各自零位时的SDD0和SOD0;
步骤303建立几何放大倍数与各位置读数的公式如下:
SDD 0 - Ls - Ls SOD 0 - Ls + Lo = β geo - - - ( 1 )
其中,Ls,Lo和Ld分别为射线源、样品台和探测器成像时相对于各自零位的坐标,由光栅尺给出;βgeo为此时的几何放大倍数;SDD0和SOD0为射线源、样品台和探测器在各自零位时的射线源到探测器中心距离SDD(distance of source to detector)和射线源到转台中心距离SOD(distance of source to object);
步骤304通过读取射线源、样品台和探测器成像时相对于各自零位的坐标,根据公式
(1)即可计算出几何放大比。
5.如权利要求1所述的基于光耦探测器X射线三维显微镜重建体素尺寸标定方法,其特征是,体素尺寸计算具体为:步骤401利用CCD像素尺寸除以几何放大比和光学放大比的乘积。
CN201410263478.3A 2014-06-12 2014-06-12 基于光耦探测器x射线三维显微镜重建体素尺寸标定方法 Pending CN104048600A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410263478.3A CN104048600A (zh) 2014-06-12 2014-06-12 基于光耦探测器x射线三维显微镜重建体素尺寸标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410263478.3A CN104048600A (zh) 2014-06-12 2014-06-12 基于光耦探测器x射线三维显微镜重建体素尺寸标定方法

Publications (1)

Publication Number Publication Date
CN104048600A true CN104048600A (zh) 2014-09-17

Family

ID=51501765

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410263478.3A Pending CN104048600A (zh) 2014-06-12 2014-06-12 基于光耦探测器x射线三维显微镜重建体素尺寸标定方法

Country Status (1)

Country Link
CN (1) CN104048600A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403811A (zh) * 2016-05-07 2017-02-15 天津大学 基于光耦探测器x射线三维显微镜系统参数标定方法
CN107515427A (zh) * 2017-08-25 2017-12-26 清华大学 射线照射装置以及安全检测设备
CN107883876A (zh) * 2017-12-06 2018-04-06 上海复合材料科技有限公司 一种数字射线几何放大倍数的实时测量方法
CN107958473A (zh) * 2017-11-20 2018-04-24 南方医科大学 一种基于平板射线源的随机射线成像方法
CN112461872A (zh) * 2020-10-16 2021-03-09 天津大学 基于双微球模体的显微ct焦斑漂移测量系统及补偿方法
CN113945174A (zh) * 2021-10-21 2022-01-18 中国工程物理研究院激光聚变研究中心 一种x射线投影测量图像尺寸校准方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162255A (ja) * 2004-12-02 2006-06-22 Shimadzu Corp X線像の合成方法及びx線分析装置
JP2007064698A (ja) * 2005-08-30 2007-03-15 Yaskawa Electric Corp 画像処理装置および画像処理装置のキャリブレーション方法
JP2009250867A (ja) * 2008-04-09 2009-10-29 Jeol Ltd エネルギー分散型x線分光器を備えるx線分析装置
CN102499701A (zh) * 2011-09-29 2012-06-20 华中科技大学 X射线和荧光双模式活体成像系统的几何校准方法
CN103226113A (zh) * 2013-03-29 2013-07-31 中国计量科学研究院 锥束3d-ct扫描系统重建体素尺寸的自动标定方法
CN103558237A (zh) * 2013-10-31 2014-02-05 谭晔 工业ct三维精密测量与校准方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162255A (ja) * 2004-12-02 2006-06-22 Shimadzu Corp X線像の合成方法及びx線分析装置
JP2007064698A (ja) * 2005-08-30 2007-03-15 Yaskawa Electric Corp 画像処理装置および画像処理装置のキャリブレーション方法
JP2009250867A (ja) * 2008-04-09 2009-10-29 Jeol Ltd エネルギー分散型x線分光器を備えるx線分析装置
CN102499701A (zh) * 2011-09-29 2012-06-20 华中科技大学 X射线和荧光双模式活体成像系统的几何校准方法
CN103226113A (zh) * 2013-03-29 2013-07-31 中国计量科学研究院 锥束3d-ct扫描系统重建体素尺寸的自动标定方法
CN103558237A (zh) * 2013-10-31 2014-02-05 谭晔 工业ct三维精密测量与校准方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵耕砚等: "基于光耦探测器显微CT的实现及其放大倍数的标定", 《传感技术学报》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403811A (zh) * 2016-05-07 2017-02-15 天津大学 基于光耦探测器x射线三维显微镜系统参数标定方法
CN107515427A (zh) * 2017-08-25 2017-12-26 清华大学 射线照射装置以及安全检测设备
WO2019037488A1 (zh) * 2017-08-25 2019-02-28 清华大学 射线照射装置以及安全检测设备
CN107958473A (zh) * 2017-11-20 2018-04-24 南方医科大学 一种基于平板射线源的随机射线成像方法
CN107958473B (zh) * 2017-11-20 2021-02-12 南方医科大学 一种基于平板射线源的随机射线成像方法
CN107883876A (zh) * 2017-12-06 2018-04-06 上海复合材料科技有限公司 一种数字射线几何放大倍数的实时测量方法
CN112461872A (zh) * 2020-10-16 2021-03-09 天津大学 基于双微球模体的显微ct焦斑漂移测量系统及补偿方法
CN112461872B (zh) * 2020-10-16 2023-01-24 天津大学 基于双微球模体的显微ct焦斑漂移测量系统及补偿方法
CN113945174A (zh) * 2021-10-21 2022-01-18 中国工程物理研究院激光聚变研究中心 一种x射线投影测量图像尺寸校准方法
CN113945174B (zh) * 2021-10-21 2023-10-17 中国工程物理研究院激光聚变研究中心 一种x射线投影测量图像尺寸校准方法

Similar Documents

Publication Publication Date Title
CN104048600A (zh) 基于光耦探测器x射线三维显微镜重建体素尺寸标定方法
CN101515370B (zh) 三维显微ct扫描系统中射线源焦点的投影坐标的标定方法
CN103969269B (zh) 用于几何校准ct扫描仪的方法和装置
Carmignato Accuracy of industrial computed tomography measurements: experimental results from an international comparison
CN105264361B (zh) 高分辨率计算机断层扫描
WO2010061810A1 (ja) 放射線撮像装置
CN103134823B (zh) 一种基于卷积的x射线ct系统射束硬化校正方法
CN103559708B (zh) 基于方靶模型的工业定焦相机参数标定装置
CN101936720B (zh) 一种适用于锥束xct系统的探测器扭转角的标定方法
CN102711613A (zh) 计算断层摄影成像方法及系统
RU2602750C1 (ru) Способ калибровки компьютерно-томографического изображения, устройство и система компьютерной томографии
CN103759679B (zh) 一种锥束ct系统角度偏差测量方法
EP3006924A1 (en) Device and method for image reconstruction at different x-ray energies, and device and method for x-ray three-dimensional measurement
CN102053096B (zh) 双能量x射线安全检查设备的材料校准系统及校准方法
Russo et al. Method for measuring the focal spot size of an x‐ray tube using a coded aperture mask and a digital detector
CN105447832A (zh) 一种基于探测器单元标定的ct图像伪影校正方法及应用
EP3011321A1 (en) Coded-aperture x-ray imaging
CN103006248B (zh) 数字x射线成像装置及其系统非均匀性校正方法
CN102496175B (zh) 基于计算机断层成像ct创建被测量物衰减图的方法及装置
CN103445798A (zh) 确定平板x射线图像探测器中传感器的几何偏移的方法
CN102970931A (zh) 用于确定计算机x线摄影中的探测器的空间响应标记图的方法
CN105319225A (zh) 一种实现板状样品高分辨率大视野cl成像的扫描方法
CN103745440A (zh) Ct系统金属伪影校正方法
CN105161147A (zh) 一种压水堆乏燃料元件三维中子照相无损检测方法
CN106403811A (zh) 基于光耦探测器x射线三维显微镜系统参数标定方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140917