CN104037269A - 一种基于激光诱导晶化的非晶硅薄膜太阳能电池器件的制备方法 - Google Patents

一种基于激光诱导晶化的非晶硅薄膜太阳能电池器件的制备方法 Download PDF

Info

Publication number
CN104037269A
CN104037269A CN201410254559.7A CN201410254559A CN104037269A CN 104037269 A CN104037269 A CN 104037269A CN 201410254559 A CN201410254559 A CN 201410254559A CN 104037269 A CN104037269 A CN 104037269A
Authority
CN
China
Prior art keywords
amorphous silicon
thin film
laser
preparation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410254559.7A
Other languages
English (en)
Inventor
史伟民
匡华慧
黄璐
金晶
陆舒逸
杨伟光
刘进
明秀春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201410254559.7A priority Critical patent/CN104037269A/zh
Publication of CN104037269A publication Critical patent/CN104037269A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells the devices comprising monocrystalline or polycrystalline materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种基于激光诱导晶化的新型非晶硅薄膜太阳能电池器件,属无机材料太阳能器件制备的工艺技术领域。光学薄膜包括减反膜、增透膜、增反膜等,本发明主要通过控制晶粒大小,来达到调制光学薄膜层的增反和增透功能。本发明方法特征在于通过等离子体化学气相沉积法(PECVD)在氧化铟锡(ITO)导电玻璃上沉积三层分别为p型、i型和n型的非晶硅(a-Si)薄膜,然后使用波长为532nm的倍频掺钕钇铝石榴石(Nd:YAG)激光辐照样品表面,来实现n型和p型层由非晶硅转变为多晶硅(poly-Si)光学薄膜层。通过变化激光能量密度,来控制晶化光学薄膜层多晶硅晶粒大小,以调节光电转换效率。本发明的无机材料硅薄膜可应用于太阳能汽车玻璃上和建筑物玻璃幕墙上。

Description

一种基于激光诱导晶化的非晶硅薄膜太阳能电池器件的制备方法
技术领域
本发明涉及一种基于激光诱导晶化的非晶硅薄膜太阳能电池器件的制备工艺,属无机材料太阳能电池技术领域。
背景技术
受到高纯度的硅原料极度短缺的影响,发展新一代的非晶硅(a-Si)薄膜太阳电池在当今世界太阳能光伏产业中显得相当重要。由于a-Si多缺陷的特点,掺杂往往使缺陷密度进一步增加,a-Si太阳电池的基本结构不是pn结,而是pin结。重掺杂的p、n区在电池内部形成内建势,以收集电荷。i区是光敏区,它对光子的吸收系数很高,对敏感谱域的光吸收殆尽。所以,p/i/n结构的a-Si电池的厚度取500nm左右,而作为死光吸收区的p、n层的厚度限制在10nm量级。
非晶硅薄膜太阳电池比起晶体硅太阳电池有诸多优势:首先成本低廉,a-Si可以沉积在普通玻璃上,通过低温(100~300℃)工艺,生产的耗电量小,能量回收时间短;其次它易于形成大规模生产能力,生产可全流程自动化。但是同时,a-Si的缺点也是很明显的,主要就是光电转换效率较低,稳定性较差。为此,在a-Si薄膜的基础上引入再结晶技术,利用激光诱导晶化的方法将沉积好的a-Si薄膜通过退火转变为长程有序的多晶硅(poly-Si)薄膜。同时poly-Si薄膜太阳电池的电子迁移率也接近单晶硅薄膜太阳电池,比非晶硅薄膜太阳电池要高1~2个数量级。
另外,激光诱导晶化法主要是利用瞬间激光脉冲产生的高能量入射非晶硅薄膜表面,仅在薄膜表层产生热能效应,使非晶硅薄膜在瞬间达到1000℃左右,从而实现非晶硅向多晶硅的转变。在此过程中,激光脉冲的瞬间能量被非晶硅薄膜吸收并转化为相变能,因此不会有过多的热能传导到薄膜衬底。合理选择激光的波长和功率,使用激光加热就能够使非晶硅薄膜达到熔化的温度且保证基片的温度低于450℃。因此激光晶化技术已成为一种具有良好应用前景的微晶硅薄膜制备技术。
发明内容
本发明目的在于提供一种基于激光诱导晶化的非晶硅薄膜太阳能电池器件的制备方法。
为达到上述目的,本发明采用如下技术方案:
一种基于激光诱导晶化的非晶硅薄膜太阳能电池器件的制备方法,其特征在于具有以下的过程和步骤:
A. 采用等离子体化学气相沉积法,在射频功率为35W,功率源电容耦合为13.56MHz,衬底氧化铟锡(ITO)导电玻璃的温度范围为180~300℃,气体辉光气压范围为90Pa以下,制备各层非晶硅;其具体工艺参数为:
a. p型层非晶硅的制备:硼烷B2H6与硅烷SiH4质量流量比为0.28%,厚度为20~50nm;
b. i型层非晶硅制备:硅烷SiH4与氢气H2质量流量比为10%,厚度为300~600nm;
c. n型层非晶硅的制备:磷烷PH3与硅烷SiH4质量流量比为0.55%,厚度为30~50nm;
B. 光学薄膜层多晶硅的制备:使用波长为532nm的倍频掺钕钇铝石榴石(Nd:YAG)激光辐照样品表面,经蝇眼技术整形为平顶绿色激光后晶化n型和p型层非晶硅,实现n型和p型层由非晶硅转变为多晶硅光学薄膜层,调节激光能量密度为600~1200mJ/cm2
C. 阴极导电电极层的制备:使用磁控溅射制备掺铝氧化锌导电电极,厚度为15~30nm;
D. 环氧树脂层封装层的制备:配制环氧树脂的透明溶液,浇注薄膜玻璃四周,盖上上层玻璃盖子,就得到非晶硅薄膜太阳能电池器件。
同现有的技术相比,本发明具有如下显著优点:
1.非晶硅(a-Si)可以沉积在普通玻璃上,通过低温(100~300℃)工艺条件来制备。
2.成本低,生产的耗电量小,能量回收时间短。
3.载流子迁移率高,利用激光诱导晶化后的多晶硅(poly-Si)迁移率明显高于非晶硅(a-Si)两个数量级。
4.易于形成大规模生产能力,生产可全流程自动化。
通过控制晶化光学薄膜层多晶硅晶粒大小,可调节光学薄膜层为增反膜或增透膜,来调整器件的光电转换效率。
附图说明
图1 本发明中激光诱导晶化后多晶硅光学薄膜层的拉曼(Raman)表征图谱和金相显微镜表面形貌表征。
图2 本发明中不同功率激光诱导晶化光学薄膜层的非晶硅太阳能电池电流-电压(I-V)曲线图谱电学性能表征。
图3 本发明中基于激光诱导晶化光学薄膜层的非晶硅薄膜太阳能电池器件结构图。
具体实施方式
本发明的优选实施例结合附图详述如下:
本实施例的具体工艺步骤如下:
A. 采用等离子体化学气相沉积法,在射频功率为35W,功率源电容耦合为13.56MHz,衬底氧化铟锡(ITO)导电玻璃的温度范围为180~300℃,气体辉光气压范围为90Pa以下,制备各层非晶硅;其具体工艺参数为:
a. p型层非晶硅的制备:硼烷B2H6与硅烷SiH4质量流量比为0.28%,厚度为30nm;
b. i型层(本征层)非晶硅制备:硅烷SiH4与氢气H2质量流量比为10%,厚度为500nm;
c. n型层非晶硅的制备:磷烷PH3与硅烷SiH4质量流量比为0.55%,厚度为30nm;
B. 光学薄膜层多晶硅的制备:使用波长为532nm的倍频掺钕钇铝石榴石(Nd:YAG)激光辐照样品表面,经蝇眼技术整形为平顶绿色激光后晶化n型和p型层非晶硅,实现n型和p型层由非晶硅转变为多晶硅光学薄膜层,调节激光能量密度为1000mJ/cm2
C. 阴极导电电极层的制备:使用磁控溅射制备掺铝氧化锌导电电极,厚度为25nm;
D. 环氧树脂层封装层的制备:配制环氧树脂的透明溶液,浇注薄膜玻璃四周,盖上上层玻璃盖子,就得到非晶硅薄膜太阳能电池器件。
本实施例与上述实施例基本相同,所不同之处在于:
光学薄膜层多晶硅的制备:使用波长为532nm的倍频Nd:YAG激光辐照样品表面,经蝇眼技术整形为平顶绿色激光后,晶化n型和p型层非晶硅,实现n型和p型层由非晶硅转变为多晶硅光学薄膜层。主要通过调节激光能量密度,以控制晶粒大小,来达到调制光学薄膜层的增反和增透功能,现调节激光能量密度为1200mJ/cm2
本发明方法制得的多晶硅光学薄膜层的非晶硅薄膜太阳能电池器件完全适合于光电太阳能电池的光电转换效率的要求,可用于太阳能汽车薄膜玻璃和建筑物薄膜玻璃幕墙上,降低加工成本,提高光电转换效率。
通过Raman图谱表征光学薄膜层的晶化程度,金相显微镜表征光学薄膜层的表面形貌,I-V曲线表征太阳能电池器件的光电转换性能。本发明方法制备太阳能电池器件检测结果表明:
如图1 Raman图所示,特征峰位在520cm-1左右;如金相显微镜图1插图所示,激光诱导晶化晶粒阵列整齐,晶粒大小统一。
如图2 I-V曲线所示,不同激光功率处理后的非晶硅薄膜太阳能电池器件电学性能与光电转换效率变化明显,激光能量密度在1000mJ/cm2处开路电压和短路电流达到较大值,光电转换性能较明显。
如器件结构图3所示,先通过PECVD在导电玻璃上沉积三层p型、i型和n型的非晶硅,接着使用波长为532nm的倍频掺钕钇铝石榴石激光晶化n型和p型层非晶硅为多晶硅光学薄膜层,然后磁控溅射掺铝氧化锌导电电极,最后在薄膜四周浇注环氧树脂透明溶液并盖上上层玻璃,就得到非晶硅薄膜太阳能电池器件。

Claims (1)

1.一种基于激光诱导晶化的非晶硅薄膜太阳能电池器件的制备方法,其特征在于具有以下的过程和步骤:
A. 采用等离子体化学气相沉积法,在射频功率为35W,功率源电容耦合为13.56MHz,衬底氧化铟锡(ITO)导电玻璃的温度范围为180~300℃,气体辉光气压范围为90Pa以下,制备各层非晶硅;其具体工艺参数为:
a. p型层非晶硅的制备:硼烷B2H6与硅烷SiH4质量流量比为0.28%,厚度为20~50nm;
b. i型层非晶硅制备:硅烷SiH4与氢气H2质量流量比为10%,厚度为300~600nm;
c. n型层非晶硅的制备:磷烷PH3与硅烷SiH4质量流量比为0.55%,厚度为30~50nm;
B. 光学薄膜层多晶硅的制备:使用波长为532nm的倍频掺钕钇铝石榴石(Nd:YAG)激光辐照样品表面,经蝇眼技术整形为平顶绿色激光后晶化n型和p型层非晶硅,实现n型和p型层由非晶硅转变为多晶硅光学薄膜层,调节激光能量密度为600~1200mJ/cm2
C. 阴极导电电极层的制备:使用磁控溅射制备掺铝氧化锌导电电极,厚度为15~30nm;
D. 环氧树脂层封装层的制备:配制环氧树脂的透明溶液,浇注薄膜玻璃四周,盖上上层玻璃盖子,就得到非晶硅薄膜太阳能电池器件。
CN201410254559.7A 2014-06-10 2014-06-10 一种基于激光诱导晶化的非晶硅薄膜太阳能电池器件的制备方法 Pending CN104037269A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410254559.7A CN104037269A (zh) 2014-06-10 2014-06-10 一种基于激光诱导晶化的非晶硅薄膜太阳能电池器件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410254559.7A CN104037269A (zh) 2014-06-10 2014-06-10 一种基于激光诱导晶化的非晶硅薄膜太阳能电池器件的制备方法

Publications (1)

Publication Number Publication Date
CN104037269A true CN104037269A (zh) 2014-09-10

Family

ID=51467968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410254559.7A Pending CN104037269A (zh) 2014-06-10 2014-06-10 一种基于激光诱导晶化的非晶硅薄膜太阳能电池器件的制备方法

Country Status (1)

Country Link
CN (1) CN104037269A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274433A (ja) * 2000-03-24 2001-10-05 Japan Steel Works Ltd:The シリコン膜の結晶化方法及び多結晶シリコン膜の製造方法並びに多結晶シリコン膜を用いたディバイス
US20030148565A1 (en) * 2001-02-01 2003-08-07 Hideo Yamanaka Method for forming thin semiconductor film, method for fabricating semiconductor device, system for executing these methods and electrooptic device
CN101882652A (zh) * 2010-06-29 2010-11-10 上海大学 基于激光刻蚀晶化光学薄膜层的非晶硅薄膜太阳能电池的制备工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274433A (ja) * 2000-03-24 2001-10-05 Japan Steel Works Ltd:The シリコン膜の結晶化方法及び多結晶シリコン膜の製造方法並びに多結晶シリコン膜を用いたディバイス
US20030148565A1 (en) * 2001-02-01 2003-08-07 Hideo Yamanaka Method for forming thin semiconductor film, method for fabricating semiconductor device, system for executing these methods and electrooptic device
CN101882652A (zh) * 2010-06-29 2010-11-10 上海大学 基于激光刻蚀晶化光学薄膜层的非晶硅薄膜太阳能电池的制备工艺

Similar Documents

Publication Publication Date Title
CN101882652A (zh) 基于激光刻蚀晶化光学薄膜层的非晶硅薄膜太阳能电池的制备工艺
CN102110734B (zh) 一种纳米硅/晶体硅异质结光伏电池
CN104538464B (zh) 一种硅异质结太阳能电池及其制作方法
CN102751371B (zh) 一种太阳能薄膜电池及其制造方法
CN102270705B (zh) 一种双结构绒面透明导电电极的制备方法
CN103346214B (zh) 一种硅基径向同质异质结太阳电池及其制备方法
CN103928541A (zh) 一种具有立体微结构阵列的太阳能电池
CN103681889A (zh) 一种引入驻极体结构的高效太阳能电池及制备方法
CN103489951A (zh) 双面黑晶硅高效太阳能电池
CN102157617B (zh) 一种硅基纳米线太阳电池的制备方法
CN104037245A (zh) 具有带负电荷抗反射层的太阳电池及其制法
CN103219413A (zh) 一种石墨烯径向异质结太阳能电池及其制备方法
CN102270668B (zh) 一种异质结太阳能电池及其制备方法
CN102544230A (zh) 一种生长可变禁带宽度的Cd1-xZnxTe薄膜的方法
CN102368513B (zh) 一种薄膜电池双结构绒面透明导电氧化物薄膜的制备方法
Zaynabidinov et al. On the optical efficiency of silicon photoelectric converters of solar energy
CN106449815A (zh) 基于非晶硅薄膜的异质结太阳能电池器件的制备方法
CN103178163B (zh) 一种硅基埋栅薄膜太阳能电池的制作方法
CN102418080A (zh) 一种玻璃衬底绒面结构ZnO薄膜的制备方法及其应用
CN104952961B (zh) 一种n‑CdSxSe1‑x薄膜/石墨烯肖特基结太阳能电池
CN103107240A (zh) 多晶硅薄膜太阳能电池及其制作方法
CN103066153A (zh) 硅基薄膜叠层太阳能电池及其制造方法
CN104037269A (zh) 一种基于激光诱导晶化的非晶硅薄膜太阳能电池器件的制备方法
CN103107236B (zh) 异质结太阳能电池及其制作方法
Zhang et al. High absorptivity of perovskite solar cell enhanced by metal grating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140910