CN104028750A - High-bonding-strength insulated coating treatment method of metal soft magnetic composite material - Google Patents
High-bonding-strength insulated coating treatment method of metal soft magnetic composite material Download PDFInfo
- Publication number
- CN104028750A CN104028750A CN201410245747.3A CN201410245747A CN104028750A CN 104028750 A CN104028750 A CN 104028750A CN 201410245747 A CN201410245747 A CN 201410245747A CN 104028750 A CN104028750 A CN 104028750A
- Authority
- CN
- China
- Prior art keywords
- magnetic powder
- soft magnetic
- metal
- composite material
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 73
- 239000002131 composite material Substances 0.000 title claims abstract description 62
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 35
- 239000002184 metal Substances 0.000 title claims abstract description 35
- 239000011248 coating agent Substances 0.000 title claims abstract description 29
- 238000000576 coating method Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000006247 magnetic powder Substances 0.000 claims abstract description 87
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 238000009413 insulation Methods 0.000 claims abstract description 13
- 239000002245 particle Substances 0.000 claims abstract description 13
- 239000011230 binding agent Substances 0.000 claims abstract description 12
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- 239000000843 powder Substances 0.000 claims abstract description 9
- 238000003980 solgel method Methods 0.000 claims abstract description 9
- 230000001681 protective effect Effects 0.000 claims abstract description 6
- 238000005507 spraying Methods 0.000 claims abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 30
- 238000003756 stirring Methods 0.000 claims description 23
- 239000002243 precursor Substances 0.000 claims description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 8
- 239000003822 epoxy resin Substances 0.000 claims description 8
- 229920000647 polyepoxide Polymers 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 229960000583 acetic acid Drugs 0.000 claims description 6
- 239000012362 glacial acetic acid Substances 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 5
- 238000010992 reflux Methods 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000002966 varnish Substances 0.000 claims description 4
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical group [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 claims description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical group [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- AGXUVMPSUKZYDT-UHFFFAOYSA-L barium(2+);octadecanoate Chemical compound [Ba+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O AGXUVMPSUKZYDT-UHFFFAOYSA-L 0.000 claims description 3
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 claims description 3
- 235000013539 calcium stearate Nutrition 0.000 claims description 3
- 239000008116 calcium stearate Substances 0.000 claims description 3
- 238000000748 compression moulding Methods 0.000 claims description 3
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims description 3
- 229920001568 phenolic resin Polymers 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- 229920000877 Melamine resin Polymers 0.000 claims description 2
- 239000004640 Melamine resin Substances 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 claims description 2
- 238000007873 sieving Methods 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 229920002050 silicone resin Polymers 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 238000003825 pressing Methods 0.000 abstract description 5
- 239000011247 coating layer Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 230000005415 magnetization Effects 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 238000004321 preservation Methods 0.000 abstract description 2
- 238000001816 cooling Methods 0.000 abstract 1
- 239000002923 metal particle Substances 0.000 abstract 1
- 238000000465 moulding Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 239000006082 mold release agent Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910000702 sendust Inorganic materials 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- -1 iron-silicon-aluminum Chemical compound 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
本发明公开了一种金属软磁复合材料的高结合强度绝缘包覆处理方法。它包括如下步骤:1)将金属磁粉过筛进行粒度配比;2)利用溶胶凝胶法对配好的金属磁粉进行绝缘包覆后干燥;3)将干燥后的磁粉与粘结剂混合均匀,加入脱模剂干压成型,将其压制成磁环;4)将磁环于保护气氛中保温,空冷,喷涂,得到目标产物。本发明采用溶胶凝胶法制备的复合粉末与磁粉颗粒结合强度高,包覆均匀、致密,包覆层厚度可控,具有良好的抗氧化性、高的饱和磁化强度,具有优良的磁性能和力学性能;结合强度高,不易脱落,包覆效果优于现有方法,且可操作性强,便于批量生产;有效提高软磁金属颗粒的电阻率,大幅降低软磁复合材料的磁芯损耗。The invention discloses a high bonding strength insulation coating treatment method for metal soft magnetic composite materials. It includes the following steps: 1) Sieve the metal magnetic powder for particle size ratio; 2) Use the sol-gel method to insulate and coat the prepared metal magnetic powder and then dry it; 3) Mix the dried magnetic powder with the binder evenly , adding a release agent to dry press molding, and pressing it into a magnetic ring; 4) Keeping the magnetic ring in a protective atmosphere for heat preservation, air cooling, and spraying to obtain the target product. The composite powder prepared by the sol-gel method in the present invention has high bonding strength with magnetic powder particles, uniform and dense coating, controllable thickness of the coating layer, good oxidation resistance, high saturation magnetization, excellent magnetic properties and Mechanical properties; high bonding strength, not easy to fall off, better coating effect than existing methods, and strong operability, convenient for mass production; effectively improve the resistivity of soft magnetic metal particles, and greatly reduce the core loss of soft magnetic composite materials.
Description
技术领域 technical field
本发明涉及磁性材料的制备技术领域,尤其涉及一种金属软磁复合材料的高结合强度绝缘包覆处理方法。 The invention relates to the technical field of preparation of magnetic materials, in particular to a high bonding strength insulation coating treatment method for metal soft magnetic composite materials.
背景技术 Background technique
金属软磁复合材料是由具有铁磁性的粉末颗粒与绝缘物质混合压制而成的一种软磁材料。金属软磁复合材料既保留了金属软磁和铁氧体软磁的一部分优良特性,同时又克服了两者的一些缺陷,综合性能极佳。软磁复合材料常用制备过程包括:粉末钝化、绝缘包覆、压制成型以及热处理等。其中绝缘包覆是软磁复合材料制备过程中一个重要的环节,包覆的好坏直接影响到软磁复合材料的频率特性等磁性能,高频下,良好的绝缘包覆可以显著降低材料的涡流损耗。而在压制成型过程中,结合性差的绝缘层容易破碎,同时由于压制过程会产生大量内应力与缺陷,造成磁滞损耗的增加,需要通过高温热处理来消除残余内应力,因而要求绝缘包覆剂的热稳定性良好,不会在退火过程中发生分解。因此迫切需要制备致密、结合性好且具有良好热稳定性的绝缘包覆层。 Metal soft magnetic composite material is a kind of soft magnetic material formed by mixing and pressing ferromagnetic powder particles and insulating substances. Metal soft magnetic composite materials not only retain part of the excellent properties of metal soft magnetism and ferrite soft magnetism, but also overcome some defects of the two, and have excellent comprehensive performance. Common preparation processes of soft magnetic composite materials include: powder passivation, insulation coating, compression molding, and heat treatment. Among them, insulation coating is an important link in the preparation process of soft magnetic composite materials. The quality of coating directly affects the frequency characteristics and other magnetic properties of soft magnetic composite materials. At high frequencies, good insulation coating can significantly reduce the Eddy current loss. In the process of pressing and forming, the insulating layer with poor bonding is easy to break. At the same time, because the pressing process will generate a large amount of internal stress and defects, resulting in an increase in hysteresis loss, it is necessary to eliminate the residual internal stress by high temperature heat treatment, so the insulating coating agent is required It has good thermal stability and will not decompose during annealing. Therefore, it is urgent to prepare a dense, well-bonded and thermally stable insulating coating.
专利CN100500783C采用由SiO2、Al2O3、ZrO2、云母粉的纳米颗粒混合物作为绝缘剂制备FeSiAl软磁复合材料,但是磁粉与绝缘剂的均匀混合较难控制,难以对磁粉进行均匀包覆,并且氧化物绝缘包覆层与磁粉结合强度不高,压制过程中容易脱落,从而影响包覆效果造成磁芯损耗增加。日本专利特开平9-74011及特开平9-125108公开了采用无机绝缘粘结剂硅酸钠来制备FeSiAl软磁复合材料,但是该软磁复合材料在热处理过程中,由于硅酸钠的分解导致产生裂纹甚至脱落,从而降低了磁粉的绝缘性。 Patent CN100500783C uses a mixture of nanoparticles of SiO 2 , Al 2 O 3 , ZrO 2 , and mica powder as an insulating agent to prepare FeSiAl soft magnetic composite materials, but it is difficult to control the uniform mixing of magnetic powder and insulating agent, and it is difficult to evenly coat the magnetic powder , and the bonding strength between the oxide insulating coating layer and the magnetic powder is not high, and it is easy to fall off during the pressing process, thereby affecting the coating effect and increasing the core loss. Japanese Patent Laid-Open No. 9-74011 and No. 9-125108 disclose the use of inorganic insulating binder sodium silicate to prepare FeSiAl soft magnetic composite materials, but the soft magnetic composite materials are caused by the decomposition of sodium silicate during heat treatment. Cracks or even fall off, thereby reducing the insulation of the magnetic powder.
专利号为200910082072.4的中国发明专利公开了采用正硅酸乙酯和氨水等作为原料,运用溶胶凝胶法对FeSiAl磁粉表面包覆一层SiO2绝缘层,且其包覆厚度可以根据正硅酸乙酯的浓度来进行调节,这也是溶胶凝胶法可以制备出尺寸大小均匀且可控的纳米颗粒的例证。但专利中没有给出所制备的金属软磁复合材料的磁性能。专利号为201310411806.5的中国发明专利公开了铁氧体复合磁粉芯的制备方法,该工艺通过水热法制备出铁氧体颗粒,然后采用机械混合的方式对磁粉进行包覆,虽然一定程度上克服了非磁性物质作为包覆剂时基体磁性能降低的缺点,但铁氧体颗粒与磁粉基体结合强度差,容易脱落,难以对磁粉进行良好的包覆。 The Chinese invention patent with the patent number of 200910082072.4 discloses that tetraethyl orthosilicate and ammonia water are used as raw materials, and a layer of SiO 2 insulating layer is coated on the surface of FeSiAl magnetic powder by sol-gel method, and the coating thickness can be determined according to orthosilicate The concentration of ethyl ester can be adjusted, which is also an illustration that the sol-gel method can prepare nanoparticles with uniform size and controllable size. However, the patent does not provide the magnetic properties of the prepared metal soft magnetic composite material. The Chinese invention patent with the patent number of 201310411806.5 discloses the preparation method of ferrite composite magnetic powder core. This process prepares ferrite particles by hydrothermal method, and then uses mechanical mixing to coat the magnetic powder. Although it overcomes the problem to a certain extent It overcomes the disadvantages of lower magnetic properties of the matrix when non-magnetic substances are used as coating agents, but the bonding strength between ferrite particles and the magnetic powder matrix is poor, and it is easy to fall off, making it difficult to coat the magnetic powder well.
专利号为201310212031.9的中国发明专利公开了一种金属软磁复合材料的制备方法,选用纳米氧化物分散液对金属磁粉进行绝缘包覆。由于这种分散液稳定性差,且纳米颗粒对磁粉的粘附性欠佳,难以实现均匀包覆,同时在磁粉加工成软磁复合材料的过程中,磁粉表面粘附的绝缘物质容易脱落,导致磁粉绝缘性能差,磁芯涡流损耗偏大。本发明与之区别的地方在于:本发明是通过溶胶凝胶法对金属粉末进行绝缘包覆,包覆层与磁粉结合强度高,均匀性好,且具有良好的热稳定性和较好的磁性能。 The Chinese Invention Patent No. 201310212031.9 discloses a method for preparing metal soft magnetic composite materials, in which nano-oxide dispersion liquid is used to insulate and coat metal magnetic powder. Due to the poor stability of the dispersion and the poor adhesion of the nanoparticles to the magnetic powder, it is difficult to achieve uniform coating. At the same time, during the process of processing the magnetic powder into a soft magnetic composite material, the insulating substance adhered to the surface of the magnetic powder is easy to fall off, resulting in The magnetic powder insulation performance is poor, and the eddy current loss of the magnetic core is relatively large. The difference between the present invention and the present invention is that the metal powder is insulated and coated by the sol-gel method, and the bonding strength of the coating layer and the magnetic powder is high, the uniformity is good, and it has good thermal stability and good magnetic properties. able.
发明内容 Contents of the invention
针对目前软磁复合材料的绝缘包覆层结合强度低、包覆不均匀以及热稳定性差的缺陷,本发明提供了一种金属软磁复合材料的高结合强度绝缘包覆处理方法,采用溶胶凝胶法对金属软磁复合材料包覆具有高结合强度的TiO2绝缘层,本发明的技术方案如下: In view of the defects of low bonding strength, uneven coating and poor thermal stability of the insulating coating layer of the current soft magnetic composite material, the present invention provides a high bonding strength insulating coating treatment method of the metal soft magnetic composite material, using sol-gel Glue method has the TiO of high bonding strength to metal soft magnetic composite cladding insulating layer, technical scheme of the present invention is as follows:
金属软磁复合材料的高结合强度绝缘包覆处理方法包括如下步骤: The method for treating the metal soft magnetic composite material with high bonding strength and insulating coating comprises the following steps:
1)粒度配比:对金属磁粉过筛后进行粒度配比,所述金属磁粉是铁基磁粉、铁硅基磁粉或铁镍基磁粉; 1) Particle size ratio: the particle size ratio is carried out after sieving the metal magnetic powder, and the metal magnetic powder is iron-based magnetic powder, iron-silicon-based magnetic powder or iron-nickel-based magnetic powder;
2)溶胶凝胶法绝缘包覆:在乙醇中溶解乙醇体积5~10%的钛酸四丁酯,在室温下搅拌30~120min,得到前驱体溶液;去离子水、冰醋酸和乙醇按体积比1:2:4~1:2:7相互混合,在搅拌的同时逐滴加入到前驱体溶液中;然后持续搅拌60~180min后得到黄色透明的TiO2溶胶;TiO2溶胶在回流条件下置于50~100oC的环境中直至形成凝胶;将金属磁粉与金属磁粉重量1.0~5.0%的凝胶混合搅拌,直至溶剂蒸发完全,得到包覆后的磁粉;然后将包覆后的磁粉置于50~100oC环境中干燥10~20h;再将包覆后的磁粉放在惰性气体氛围的管式炉中在500~700oC下加热5~10h;向包覆后的磁粉加入占包覆后的磁粉质量0.5~2.5%的粘结剂,在加热条件下充分搅拌至混合物干燥、混合均匀;最后向包覆后的磁粉中加入占包覆后的磁粉总重0.5~2.0%的脱模剂并混合均匀,得到待成型磁粉; 2) Insulation coating by sol-gel method: Dissolve tetrabutyl titanate with 5-10% ethanol volume in ethanol, stir at room temperature for 30-120min to obtain precursor solution; deionized water, glacial acetic acid and ethanol by volume Mix with each other at a ratio of 1:2:4~1:2:7, add dropwise to the precursor solution while stirring; then continue to stir for 60~180min to obtain a yellow and transparent TiO 2 sol; TiO 2 sol under reflux conditions Place in an environment of 50~100oC until a gel is formed; mix and stir the metal magnetic powder and the gel with a weight of 1.0~5.0% of the metal magnetic powder until the solvent evaporates completely to obtain the coated magnetic powder; then place the coated magnetic powder in Dry in an environment of 50~100oC for 10~20h; then place the coated magnetic powder in a tube furnace with an inert gas atmosphere and heat it at 500~700oC for 5~10h; add the coated magnetic powder to the coated magnetic powder 0.5~2.5% of the binder in the mass of the magnetic powder is fully stirred under heating conditions until the mixture is dry and mixed evenly; finally, a release agent accounting for 0.5~2.0% of the total weight of the coated magnetic powder is added to the coated magnetic powder. Mix evenly to obtain the magnetic powder to be formed;
3)压制成型:将待成型磁粉在600~2000MPa的压强下压制成型; 3) Compression molding: Compress the magnetic powder to be formed under a pressure of 600~2000MPa;
4)热处理:采用氮气或氩气作保护气氛,将软磁复合材料置于400~650oC环境中保温30~120min; 4) Heat treatment: Use nitrogen or argon as a protective atmosphere, and place the soft magnetic composite material in an environment of 400~650oC for 30~120min;
5)表面喷涂:在步骤4)处理后的软磁复合材料的表面喷涂一层环氧树脂绝缘漆,制得成品,即得到金属软磁复合材料。 5) Surface spraying: Spray a layer of epoxy resin insulating varnish on the surface of the treated soft magnetic composite material in step 4) to obtain a finished product, that is, a metal soft magnetic composite material.
所述的金属磁粉的重量为10~20g,所述的前驱体溶液中乙醇的体积为100~150mL,所述的去离子水的体积为5~20 mL。 The weight of the metal magnetic powder is 10-20g, the volume of ethanol in the precursor solution is 100-150mL, and the volume of the deionized water is 5-20mL.
所述的粘结剂为酚醛树脂、环氧树脂、硅树脂、聚氟化乙烯、三聚氰胺树脂、低熔点玻璃粉、SiO2中的一种或多种。 The binder is one or more of phenolic resin, epoxy resin, silicon resin, polyvinyl fluoride, melamine resin, low melting point glass powder, and SiO2 .
所述的脱模剂为硬脂酸锌、硬脂酸钡、硬脂酸钙或二硫化钼中的一种或几种。 The mold release agent is one or more of zinc stearate, barium stearate, calcium stearate or molybdenum disulfide.
与现有的软磁复合材料制备方法相比,本发明主要具有如下优点: Compared with the existing preparation methods of soft magnetic composite materials, the present invention mainly has the following advantages:
(1)采用溶胶凝胶法制备的复合粉末与磁粉颗粒结合强度高,包覆均匀、致密,包覆层厚度可控,具有良好的抗氧化性、高的电阻率、高的饱和磁化强度,具有优良的磁性能和力学性能; (1) The composite powder prepared by the sol-gel method has high bonding strength with magnetic powder particles, uniform and dense coating, controllable coating thickness, good oxidation resistance, high resistivity, and high saturation magnetization. Has excellent magnetic and mechanical properties;
(2)采用溶胶凝胶法在金属磁粉表面均匀包覆一层TiO2绝缘层,结合强度高,不易脱落,包覆效果优于现有方法,包覆处理温度低,可操作性强,便于批量生产; (2) Using the sol-gel method to evenly coat a layer of TiO 2 insulating layer on the surface of the metal magnetic powder, the bonding strength is high, it is not easy to fall off, the coating effect is better than the existing method, the coating treatment temperature is low, the operability is strong, and it is convenient mass production;
(3)绝缘包覆层具有良好的耐热性能,可以在600oC以上的温度进行退火处理而不发生分解和破坏; (3) The insulating coating has good heat resistance and can be annealed at a temperature above 600oC without decomposition and destruction;
(4)绝缘包覆层电阻率较高,可以有效提高软磁复合材料的电阻率,大幅降低软磁复合材料的磁芯损耗。 (4) The resistivity of the insulating cladding layer is high, which can effectively increase the resistivity of the soft magnetic composite material and greatly reduce the core loss of the soft magnetic composite material.
具体实施方式 Detailed ways
本发明采用具有高化学活性组分的钛酸四丁酯作前驱体,冰醋酸作催化剂,乙醇作溶剂,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,下面结合实施例对本发明进行进一步的说明。 In the present invention, tetrabutyl titanate with high chemical activity is used as a precursor, glacial acetic acid is used as a catalyst, and ethanol is used as a solvent. These raw materials are uniformly mixed in the liquid phase, and undergo hydrolysis and condensation chemical reactions to form It is a stable transparent sol system, and the sol is slowly aggregated between aging colloidal particles to form a gel with a three-dimensional spatial network structure. The present invention will be further described in conjunction with the examples below.
实施例1 Example 1
取5mL钛酸四丁酯(TBT)加入到100mL乙醇中,在室温下搅拌30min得到前驱体溶液;取5mL蒸馏水、10mL冰醋酸以及20mL乙醇相互混合,在搅拌的同时逐滴加入到前驱体溶液中;然后持续搅拌1h后得到黄色透明的TiO2溶胶;溶液在回流条件下置于80oC的环境中直至形成凝胶;将20g纯铁粉过筛进行粒度配比后,将铁粉与占铁粉重量2.5%的凝胶混合,搅拌直至溶剂蒸发完全,得到包覆后的磁粉;然后将包覆后的磁粉置于70oC环境中干燥15h;再将磁粉放在惰性气体氛围的管式炉中在550oC下加热5h;向包覆后的磁粉加入占包覆后的磁粉质量0.5%的粘结剂,在加热条件下充分搅拌至混合物干燥、混合均匀,所述的粘结剂为环氧树脂;向包覆磁粉中加入占包覆磁粉总重0.5%的脱模剂并混合均匀,所述的脱模剂为硬脂酸锌,得到待成型磁粉;将待成型磁粉在600MPa的压强下压制成外径23.6mm,内径14.4mm,高8.89mm的环形软磁复合材料;采用氮气作保护气氛,将软磁复合材料置于400oC环境中保温120min,制成软磁复合材料;在软磁复合材料的表面喷涂一层环氧树脂绝缘漆,制得成品,即得到铁基金属软磁复合材料。 Take 5mL tetrabutyl titanate (TBT) and add it to 100mL ethanol, stir at room temperature for 30min to obtain a precursor solution; take 5mL distilled water, 10mL glacial acetic acid and 20mL ethanol and mix with each other, add dropwise to the precursor solution while stirring Then continue to stir for 1h to obtain a yellow transparent TiO 2 sol; the solution is placed in an environment of 80oC under reflux until a gel is formed; Mix the gel with 2.5% powder weight, and stir until the solvent evaporates completely to obtain the coated magnetic powder; then place the coated magnetic powder in a 70oC environment for 15 hours; then place the magnetic powder in a tube furnace with an inert gas atmosphere Heat at 550oC for 5 hours; add 0.5% binder to the coated magnetic powder, stir well under heating conditions until the mixture is dry and evenly mixed, the binder is epoxy resin ; Adding 0.5% release agent accounting for the total weight of the coated magnetic powder to the coated magnetic powder and mixing evenly, the described release agent is zinc stearate to obtain the magnetic powder to be formed; the magnetic powder to be formed is pressed under a pressure of 600MPa Form a ring-shaped soft magnetic composite material with an outer diameter of 23.6mm, an inner diameter of 14.4mm, and a height of 8.89mm; use nitrogen as a protective atmosphere, and place the soft magnetic composite material in an environment of 400oC for 120min to make a soft magnetic composite material; in the soft magnetic composite The surface of the material is sprayed with a layer of epoxy resin insulating varnish to prepare a finished product, that is, an iron-based metal soft magnetic composite material.
在铁基软磁复合材料上采用线径Ф0.8mm,线长0.9m的漆包线绕制20匝电感线圈,测得软磁复合材料电磁性能具体如下: On the iron-based soft magnetic composite material, an enameled wire with a wire diameter of Ф0.8mm and a wire length of 0.9m is used to wind a 20-turn inductance coil. The measured electromagnetic properties of the soft magnetic composite material are as follows:
(1)软磁复合材料磁导率:65; (1) Magnetic permeability of soft magnetic composite material: 65;
(2)10kHz/1V条件下,电感L=38.5μH; (2) Under the condition of 10kHz/1V, the inductance L=38.5μH;
(3)直流叠加性能:10kHz,H=100Oe时,LH/LO=44.2%; (3) DC superposition performance: 10kHz, H=100Oe, L H /L O =44.2%;
(4)100kHz/1V条件下,品质因数Q=46; (4) Under the condition of 100kHz/1V, the quality factor Q=46;
(5)软磁复合材料损耗:50kHz/100mT时,PCV=963.6mW/cm3。 (5) Loss of soft magnetic composite material: at 50kHz/100mT, P CV =963.6mW/cm 3 .
实施例2 Example 2
取10mL钛酸四丁酯(TBT)加入到120mL乙醇中,在室温下搅拌90min得到前驱体溶液;取5mL蒸馏水、10mL冰醋酸以及35mL乙醇相互混合,在搅拌的同时逐滴加入到前驱体溶液中;然后持续搅拌90min后得到黄色透明的TiO2溶胶;溶液在回流条件下置于50oC的环境中直至形成凝胶;将15g铁硅铝磁粉过筛进行粒度配比后,将磁粉与占磁粉重量1.0%的凝胶混合,搅拌直至溶剂蒸发完全,得到包覆后的磁粉;然后将包覆后的磁粉置于50oC环境中干燥20h;再将磁粉放在惰性气体氛围的管式炉中在500oC下加热7h;向包覆后的磁粉加入占包覆后的磁粉质量1.5%的粘结剂,在加热条件下充分搅拌至混合物干燥、混合均匀,所述的粘结剂为酚醛树脂;向包覆磁粉中加入占包覆磁粉总重1.0%的脱模剂并混合均匀,所述的脱模剂为硬脂酸钡和硬脂酸钙按质量比1:1混合的混合物,得到待成型磁粉;将待成型磁粉在2000MPa的压强下压制成外径23.6mm,内径14.4mm,高8.89mm的环形软磁复合材料;采用氩气作保护气氛,将软磁复合材料置于600oC环境中保温60min,制成软磁复合材料;在软磁复合材料的表面喷涂一层环氧树脂绝缘漆,制得成品,即得到铁硅铝金属软磁复合材料。 Take 10mL tetrabutyl titanate (TBT) and add it to 120mL ethanol, stir at room temperature for 90min to get the precursor solution; take 5mL distilled water, 10mL glacial acetic acid and 35mL ethanol and mix with each other, add dropwise to the precursor solution while stirring Then continue to stir for 90 minutes to obtain a yellow transparent TiO 2 sol; the solution is placed in an environment of 50oC under reflux until a gel is formed; 15g sendust magnetic powder is sieved for particle size ratio, and the magnetic powder Mix 1.0% gel by weight and stir until the solvent evaporates completely to obtain coated magnetic powder; then place the coated magnetic powder in an environment of 50oC for 20 hours; then place the magnetic powder in a tube furnace with an inert gas atmosphere Heating at 500oC for 7 hours; adding a binder accounting for 1.5% of the mass of the coated magnetic powder to the coated magnetic powder, fully stirring under heating conditions until the mixture is dry and uniformly mixed, the binder is phenolic resin; Add a mold release agent accounting for 1.0% of the total weight of the coated magnetic powder to the coated magnetic powder and mix evenly. The mold release agent is a mixture of barium stearate and calcium stearate in a mass ratio of 1:1 to obtain a molded Magnetic powder; press the magnetic powder to be formed under a pressure of 2000MPa to form an annular soft magnetic composite material with an outer diameter of 23.6mm, an inner diameter of 14.4mm, and a height of 8.89mm; use argon as a protective atmosphere, and place the soft magnetic composite material in an environment of 600oC for heat preservation After 60 minutes, the soft magnetic composite material is made; a layer of epoxy resin insulating varnish is sprayed on the surface of the soft magnetic composite material, and the finished product is obtained, that is, the sendust metal soft magnetic composite material is obtained.
在铁硅铝软磁复合材料上采用线径Ф0.8mm,线长0.9m的漆包线绕制20匝电感线圈,测得软磁复合材料电磁性能具体如下: On the iron-silicon-aluminum soft magnetic composite material, an enameled wire with a wire diameter of Ф0.8mm and a wire length of 0.9m is used to wind a 20-turn inductance coil. The measured electromagnetic properties of the soft magnetic composite material are as follows:
(1)软磁复合材料磁导率:96; (1) Magnetic permeability of soft magnetic composite material: 96;
(2)10kHz/1V条件下,电感L=48.2μH; (2) Under the condition of 10kHz/1V, the inductance L=48.2μH;
(3)直流叠加性能:10kHz,H=100Oe时,LH/LO=41.1%; (3) DC superposition performance: 10kHz, H=100Oe, L H /L O =41.1%;
(4)100kHz/1V条件下,品质因数Q=67; (4) Under the condition of 100kHz/1V, the quality factor Q=67;
(5)软磁复合材料损耗:50kHz/100mT时,PCV=231.5mW/cm3。 (5) Loss of soft magnetic composite material: at 50kHz/100mT, P CV =231.5mW/cm 3 .
实施例3 Example 3
取15mL钛酸四丁酯(TBT)加入到150mL乙醇中,在室温下搅拌120min得到前驱体溶液;取5mL蒸馏水、10mL冰醋酸以及30mL乙醇相互混合,在搅拌的同时逐滴加入到前驱体溶液中;然后持续搅拌180min后得到黄色透明的TiO2溶胶;溶液在回流条件下置于100oC的环境中直至形成凝胶;将10g铁镍磁粉(铁、镍的质量百分比各为50%)过筛进行粒度配比后,将磁粉与占磁粉重量5.0%的凝胶混合,搅拌直至溶剂蒸发完全,得到包覆后的磁粉;然后将包覆后的磁粉置于100oC环境中干燥10h;再将磁粉放在惰性气体氛围的管式炉中在700oC下加热10h;向包覆后的磁粉中加入占包覆后的磁粉质量分数2.5%的粘结剂,在加热条件下充分搅拌至混合物干燥、混合均匀,所述的粘结剂为硅树脂;向包覆磁粉中加入占包覆磁粉总重2.0%的脱模剂并混合均匀,所述的脱模剂为硬脂酸锌和二硫化钼按质量比1:1混合的混合物,得到待成型磁粉;将待成型磁粉在1600MPa的压强下压制成外径23.6mm,内径14.4mm,高8.89mm的环形软磁复合材料;采用氮气作保护气氛,将软磁复合材料置于650oC环境中保温30min,制成软磁复合材料;在软磁复合材料的表面喷涂一层环氧树脂绝缘漆,制得成品,即得到铁镍基金属软磁复合材料。 Take 15mL tetrabutyl titanate (TBT) and add it to 150mL ethanol, stir at room temperature for 120min to obtain a precursor solution; take 5mL distilled water, 10mL glacial acetic acid and 30mL ethanol and mix with each other, add dropwise to the precursor solution while stirring Then continue to stir for 180min to obtain a yellow transparent TiO 2 sol; the solution is placed in an environment of 100oC under reflux until a gel is formed; After the particle size ratio, mix the magnetic powder with 5.0% of the weight of the magnetic powder gel, stir until the solvent evaporates completely, and obtain the coated magnetic powder; then dry the coated magnetic powder in an environment of 100oC for 10 hours; then put the magnetic powder Place in a tube furnace in an inert gas atmosphere and heat at 700oC for 10 hours; add a binder accounting for 2.5% of the mass fraction of the coated magnetic powder to the coated magnetic powder, and stir fully under heating until the mixture is dry and mixed uniform, the binder is silicone resin; add a release agent accounting for 2.0% of the total weight of the coated magnetic powder to the coated magnetic powder and mix evenly, the described release agent is zinc stearate and molybdenum disulfide Mix the mixture with a mass ratio of 1:1 to obtain the magnetic powder to be formed; press the magnetic powder to be formed under a pressure of 1600MPa to form an annular soft magnetic composite material with an outer diameter of 23.6mm, an inner diameter of 14.4mm, and a height of 8.89mm; nitrogen is used as the protective atmosphere, Place the soft magnetic composite material in an environment of 650oC for 30 minutes to make a soft magnetic composite material; spray a layer of epoxy resin insulating paint on the surface of the soft magnetic composite material to make a finished product, that is, obtain an iron-nickel-based metal soft magnetic composite material .
在铁镍基软磁复合材料上采用线径Ф0.8mm,线长0.9m的漆包线绕制20匝电感线圈,测得软磁复合材料电磁性能具体如下: On the iron-nickel-based soft magnetic composite material, 20 turns of inductance coils are wound with enameled wire with a wire diameter of Ф0.8mm and a wire length of 0.9m. The measured electromagnetic properties of the soft magnetic composite material are as follows:
(1)软磁复合材料磁导率:156; (1) Magnetic permeability of soft magnetic composite material: 156;
(2)10kHz/1V条件下,电感L=53.5μH; (2) Under the condition of 10kHz/1V, the inductance L=53.5μH;
(3)直流叠加性能:10kHz,H=100Oe时,LH/LO=74.1%; (3) DC superposition performance: 10kHz, H=100Oe, L H /L O =74.1%;
(4)100kHz/1V条件下,品质因数Q=83; (4) Under the condition of 100kHz/1V, the quality factor Q=83;
(5)软磁复合材料损耗:50kHz/100mT时,PCV=202.4mW/cm3。 (5) Loss of soft magnetic composite material: at 50kHz/100mT, P CV =202.4mW/cm 3 .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410245747.3A CN104028750B (en) | 2014-06-05 | 2014-06-05 | A kind of high bond strength insulating wrapped processing method of soft magnetic metal composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410245747.3A CN104028750B (en) | 2014-06-05 | 2014-06-05 | A kind of high bond strength insulating wrapped processing method of soft magnetic metal composite |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104028750A true CN104028750A (en) | 2014-09-10 |
CN104028750B CN104028750B (en) | 2016-04-27 |
Family
ID=51459878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410245747.3A Active CN104028750B (en) | 2014-06-05 | 2014-06-05 | A kind of high bond strength insulating wrapped processing method of soft magnetic metal composite |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104028750B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109256251A (en) * | 2018-09-19 | 2019-01-22 | 鲁东大学 | The method that surface oxidation technique prepares high magnetic conductance low-power consumption metal soft magnetic composite material |
WO2019029147A1 (en) * | 2017-08-10 | 2019-02-14 | 深圳市铂科新材料股份有限公司 | Metal soft magnetic powder core resistant to high temperature heat treatment |
CN109786100A (en) * | 2019-03-29 | 2019-05-21 | 中国科学院宁波材料技术与工程研究所 | A kind of preparation method of soft magnetic-powder core |
CN112071618A (en) * | 2020-08-28 | 2020-12-11 | 南京大学 | A kind of preparation method of iron-silicon-aluminum flake magnetic powder coated with titanium dioxide surface insulation |
CN112251648A (en) * | 2020-09-29 | 2021-01-22 | 绵阳西磁科技有限公司 | High-permeability low-loss FeNiMo magnetic powder core and preparation method thereof |
CN112366057A (en) * | 2020-10-23 | 2021-02-12 | 浙江工业大学 | Organic-inorganic hybrid nano titanate coated metal soft magnetic composite material and preparation method thereof |
CN112700960A (en) * | 2020-12-15 | 2021-04-23 | 安徽工业大学 | Method for insulating and coating metal soft magnetic powder core and high-strength bonding |
CN112692276A (en) * | 2020-12-09 | 2021-04-23 | 武汉科技大学 | Iron-based antioxidant magnetic composite powder and preparation method thereof |
CN112700959A (en) * | 2020-12-15 | 2021-04-23 | 安徽工业大学 | Compact insulation coating method for metal soft magnetic powder |
CN112863799A (en) * | 2020-12-31 | 2021-05-28 | 莱芜职业技术学院 | Iron-based soft magnetic composite material with mesoporous structure coating layer and preparation method thereof |
CN114220645A (en) * | 2021-12-16 | 2022-03-22 | 宁波磁性材料应用技术创新中心有限公司 | Preparation method of amorphous composite magnetic powder core |
CN114446563A (en) * | 2021-12-29 | 2022-05-06 | 中国科学院宁波材料技术与工程研究所 | High-magnetic-performance samarium-cobalt magnet and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1518011A (en) * | 2002-12-26 | 2004-08-04 | ������������ʽ���� | Metal powder and powder magnetic core using same |
CN101089108A (en) * | 2007-05-17 | 2007-12-19 | 钢铁研究总院 | Inorganic insulating adhesive for metal soft magnetic powder core and preparation method thereof |
CN101599334A (en) * | 2009-04-21 | 2009-12-09 | 北京科技大学 | A kind of preparation method of high resistivity and high magnetic permeability FeSiAl soft magnetic material |
JP2011049391A (en) * | 2009-08-27 | 2011-03-10 | Tdk Corp | Soft magnetic dust core, and manufacturing method thereof |
JP2011089191A (en) * | 2009-10-26 | 2011-05-06 | Tdk Corp | Soft magnetic material, dust core and method for producing the core |
CN102145293A (en) * | 2011-03-08 | 2011-08-10 | 河南师范大学 | Soft magnetic composite photocatalyst and preparation method thereof |
CN102528024A (en) * | 2012-01-20 | 2012-07-04 | 钢铁研究总院 | Method for preparing insulated iron powder used by soft magnetic composite materials |
CN103247403A (en) * | 2013-05-31 | 2013-08-14 | 合肥工业大学 | Preparation method of metal soft magnetic powder core |
CN103426584A (en) * | 2013-09-11 | 2013-12-04 | 彭晓领 | Ferrite composite magnetic powder core and preparing method thereof |
-
2014
- 2014-06-05 CN CN201410245747.3A patent/CN104028750B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1518011A (en) * | 2002-12-26 | 2004-08-04 | ������������ʽ���� | Metal powder and powder magnetic core using same |
CN101089108A (en) * | 2007-05-17 | 2007-12-19 | 钢铁研究总院 | Inorganic insulating adhesive for metal soft magnetic powder core and preparation method thereof |
CN101599334A (en) * | 2009-04-21 | 2009-12-09 | 北京科技大学 | A kind of preparation method of high resistivity and high magnetic permeability FeSiAl soft magnetic material |
JP2011049391A (en) * | 2009-08-27 | 2011-03-10 | Tdk Corp | Soft magnetic dust core, and manufacturing method thereof |
JP2011089191A (en) * | 2009-10-26 | 2011-05-06 | Tdk Corp | Soft magnetic material, dust core and method for producing the core |
CN102145293A (en) * | 2011-03-08 | 2011-08-10 | 河南师范大学 | Soft magnetic composite photocatalyst and preparation method thereof |
CN102528024A (en) * | 2012-01-20 | 2012-07-04 | 钢铁研究总院 | Method for preparing insulated iron powder used by soft magnetic composite materials |
CN103247403A (en) * | 2013-05-31 | 2013-08-14 | 合肥工业大学 | Preparation method of metal soft magnetic powder core |
CN103426584A (en) * | 2013-09-11 | 2013-12-04 | 彭晓领 | Ferrite composite magnetic powder core and preparing method thereof |
Non-Patent Citations (1)
Title |
---|
刘菲菲等: "铁粉基软磁复合材料绝缘包覆层的研究", 《材料开发与应用》, vol. 22, no. 5, 31 October 2007 (2007-10-31), pages 11 - 15 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019029147A1 (en) * | 2017-08-10 | 2019-02-14 | 深圳市铂科新材料股份有限公司 | Metal soft magnetic powder core resistant to high temperature heat treatment |
CN109256251A (en) * | 2018-09-19 | 2019-01-22 | 鲁东大学 | The method that surface oxidation technique prepares high magnetic conductance low-power consumption metal soft magnetic composite material |
CN109786100A (en) * | 2019-03-29 | 2019-05-21 | 中国科学院宁波材料技术与工程研究所 | A kind of preparation method of soft magnetic-powder core |
CN112071618A (en) * | 2020-08-28 | 2020-12-11 | 南京大学 | A kind of preparation method of iron-silicon-aluminum flake magnetic powder coated with titanium dioxide surface insulation |
CN112251648A (en) * | 2020-09-29 | 2021-01-22 | 绵阳西磁科技有限公司 | High-permeability low-loss FeNiMo magnetic powder core and preparation method thereof |
CN112366057A (en) * | 2020-10-23 | 2021-02-12 | 浙江工业大学 | Organic-inorganic hybrid nano titanate coated metal soft magnetic composite material and preparation method thereof |
CN112692276B (en) * | 2020-12-09 | 2024-03-08 | 武汉科技大学 | Iron-based antioxidant magnetic composite powder and preparation method thereof |
CN112692276A (en) * | 2020-12-09 | 2021-04-23 | 武汉科技大学 | Iron-based antioxidant magnetic composite powder and preparation method thereof |
CN112700960A (en) * | 2020-12-15 | 2021-04-23 | 安徽工业大学 | Method for insulating and coating metal soft magnetic powder core and high-strength bonding |
CN112700959A (en) * | 2020-12-15 | 2021-04-23 | 安徽工业大学 | Compact insulation coating method for metal soft magnetic powder |
CN112863799A (en) * | 2020-12-31 | 2021-05-28 | 莱芜职业技术学院 | Iron-based soft magnetic composite material with mesoporous structure coating layer and preparation method thereof |
CN114220645A (en) * | 2021-12-16 | 2022-03-22 | 宁波磁性材料应用技术创新中心有限公司 | Preparation method of amorphous composite magnetic powder core |
CN114220645B (en) * | 2021-12-16 | 2024-07-26 | 宁波磁性材料应用技术创新中心有限公司 | Preparation method of amorphous composite magnetic powder core |
CN114446563A (en) * | 2021-12-29 | 2022-05-06 | 中国科学院宁波材料技术与工程研究所 | High-magnetic-performance samarium-cobalt magnet and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104028750B (en) | 2016-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104028750B (en) | A kind of high bond strength insulating wrapped processing method of soft magnetic metal composite | |
CN104028749B (en) | A kind of high thermal stability insulating wrapped processing method of soft magnetic metal composite | |
CN104028747B (en) | A non-uniform nucleation insulation coating treatment method for metal soft magnetic composite materials | |
CN104028751B (en) | A kind of high-insulativity insulating wrapped processing method of soft magnetic metal composite | |
CN103247403B (en) | A kind of preparation method of metal soft magnetic powder core | |
CN109273235B (en) | Double-shell insulation coating method for metal soft magnetic composite material | |
CN108269670B (en) | Insulation and packaging treatment method for Fe-Si-Al soft magnetic alloy powder | |
CN109215924A (en) | A kind of in-situ passivation insulating wrapped processing method of metal soft magnetic composite material | |
CN108183012A (en) | A kind of insulating wrapped processing method for improving iron-based soft magnetic composite material pressed density | |
CN111192757A (en) | Insulation method and material for improving oxidation resistance of metal magnetic powder core | |
CN108777229B (en) | Preparation method of high-frequency soft magnet silicon-aluminum magnetic powder core | |
CN107507702B (en) | A kind of preparation method of inorganic oxide cladding iron-silicon-aluminum soft magnet powder core | |
CN104028762B (en) | A kind of preparation method of soft-magnetic composite material | |
CN101089108A (en) | Inorganic insulating adhesive for metal soft magnetic powder core and preparation method thereof | |
JP5715614B2 (en) | Powder magnetic core and manufacturing method thereof | |
CN105344993A (en) | Method for preparing iron-silicon-aluminum soft magnetic powder core through warm-pressing | |
CN113113224A (en) | Novel insulation coating method of soft magnetic powder for die-pressed inductor | |
CN114078631B (en) | Preparation method of soft magnetic composite material and metal magnetic powder core | |
CN109256251A (en) | The method that surface oxidation technique prepares high magnetic conductance low-power consumption metal soft magnetic composite material | |
JP2015128116A (en) | Powder-compact magnetic core, reactor arranged by use thereof, soft magnetic powder, and method for producing powder-compact magnetic core | |
CN108597719A (en) | A kind of preparation method of FeSiAl bases soft-magnetic composite material | |
CN103377786A (en) | Preparation method for iron-silicon-aluminum alloy magnetic powder core | |
CN104465003B (en) | Acidity is given a protective coating to metal objects the method that technique prepares high saturation magnetic flux density soft-magnetic composite material | |
CN112086257B (en) | Magnetic powder core with high magnetic permeability and high quality factor, its preparation method and application | |
CN104465004B (en) | Method for manufacturing high-saturation-flux-density soft magnetic composite material according to alkaline bluing technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |