CN104022657A - Control circuit and control method - Google Patents
Control circuit and control method Download PDFInfo
- Publication number
- CN104022657A CN104022657A CN201410299469.XA CN201410299469A CN104022657A CN 104022657 A CN104022657 A CN 104022657A CN 201410299469 A CN201410299469 A CN 201410299469A CN 104022657 A CN104022657 A CN 104022657A
- Authority
- CN
- China
- Prior art keywords
- signal
- circuit
- switching signal
- active clamping
- switching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000003990 capacitor Substances 0.000 claims abstract description 52
- 230000010355 oscillation Effects 0.000 claims description 10
- 239000008186 active pharmaceutical agent Substances 0.000 description 8
- 238000004804 winding Methods 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- NUMXHEUHHRTBQT-AATRIKPKSA-N 2,4-dimethoxy-1-[(e)-2-nitroethenyl]benzene Chemical compound COC1=CC=C(\C=C\[N+]([O-])=O)C(OC)=C1 NUMXHEUHHRTBQT-AATRIKPKSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种主动箝制反驰式功率转换器,特别涉及一种用于主动箝制反驰式功率转换器的控制电路。The invention relates to an active clamping flyback power converter, in particular to a control circuit for the active clamping flyback power converter.
背景技术Background technique
现有的主动箝制电路只可在特定的负载状态下实现零电压切换。此外,在轻负载期间的高循环电流导致较高的功率损失问题。相关的技术可在名称为“Clamped Continuous Flyback Power Converter”且编号为5,570,278的美国专利、名称为“Offset Resonance Zero Voltage Switching Flyback Converter”且编号为6,069,803的美国专利以及名称为“Active-clamp Circuit for Quasi-resonant Flyback Power Converter Power Converter”且编号为20110305048的美国专利申请案中获得。Existing active clamping circuits can only achieve ZVS under certain load conditions. Furthermore, high circulating currents during light loads lead to higher power loss issues. Related techniques can be found in U.S. Patent No. 5,570,278 entitled "Clamped Continuous Flyback Power Converter", U.S. Patent No. 6,069,803 entitled "Offset Resonance Zero Voltage Switching Flyback Converter" and U.S. Patent No. 6,069,803 entitled "Active-clamp Circuit for Quasi -resonant Flyback Power Converter Power Converter" and No. 20110305048 US patent application.
发明内容Contents of the invention
因此,本发明提出一种控制电路,其用于主动箝制反驰式功率转换器。其可在重负载情况下实现零电压切换且可在轻负载情况下达到高效率。本发明的目的在于提出一种方法以及装置,其可确保主动箝制反驰式功率转换器在重负载情况下实现零电压切换且在轻负载情况下达到高效率。Therefore, the present invention proposes a control circuit for actively clamping a flyback power converter. It achieves zero voltage switching at heavy loads and high efficiency at light loads. The purpose of the present invention is to provide a method and a device, which can ensure that the active-clamp flyback power converter realizes zero-voltage switching under heavy load conditions and achieves high efficiency under light load conditions.
本发明提供一种控制电路,用于主动箝制反驰式功率转换器。此控制电路包括低压侧晶体管、高压侧晶体管、高压侧驱动电路、控制器以及充泵电路。低压侧晶体管用来切换变压器。高压侧晶体管与电容器串联以形成主动箝制电路。此主动箝制电路与变压器并联。高压侧驱动电路用来驱动高压侧晶体管。控制器生成切换信号以及主动箝制信号。切换信号用来驱动低压侧晶体管。切换信号依据反馈信号而生成,以调节主动箝制反驰式功率转换器的输出。主动箝制信号耦接高压侧驱动电路以控制高压侧晶体管。主动箝制信号的脉冲宽度由第一电阻器决定。主动箝制信号在切换信号禁用之后启用。切换信号可在主动箝制信号禁用后启用。在重负载状态下,切换信号的最小频率由第二电阻器所决定。控制电路包括迟滞偏压生成器以及电容器。迟滞偏压生成器生成迟滞偏压以调整反馈信号。比较器具有轻负载阈值以控制迟滞偏压。比较器依据反馈信号的值以及轻负载阈值来控制迟滞偏压。切换信号将依据脉冲信号而启用。此脉冲信号由控制器的一振荡电路来周期性地生成。充泵电路包括二极管以及充泵电容器。二极管耦接供应电压。充泵电容器与二极管彼此串联。充泵电容器耦接高压侧驱动电路。The present invention provides a control circuit for actively clamping a flyback power converter. The control circuit includes a low-side transistor, a high-side transistor, a high-side drive circuit, a controller and a charging pump circuit. Low-side transistors are used to switch the transformer. A high-side transistor is connected in series with a capacitor to form an active clamp circuit. This active clamping circuit is connected in parallel with the transformer. The high-side driving circuit is used to drive the high-side transistor. A controller generates a switching signal as well as an active clamping signal. The switching signal is used to drive the low-side transistor. A switching signal is generated based on the feedback signal to regulate the output of the actively clamped flyback power converter. The active clamping signal is coupled to the high-side driving circuit to control the high-side transistor. The pulse width of the active clamp signal is determined by the first resistor. The active clamp signal is enabled after the toggle signal is disabled. The toggle signal can be enabled after the active clamp signal is disabled. Under heavy load conditions, the minimum frequency of the switching signal is determined by the second resistor. The control circuit includes a hysteretic bias generator and a capacitor. The hysteretic bias generator generates a hysteretic bias voltage to adjust the feedback signal. The comparator has a light load threshold to control the hysteretic bias. The comparator controls the hysteretic bias according to the value of the feedback signal and the light load threshold. The switching signal will be activated according to the pulse signal. The pulse signal is periodically generated by an oscillator circuit of the controller. The charge-pump circuit includes a diode and a charge-pump capacitor. The diode is coupled to the supply voltage. The charge-pump capacitor and the diode are connected in series with each other. The charge pump capacitor is coupled to the high voltage side drive circuit.
本发明也提供一种控制方法,用以控制主动箝制反驰式功率转换器。此控制方法包括以下步骤:依据反馈信号来生成切换信号,以切换低压侧晶体管并调节主动箝制反驰式功率转换器的输出;以及在切换信号禁用后,生成主动箝制信号。低压侧晶体管切换变压器。切换信号驱动低压侧晶体管。主动箝制信号用来驱动高压侧晶体管。主动箝制信号的脉冲宽度由第一电阻器所决定。高压侧晶体管与电容器串联以形成主动箝制电路。此主动箝制电路与变压器并联。主动箝制信号在切换信号禁用之后启用。切换信号在主动箝制信号禁用之后启用。在重负载状态下,切换信号的最小频率由第二电阻器所决定。此控制方法还包括步骤:生成迟滞偏压以调整反馈信号。迟滞偏压依据反馈信号的值以及轻负载阈值而生成。此控制方法还包括步骤:周期性地生成脉冲信号,以启用切换信号。此脉冲信号决定了切换信号的最大接通时间。The present invention also provides a control method for controlling the active-clamp flyback power converter. The control method includes the following steps: generating a switching signal according to the feedback signal to switch the low-side transistor and adjust the output of the active-clamp flyback power converter; and generating the active-clamping signal after the switching signal is disabled. The low-side transistor switches the transformer. The switching signal drives the low-side transistor. The active clamping signal is used to drive the high-side transistor. The pulse width of the active clamp signal is determined by the first resistor. A high-side transistor is connected in series with a capacitor to form an active clamp circuit. This active clamping circuit is connected in parallel with the transformer. The active clamp signal is enabled after the toggle signal is disabled. The toggle signal is enabled after the active clamp signal is disabled. Under heavy load conditions, the minimum frequency of the switching signal is determined by the second resistor. The control method also includes the step of generating a hysteretic bias to adjust the feedback signal. The hysteretic bias is generated based on the value of the feedback signal and the light load threshold. The control method also includes the step of periodically generating a pulse signal to enable the switching signal. This pulse signal determines the maximum on-time of the switching signal.
附图说明Description of drawings
图1表示根据本发明一实施例的反驰式功率转换器。FIG. 1 shows a flyback power converter according to an embodiment of the present invention.
图2A-图2D分别表示根据本发明一实施例,功率转换器的电流的四种状态。2A-2D respectively show four states of the current of the power converter according to an embodiment of the present invention.
图3表示切换信号、主动箝制信号以及循环电流的波形。Figure 3 shows the waveforms of the switching signal, the active clamping signal, and the circulating current.
图4表示切换信号以及主动箝制信号的间歇波形。Figure 4 shows intermittent waveforms of the switching signal and the active clamping signal.
图5表示根据本发明一实施例在功率转换器中的控制器。FIG. 5 shows a controller in a power converter according to an embodiment of the invention.
图6表示根据本发明一实施例在控制器中的振荡电路。FIG. 6 shows an oscillation circuit in a controller according to an embodiment of the present invention.
图7表示根据本发明一实施例在控制器中的信号生成电路。FIG. 7 shows a signal generating circuit in a controller according to an embodiment of the present invention.
图8A表示斜坡信号以及脉冲信号的波形。FIG. 8A shows the waveforms of the ramp signal and the pulse signal.
图8B表示斜坡信号、脉冲信号、切换信号以及主动箝制信号的波形。FIG. 8B shows the waveforms of ramp signal, pulse signal, switching signal and active clamping signal.
图9A表示根据本发明一实施例在振荡电路中的脉冲生成器的电路架构。FIG. 9A shows a circuit architecture of a pulse generator in an oscillation circuit according to an embodiment of the invention.
图9B表示在图9A中脉冲生成器的输入信号以及输出信号的波形。FIG. 9B shows the waveforms of the input signal and the output signal of the pulse generator in FIG. 9A.
图10A表示根据本发明一实施例在信号生成电路中的延迟电路的电路架构。FIG. 10A shows a circuit architecture of a delay circuit in a signal generating circuit according to an embodiment of the present invention.
图10B表示在图10A中延迟电路的输入信号以及输出信号的波形。FIG. 10B shows the waveforms of the input signal and the output signal of the delay circuit in FIG. 10A.
【符号说明】【Symbol Description】
图1:figure 1:
10~变压器; 11~漏电感;10~transformer; 11~leakage inductance;
15~电容器; 20~晶体管(低压侧晶体管);15~capacitor; 20~transistor (low voltage side transistor);
25~本体二极管; 30~晶体管(高压侧晶体管);25~body diode; 30~transistor (high voltage side transistor);
35~本体二极管; 40~电容器;35~body diode; 40~capacitor;
43~整流器; 45~电容器;43~rectifier; 45~capacitor;
50~高压侧驱动电路; 65~电容器;50~high voltage side drive circuit; 65~capacitor;
60~整流器; 70~二极管;60~rectifier; 70~diode;
75~电容器; 81、82~电阻器;75~capacitor; 81, 82~resistor;
90~光耦合器; 93~电阻器;90~optical coupler; 93~resistor;
95~电压调整器; 100~控制器;95~voltage regulator; 100~controller;
NA~辅助线圈; NP~初级侧线圈;N A ~auxiliary coil; N P ~primary side coil;
NS~次级侧线圈; S1~切换信号;N S ~secondary side coil; S 1 ~switching signal;
S2~主动箝制信号; VCC~供应电压;S 2 ~active clamping signal; V CC ~supply voltage;
VFB~反馈信号; VIN~输入电压;V FB ~feedback signal; V IN ~input voltage;
VO~输出电压;V O ~ output voltage;
图2A-图2D:Figure 2A-Figure 2D:
10~变压器; 11~漏电感;10~transformer; 11~leakage inductance;
15~电容器; 20~晶体管(低压侧晶体管);15~capacitor; 20~transistor (low voltage side transistor);
25~本体二极管; 28~寄生电容器;25~body diode; 28~parasitic capacitor;
30~晶体管(高压侧晶体管);30~transistor (high voltage side transistor);
35~本体二极管; 38~寄生电容器;35~body diode; 38~parasitic capacitor;
40~电容器; 43~整流器;40~capacitor; 43~rectifier;
45~电容器; ICR~循环电流;45~capacitor; I CR ~circulating current;
IDS、IP、IS~电流; NP~初级侧线圈;I DS , I P , I S ~current; N P ~primary side coil;
NS~次级侧线圈; S1~切换信号;N S ~secondary side coil; S 1 ~switching signal;
S2~主动箝制信号; T1…T4~状态;S 2 ~active clamping signal; T 1 …T 4 ~state;
VIN~输入电压; VO~输出电压;V IN ~input voltage; V O ~output voltage;
图3:image 3:
ICR~循环电流; S1~切换信号;I CR ~circulating current; S 1 ~switching signal;
S2~主动箝制信号; TCH~状态T2的期间;S 2 ~ active clamping signal; T CH ~ period of state T 2 ;
TDS~状态T3的最大期间; TS1~切换信号S1的脉冲宽度;T DS ~ the maximum period of state T 3 ; T S1 ~ the pulse width of switching signal S 1 ;
TS2~主动箝制信号S2的脉冲宽度;T S2 ~ the pulse width of the active clamping signal S 2 ;
图4:Figure 4:
S1~切换信号; S2~主动箝制信号;S 1 ~ switching signal; S 2 ~ active clamping signal;
TBT~间歇期间;T BT ~ Intermittent period;
图5:Figure 5:
100~控制器; 110~比较器;100~controller; 110~comparator;
111~触发器; 112~与门;111~trigger; 112~AND gate;
113~反相器; 115~与门;113~inverter; 115~AND gate;
117~电流源; 118~开关;117~current source; 118~switch;
119~比较器; 120~电平移位晶体管;119~comparator; 120~level shift transistor;
125、126~电阻器; 130~振荡电路;125, 126~resistor; 130~oscillating circuit;
200~信号生成电路; CLR~清除信号;200~signal generation circuit; CLR~clear signal;
PLS~脉冲信号; RMP~斜坡信号;PLS~pulse signal; RMP~ramp signal;
S1~切换信号; S2~主动箝制信号;S 1 ~ switching signal; S 2 ~ active clamping signal;
VB~信号; VCC~供应电压;V B ~signal; V CC ~supply voltage;
VFB~反馈信号; VTL~轻负载阈值;V FB ~feedback signal; V TL ~light load threshold;
图6:Figure 6:
127~电容器; 128~开关;127~capacitor; 128~switch;
130~振荡电路; 131~电流源;130~oscillating circuit; 131~current source;
132~开关; 135~电流源;132~switch; 135~current source;
136~开关; 141、142、145~比较器;136 ~ switch; 141, 142, 145 ~ comparator;
146、151、152~与非门; 156~反相器;146, 151, 152~NAND gate; 156~inverter;
157~反相器; 165~或门;157~inverter; 165~or gate;
300~脉冲生成器; CKA、CKB~频率信号;300~pulse generator; CKA, CKB~frequency signal;
CLR~清除信号; PLS~脉冲信号;CLR~clear signal; PLS~pulse signal;
RMP~斜坡信号; S2~主动箝制信号;RMP ~ ramp signal; S 2 ~ active clamping signal;
SIN1~信号; SOUT1~输出脉冲信号;S IN1 ~ signal; S OUT1 ~ output pulse signal;
VH、VL~跳变点电压; VM~阈值电压;V H , V L ~trip point voltage; V M ~threshold voltage;
图7:Figure 7:
200~信号生成电路; 270~比较器;200~signal generating circuit; 270~comparator;
271~反相器; 280~电流源;271~inverter; 280~current source;
281~开关; 285~电容器;281~switch; 285~capacitor;
290~触发器; 350~延迟电路;290~trigger; 350~delay circuit;
S1~切换信号; S2~主动箝制信号;S 1 ~ switching signal; S 2 ~ active clamping signal;
SIN2~信号; SOUT2~输出脉冲信号;S IN2 ~ signal; S OUT2 ~ output pulse signal;
VW~阈值;V W ~threshold;
图8A-图8BFigure 8A-8B
PLS~脉冲信号; RMP~斜坡信号;PLS~pulse signal; RMP~ramp signal;
S1~切换信号; S2~主动箝制信号;S 1 ~ switching signal; S 2 ~ active clamping signal;
VH、VL~跳变点电压; VM~阈值电压;V H , V L ~trip point voltage; V M ~threshold voltage;
图9A-图9B:Figure 9A-9B:
300~脉冲生成器; 310~电流源;300~pulse generator; 310~current source;
321~反相器; 322~晶体管;321~inverter; 322~transistor;
325~电容器; 327~反相器;325~capacitor; 327~inverter;
329~与门; SIN1~信号;329~AND gate; S IN1 ~signal;
SOUT1~输出脉冲信号;S OUT1 ~ output pulse signal;
TP~输出脉冲信号SOUT1的脉冲宽度;T P ~ the pulse width of the output pulse signal S OUT1 ;
图10A-图10B:Figure 10A-Figure 10B:
350~延迟电路; 361~反相器;350~delay circuit; 361~inverter;
362~晶体管; 360~电流源;362~transistor; 360~current source;
365~电容器; 369~与门;365~capacitor; 369~AND gate;
SIN2~信号; SOUT2~输出脉冲信号;S IN2 ~ signal; S OUT2 ~ output pulse signal;
TB~延迟电路350生成的延迟时间。T B ˜the delay time generated by the delay circuit 350 .
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能更明显易懂,下文特举一优选实施例,并配合附图,作详细说明如下。In order to make the above-mentioned objects, features and advantages of the present invention more comprehensible, a preferred embodiment will be described in detail below together with the accompanying drawings.
图1表示根据本发明一实施例的反驰式功率转换器。变压器10接收功率转换器的输入电压VIN。晶体管(也称为“低压侧晶体管”)20耦接来切换变压器10的初级侧线圈NP。控制器100在其端点S1生成切换信号S1,而切换信号S1用来驱动晶体管20以调整功率转换器的输出电压VO。切换信号S1是依据在控制器100的端点FB的反馈信号VFB而生成的。反馈信号VFB与功率转换器的输出电压VO相关联。变压器10的次级侧线圈NS将通过整流器43以及电容器45来生成输出电压VO。电阻器93、电压调整器95(齐(基)纳二极管)以及光耦合器90形成一个反馈电路,以依据输出电压VO来生成反馈信号VFB。变压器20包括辅助线圈NA,其通过整流器60来生成跨越电容器65的供应电压VCC。供应电压VCC用来供电给控制器100。晶体管(也称为“高压侧晶体管”)30与电容器15串联已形成一主动箝制电路。此主动箝制电路与变压器10的初级侧线圈NP彼此并联。当晶体管20断开时,变压器10的漏电感11的能量将通过晶体管30以及其本体二极管35而存入至电容器15。高压侧驱动电路50用来驱动晶体管30。由二极管70以及电容器75所组成的充泵电路接收供应电压VCC,并为高压侧驱动电路50供电。电容器75与二极管70彼此串联。在图1的实施例中,晶体管20、控制器100、高压侧驱动电路50、主动箝制电路以及充泵电路形成一控制电路。FIG. 1 shows a flyback power converter according to an embodiment of the present invention. The transformer 10 receives the input voltage V IN of the power converter. A transistor (also referred to as “low-side transistor”) 20 is coupled to switch the primary-side winding N P of the transformer 10 . The controller 100 generates a switching signal S 1 at its terminal S1, and the switching signal S 1 is used to drive the transistor 20 to adjust the output voltage V O of the power converter. The switching signal S 1 is generated according to the feedback signal V FB at the terminal FB of the controller 100 . The feedback signal V FB is related to the output voltage V O of the power converter. The secondary winding N S of the transformer 10 will generate an output voltage V O through a rectifier 43 and a capacitor 45 . The resistor 93, the voltage regulator 95 (Zene (gene) nanodiode) and the optocoupler 90 form a feedback circuit to generate a feedback signal V FB according to the output voltage V O. Transformer 20 includes an auxiliary winding N A which, via a rectifier 60 , generates a supply voltage V CC across a capacitor 65 . The supply voltage V CC is used to power the controller 100 . Transistor (also referred to as "high-side transistor") 30 in series with capacitor 15 has formed an active clamping circuit. This active clamp circuit and the primary side winding NP of the transformer 10 are connected in parallel with each other. When the transistor 20 is turned off, the energy of the leakage inductance 11 of the transformer 10 will be stored in the capacitor 15 through the transistor 30 and its body diode 35 . The high voltage side driving circuit 50 is used to drive the transistor 30 . The charge-pump circuit composed of the diode 70 and the capacitor 75 receives the supply voltage V CC and supplies power to the high-side driving circuit 50 . The capacitor 75 and the diode 70 are connected in series with each other. In the embodiment of FIG. 1 , the transistor 20 , the controller 100 , the high voltage side driver circuit 50 , the active clamping circuit and the charge-pump circuit form a control circuit.
控制器100在其端点S2上生成主动箝制信号S2,以控制高压侧驱动电路50。主动箝制信号S2的脉冲宽度由电阻器81的电阻值决定。电阻器81耦接控制器100的端点RT。主动箝制信号S2只在切换信号S1禁用时启用。在重负载状态的期间,切换信号S1将在主动箝制信号S2禁用之后启用。电阻器82耦接控制器100的端点RM,以在重负载状态下决定切换信号S1的最小频率(最大接通时间)。The controller 100 generates an active clamping signal S 2 on its terminal S2 to control the high-side driving circuit 50 . The pulse width of the active clamping signal S 2 is determined by the resistance value of the resistor 81 . The resistor 81 is coupled to the terminal RT of the controller 100 . Active clamping signal S2 is only enabled when switching signal S1 is disabled. During heavy load conditions, the switching signal S 1 will be enabled after the active clamping signal S 2 is disabled. The resistor 82 is coupled to the terminal RM of the controller 100 to determine the minimum frequency (maximum on-time) of the switching signal S1 under heavy load conditions.
图2A-图2D分别表示根据本发明实施例,功率转换器的电流的四种状态。参阅图2A,在状态T1下,切换信号S1接通(ON)晶体管20。电流IP流经变压器10且储存能量至变压器10。此能量也将储存至变压器10的漏电感11。2A-2D respectively show four states of the current of the power converter according to the embodiment of the present invention. Referring to FIG. 2A , in the state T1 , the switching signal S1 turns on (ON) the transistor 20 . The current IP flows through the transformer 10 and stores energy in the transformer 10 . This energy will also be stored in the leakage inductance 11 of the transformer 10 .
参阅图2B,在状态T2下,切换信号S1断开(OFF)晶体管20。储存在变压器10的能量将藉由电流IS传送至功率转换器的输出,以生成输出电压VO。此外,储存在变压器10以及漏电感11的能量将通过晶体管30的本体二极管35传送至电容器15。循环电流ICR则表示流入电容器15的能量。在这之后。主动箝制信号S2将接通晶体管30。Referring to FIG. 2B , in the state T 2 , the switching signal S 1 turns off (OFF) the transistor 20 . The energy stored in the transformer 10 will be transferred to the output of the power converter via the current IS to generate the output voltage V O . In addition, the energy stored in the transformer 10 and the leakage inductance 11 will be transferred to the capacitor 15 through the body diode 35 of the transistor 30 . The circulating current I CR represents the energy flowing into the capacitor 15 . after this. Active clamp signal S2 will turn on transistor 30 .
参阅图2C,在状态T3下,储存在电容器15中的能量将通过晶体管30而被变压器10以及漏电感11再利用。电容器15藉由循环电流ICR并通过漏电感11来放电。漏电感11以及电容器15则形成了谐振槽且决定其谐振频率。Referring to FIG. 2C , in the state T 3 , the energy stored in the capacitor 15 will be reused by the transformer 10 and the leakage inductance 11 through the transistor 30 . Capacitor 15 is discharged by circulating current I CR through leakage inductance 11 . The leakage inductance 11 and the capacitor 15 form a resonant tank and determine its resonant frequency.
参阅第2D图,在状态T4下,主动箝制信号S2断开晶体管30。储存在漏电感11中的能量将藉由电流IDS传送至输入电压VIN。在此同时,晶体管20的寄生电容器28将放电,且晶体管20的本体二极管25可被接通以在下一个切换周期实现晶体管20的零电压切换操作(状态T1)。Referring to FIG. 2D , in state T 4 , active clamp signal S 2 turns off transistor 30 . The energy stored in the leakage inductance 11 will be transferred to the input voltage V IN through the current I DS . At the same time, the parasitic capacitor 28 of transistor 20 will discharge and the body diode 25 of transistor 20 can be turned on to achieve zero voltage switching operation of transistor 20 (state T 1 ) in the next switching cycle.
图3是表示切换信号S1、主动箝制信号S2以及循环电流ICR的波形。期间TCH是表示状态T2的期间。期间TDS是表示状态T3的最大期间。TS1是表示切换信号S1的脉冲宽度。TS2是表示主动箝制信号S2的脉冲宽度。为了起始状态T3(期间TDS),主动箝制信号S2必须在期间TCH结束之前启用。为了完成零电压切换,主动箝制信号S2必须在期间TDS结束之前禁用。期间TCH以及期间TDS都由谐振槽的谐振频率所决定。FIG. 3 shows waveforms of switching signal S 1 , active clamping signal S 2 and circulating current I CR . The period T CH is a period representing the state T2 . The period T DS is the maximum period representing the state T3 . T S1 represents the pulse width of the switching signal S1 . T S2 is the pulse width representing the active clamp signal S2 . In order to initiate state T 3 (period T DS ), active clamping signal S 2 must be enabled before period T CH ends. In order to complete zero-voltage switching, the active clamping signal S2 must be disabled before the end of the period T DS . Both the period T CH and the period T DS are determined by the resonant frequency of the resonant tank.
图4是表示切换信号S1以及主动箝制信号S2的间歇波形(burstwaveform)。期间TBT为间歇期间(burst period)。FIG. 4 shows burst waveforms of the switching signal S1 and the active clamping signal S2 . The period T BT is a burst period.
图5是表示根据本发明一实施例,在功率转换器中的控制器100。控制器100包括振荡电路130,其生成脉冲信号PLS、斜坡信号RMP以及清除信号CLR。脉冲信号PLS通过反相器113、触发器111以及与门115来启用切换信号S1。主动箝制信号S2以及电阻器82(显示于图1)耦合至振荡电路130以用来生成切换信号S1。因此,一旦主动箝制信号S2禁用,切换信号S1则启用。电阻器82决定了切换信号S1的最小切换频率(最低切换频率)。电阻器81(显示于图1)以及切换信号S1耦接至信号生成电路200以生成主动箝制信号S2。一旦切换信号S1禁用,主动箝制信号S2则启用。电平移位晶体管120以及电阻器125与126依据反馈信号VFB而生成信号VB。斜坡信号RMP与信号VB在比较器110中进行比较以通过与门112来生成用以禁用切换信号S1的一信号,藉此实现脉宽调制操作。振荡电路130所生成的清除信号CLR用来重置触发器111,以禁用切换信号S1并限制切换信号S1的最大接通时间。FIG. 5 shows a controller 100 in a power converter according to an embodiment of the present invention. The controller 100 includes an oscillation circuit 130 that generates a pulse signal PLS, a ramp signal RMP, and a clear signal CLR. The pulse signal PLS enables the switching signal S 1 through the inverter 113 , the flip-flop 111 and the AND gate 115 . The active clamping signal S 2 and the resistor 82 (shown in FIG. 1 ) are coupled to the oscillation circuit 130 for generating the switching signal S 1 . Therefore, once the active clamping signal S2 is disabled, the switching signal S1 is enabled. The resistor 82 determines the minimum switching frequency of the switching signal S1 (lowest switching frequency). The resistor 81 (shown in FIG. 1 ) and the switching signal S 1 are coupled to the signal generating circuit 200 to generate the active clamping signal S 2 . Once the switching signal S 1 is disabled, the active clamping signal S 2 is enabled. The level shift transistor 120 and the resistors 125 and 126 generate a signal V B according to the feedback signal V FB . The ramp signal RMP is compared with the signal V B in the comparator 110 to generate a signal for disabling the switching signal S 1 through the AND gate 112 , thereby realizing the PWM operation. The clear signal CLR generated by the oscillation circuit 130 is used to reset the flip-flop 111 to disable the switching signal S 1 and limit the maximum on-time of the switching signal S 1 .
比较器119用来比较信号VB与轻负载阈值VTL。当信号VB低于轻负载阈值VTL时,磁滞偏压将由信号VB的电流电平开始减少。包括电阻器125与126以及电流源117的磁滞偏压生成器生成上述磁滞电压,其由电流源117的大小以及电阻器125与126的等效电阻所决定。由比较器119所控制的开关118接通/断开电流源117。当信号VB高于轻负载阈值VTL,磁滞偏压将加入至信号VB。当信号VB低于轻负载阈值VTL,磁滞偏压由信号VB的电流电平开始减少。因此,通过此反馈回路,磁滞偏压将导致间歇切换,以减少切换信号S1的切换频率并改善轻负载状态(信号VB低于轻负载阈值VTL)下的轻负载效能。The comparator 119 is used to compare the signal V B with the light load threshold V TL . When the signal V B is lower than the light load threshold V TL , the hysteresis bias will start to decrease from the current level of the signal V B . The hysteresis bias voltage generator including the resistors 125 and 126 and the current source 117 generates the hysteresis voltage, which is determined by the magnitude of the current source 117 and the equivalent resistance of the resistors 125 and 126 . A switch 118 controlled by a comparator 119 turns on/off the current source 117 . When the signal V B is higher than the light load threshold V TL , a hysteresis bias will be added to the signal V B . When the signal V B is lower than the light load threshold V TL , the hysteresis bias starts to decrease from the current level of the signal V B . Therefore, through this feedback loop, the hysteresis bias will cause intermittent switching to reduce the switching frequency of the switching signal S 1 and improve the light load performance under light load conditions (signal V B is lower than the light load threshold V TL ).
图6是表示根据本发明一实施例,在控制器100中的振荡电路130。电流源131与135分别通过开关132与136来对电容器127充电以及放电。斜坡信号RMP跨于电容器127而生成。斜坡信号RMP还耦合至比较器141、142、与145。比较器141具有跳变点电压(trip-point voltage)VH。比较器142具有跳变点电压VL。比较器145具有阈值电压VM。跳变点电压VH的电平大于阈值电压VM的电平。阈值电压VM的电平则大于跳变点电压VL的电平。与非门151与152形成锁存电路,其接收比较器141与142的输出信号。此锁存电路以及反相器156生成了频率信号CKA与CKB。频率信号CKA用来控制开关136以使电容器127放电。频率信号CKB用来控制开关132以使电容器127充电。比较器145的输出以及频率信号CKA通过与非门146来生成清除信号CLR。主动箝制信号S2的下降沿通过反相器157以及脉冲生成器300而在或门165的一输入端生成单击信号。或门165的另一输入端接收频率信号CKA。单击信号以及频率信号CKA两者通过或门165来生成脉冲信号PLS。因此,每当主动箝制信号S2禁用时,脉冲信号PLS将被生成。此外,当达到斜坡信号RMP的最大振荡周期时,脉冲信号PLS将依据频率信号CKA而生成。由于清除信号CLR依据频率信号CKA(频率信号CKA与脉冲信号PLS相关联)所生成的,脉冲信号PLS将因此限制切换信号S1的最大接通时间。连接端点RM的电阻器82(显示于图1)的电阻值控制电流源131的大小。因此,电阻器82用来决定斜坡信号RMP的最大振荡周期。FIG. 6 shows the oscillation circuit 130 in the controller 100 according to an embodiment of the present invention. The current sources 131 and 135 charge and discharge the capacitor 127 through the switches 132 and 136 respectively. Ramp signal RMP is generated across capacitor 127 . The ramp signal RMP is also coupled to the comparators 141 , 142 , and 145 . The comparator 141 has a trip-point voltage V H . Comparator 142 has a trip point voltage V L . Comparator 145 has a threshold voltage V M . The level of the trip point voltage V H is greater than the level of the threshold voltage V M . The level of the threshold voltage V M is greater than the level of the trip point voltage V L . The NAND gates 151 and 152 form a latch circuit which receives the output signals of the comparators 141 and 142 . The latch circuit and the inverter 156 generate clock signals CKA and CKB. The frequency signal CKA is used to control the switch 136 to discharge the capacitor 127 . The frequency signal CKB is used to control the switch 132 to charge the capacitor 127 . The output of the comparator 145 and the frequency signal CKA pass through the NAND gate 146 to generate the clear signal CLR. The falling edge of the active clamping signal S 2 generates a click signal at an input terminal of the OR gate 165 through the inverter 157 and the pulse generator 300 . The other input terminal of the OR gate 165 receives the frequency signal CKA. Both the click signal and the frequency signal CKA pass through the OR gate 165 to generate the pulse signal PLS. Therefore, whenever the active clamping signal S2 is disabled, the pulse signal PLS will be generated. In addition, when the maximum oscillation period of the ramp signal RMP is reached, the pulse signal PLS will be generated according to the clock signal CKA. Since the clear signal CLR is generated according to the frequency signal CKA (the frequency signal CKA is associated with the pulse signal PLS), the pulse signal PLS will thus limit the maximum on-time of the switching signal S1 . The magnitude of the current source 131 is controlled by the resistance of the resistor 82 (shown in FIG. 1 ) connected to the terminal RM. Therefore, the resistor 82 is used to determine the maximum oscillation period of the ramp signal RMP.
图7是表示根据本发明一实施例,在控制器100中的信号生成电路200。切换信号S1通过反相器271、延迟电路350以及触发器290来生成主动箝制信号S2。因此,当切换信号S1禁用时,主动箝制信号S2将在延迟电路350所决定的一延迟时间之后启用。一旦切换信号S1禁用,开关281将被断开。电流源280将开始对电容器285充电。当跨越电容器285的电压高于阈值VW时,比较器270则通过触发器290来禁用主动箝制信号S2。耦接于端点RT的电阻器81(显示于图1)的电阻值控制了电流源280的大小。因此,电阻器81、电容器285以及阈值VW决定了主动箝制信号S2的脉冲宽度。电阻器81是实施来决定主动箝制信号S2的脉冲宽度TS2,以实现零电压切换。脉冲宽度TS2必须符合以下条件:TS2>TCH以及TS2<“TCH+TDS”(显示于图3)。FIG. 7 shows a signal generating circuit 200 in the controller 100 according to an embodiment of the present invention. The switching signal S 1 passes through the inverter 271 , the delay circuit 350 and the flip-flop 290 to generate the active clamping signal S 2 . Therefore, when the switching signal S1 is disabled, the active clamping signal S2 will be enabled after a delay time determined by the delay circuit 350 . Once the switching signal S1 is disabled, the switch 281 will be turned off. Current source 280 will begin charging capacitor 285 . When the voltage across the capacitor 285 is higher than the threshold V W , the comparator 270 disables the active clamping signal S 2 via the flip-flop 290 . The magnitude of the current source 280 is controlled by the resistance of the resistor 81 (shown in FIG. 1 ) coupled to the terminal RT. Therefore, the resistor 81, the capacitor 285 and the threshold V W determine the pulse width of the active clamp signal S2 . The resistor 81 is implemented to determine the pulse width T S2 of the active clamping signal S 2 to achieve zero voltage switching. The pulse width T S2 must satisfy the following conditions: T S2 >T CH and T S2 <"T CH +T DS " (shown in FIG. 3 ).
图8A是表示斜坡信号RMP以及脉冲信号PLS的波形。在图8A中的脉冲信号PLS是依据频率信号CKA生成的,如图6所示。FIG. 8A shows the waveforms of the ramp signal RMP and the pulse signal PLS. The pulse signal PLS in FIG. 8A is generated according to the frequency signal CKA, as shown in FIG. 6 .
图8B是表示斜坡信号RMP、脉冲信号PLS、切换信号S1以及主动箝制信号S2的波形。主动箝制信号S2将在切换信号S1禁用之后生成。切换信号S1将在主动箝制信号S2禁用之后生成。即是,切换信号S1以及主动箝制信号S2以交错的方式生成而不会同时启用。脉冲信号PLS则是周期性地生成,以在间歇切换模式期间切换信号S1不被启用的情况下来启用切换信号S1。图8B中的脉冲信号PLS是依据生成在脉冲生成器300的输出上的单击信号而生成的。此外,切换信号S1的最大接通时间由斜坡信号RMP的最大周期所限制。FIG. 8B shows the waveforms of the ramp signal RMP, the pulse signal PLS, the switching signal S1 and the active clamping signal S2 . Active clamping signal S2 will be generated after switching signal S1 is disabled. Switching signal S1 will be generated after active clamping signal S2 is disabled. That is, the switching signal S 1 and the active clamping signal S 2 are generated in an interleaved manner and are not activated at the same time. The pulse signal PLS is generated periodically to enable the switching signal S 1 when the switching signal S 1 is not enabled during the intermittent switching mode. The pulse signal PLS in FIG. 8B is generated according to the click signal generated on the output of the pulse generator 300 . In addition, the maximum on-time of the switching signal S1 is limited by the maximum period of the ramp signal RMP.
图9A表示根据本发明一实施例,在振荡电路130内的脉冲生成器300。参阅图9A,电流源310耦接来对电容器325充电。晶体管322则是用来对电容器325放电。在脉冲生成器300的端点IN1上的信号SIN1通过反相器321来控制晶体管322。信号SIN1还耦合至与门329的输入端。与门329的另一输入端通过反相器327耦接电容器325。在脉冲生成器300的端点OUT1上的输出脉冲信号SOUT1的脉冲宽度由电流源310的电流以及电容器325的电容值决定。在此实施例中,图9A的脉冲生成器300所接收的信号SIN1由反相器157(显示于图6)的输出端所提供,且输出脉冲信号SOUT1则提供至或门165(显示于图6)的输入端以作为单击信号。FIG. 9A shows the pulse generator 300 within the oscillation circuit 130 according to an embodiment of the present invention. Referring to FIG. 9A , a current source 310 is coupled to charge a capacitor 325 . The transistor 322 is used to discharge the capacitor 325 . The signal S IN1 at the terminal IN1 of the pulse generator 300 controls the transistor 322 via the inverter 321 . Signal S IN1 is also coupled to the input of AND gate 329 . The other input end of the AND gate 329 is coupled to the capacitor 325 through the inverter 327 . The pulse width of the output pulse signal S OUT1 at the terminal OUT1 of the pulse generator 300 is determined by the current of the current source 310 and the capacitance of the capacitor 325 . In this embodiment, the signal S IN1 received by the pulse generator 300 of FIG. 9A is provided by the output terminal of the inverter 157 (shown in FIG. 6 ), and the output pulse signal S OUT1 is provided to the OR gate 165 (shown in FIG. In Figure 6) the input terminal is used as a click signal.
图9B是表示脉冲生成器300的输入信号SIN1以及输出脉冲信号SOUT1的波形。TP表示输出脉冲信号SOUT1的脉冲宽度。FIG. 9B shows the waveforms of the input signal S IN1 and the output pulse signal S OUT1 of the pulse generator 300 . T P represents the pulse width of the output pulse signal S OUT1 .
图10A是表示在信号生成电路200中延迟电路350的电路架构图。参阅图10A,电流源360耦接来对电容器365充电。晶体管362则是耦接来对电容器365放电。在延迟电路350的端点IN2上的信号SIN2通过反相器361来控制晶体管362。信号SIN2还耦合至与门369的输入端。与门369的另一输入端则耦接电容器365。在延迟电路350的端点OUT2上的输出脉冲信号SOUT2的脉冲宽度由电流源360的电流以及电容器365的电容值所决定。在此实施例中,图10A的延迟电路350所接收的信号SIN2由反相器271(显示于图7)的输出端所提供,且输出脉冲信号SOUT2则提供至触发器290(显示于图7)以生成主动箝制信号S2。FIG. 10A is a circuit configuration diagram showing the delay circuit 350 in the signal generation circuit 200 . Referring to FIG. 10A , a current source 360 is coupled to charge a capacitor 365 . The transistor 362 is coupled to discharge the capacitor 365 . The signal S IN2 at the terminal IN2 of the delay circuit 350 controls the transistor 362 through the inverter 361 . Signal S IN2 is also coupled to the input of AND gate 369 . The other input terminal of the AND gate 369 is coupled to the capacitor 365 . The pulse width of the output pulse signal S OUT2 at the terminal OUT2 of the delay circuit 350 is determined by the current of the current source 360 and the capacitance of the capacitor 365 . In this embodiment, the signal S IN2 received by the delay circuit 350 of FIG. 10A is provided by the output terminal of the inverter 271 (shown in FIG. 7 ), and the output pulse signal S OUT2 is provided to the flip-flop 290 (shown in FIG. 7 ). FIG. 7 ) to generate the active clamping signal S 2 .
图10B是表示延迟电路350的输入信号SIN2以及输出脉冲信号SOUT2的波形。TB表示延迟电路350生成的延迟时间。FIG. 10B shows the waveforms of the input signal S IN2 and the output pulse signal S OUT2 of the delay circuit 350 . T B represents the delay time generated by the delay circuit 350 .
本发明虽以优选实施例公开如上,然其并非用以限定本发明的范围,本领域技术人员在不脱离本发明的精神和范围内,当可做些许的更动与润饰,因此本发明的保护范围当视所附权利要求书界定范围为准。Although the present invention is disclosed above with preferred embodiments, it is not intended to limit the scope of the present invention. Those skilled in the art may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be subject to the scope defined by the appended claims.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410299469.XA CN104022657B (en) | 2014-06-27 | 2014-06-27 | control circuit and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410299469.XA CN104022657B (en) | 2014-06-27 | 2014-06-27 | control circuit and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104022657A true CN104022657A (en) | 2014-09-03 |
CN104022657B CN104022657B (en) | 2016-09-07 |
Family
ID=51439269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410299469.XA Active CN104022657B (en) | 2014-06-27 | 2014-06-27 | control circuit and control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104022657B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106712472A (en) * | 2017-02-28 | 2017-05-24 | 华为技术有限公司 | Control method for ACF (Active Clamp Flyback) circuit and ACF circuit |
CN109905031A (en) * | 2017-12-07 | 2019-06-18 | 硅谷实验室公司 | Isolated power transmitting device with integrated transformer and voltage controller |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000014136A (en) * | 1998-06-16 | 2000-01-14 | Nec Corp | Dc-to-dc converter |
CN1781238A (en) * | 2003-11-17 | 2006-05-31 | 三垦电气株式会社 | Direct current converting apparatus |
CN101039074A (en) * | 2006-03-16 | 2007-09-19 | 崇贸科技股份有限公司 | Soft-switching power converter with energy-saving circuit for light-load operation |
CN103825468A (en) * | 2013-02-18 | 2014-05-28 | 崇贸科技股份有限公司 | Control circuit of flyback power converter |
CN103887986A (en) * | 2013-04-15 | 2014-06-25 | 崇贸科技股份有限公司 | Control Circuit for Time Predictive Control of Flyback Power Converter |
-
2014
- 2014-06-27 CN CN201410299469.XA patent/CN104022657B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000014136A (en) * | 1998-06-16 | 2000-01-14 | Nec Corp | Dc-to-dc converter |
CN1781238A (en) * | 2003-11-17 | 2006-05-31 | 三垦电气株式会社 | Direct current converting apparatus |
CN101039074A (en) * | 2006-03-16 | 2007-09-19 | 崇贸科技股份有限公司 | Soft-switching power converter with energy-saving circuit for light-load operation |
CN103825468A (en) * | 2013-02-18 | 2014-05-28 | 崇贸科技股份有限公司 | Control circuit of flyback power converter |
CN103887986A (en) * | 2013-04-15 | 2014-06-25 | 崇贸科技股份有限公司 | Control Circuit for Time Predictive Control of Flyback Power Converter |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106712472A (en) * | 2017-02-28 | 2017-05-24 | 华为技术有限公司 | Control method for ACF (Active Clamp Flyback) circuit and ACF circuit |
CN109905031A (en) * | 2017-12-07 | 2019-06-18 | 硅谷实验室公司 | Isolated power transmitting device with integrated transformer and voltage controller |
CN109905031B (en) * | 2017-12-07 | 2021-12-03 | 天工方案公司 | Isolated power transmission device with integrated transformer and voltage controller |
Also Published As
Publication number | Publication date |
---|---|
CN104022657B (en) | 2016-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9276483B2 (en) | Control circuit for active-clamp flyback power converter with programmable switching period | |
TWI499191B (en) | Active clamp circuits | |
CN102097960B (en) | Controller of power converter and control method of quasi-resonant power converter | |
TWI509970B (en) | Control circuit for flyback power converter with predicted timing control | |
CN101552566B (en) | Synchronous Rectifiers for Resonant Switching Power Converters | |
CN102651615B (en) | Power converter and control method thereof | |
US7911813B2 (en) | Offline synchronous rectifying circuit with sense transistor for resonant switching power converter | |
US7426120B2 (en) | Switching control circuit having a valley voltage detector to achieve soft switching for a resonant power converter | |
CN101277068A (en) | Synchronous regulation power converter and synchronous regulation circuit | |
US8242754B2 (en) | Resonant power converter with half bridge and full bridge operations and method for control thereof | |
JP7378495B2 (en) | Power converters and respective control devices with active non-dissipative clamp circuits | |
US20140043863A1 (en) | Novel control method to reduce switching loss on mosfet | |
CN101789700B (en) | Control circuit and control method of resonant power converter | |
EP3509203B1 (en) | Converter with zvs | |
CN101232249A (en) | synchronous regulation circuit | |
TW202131615A (en) | Switched mode power supply with multi-mode operation and method therefor | |
TWI389442B (en) | Switching driving circuit for soft switching | |
JP2007097379A (en) | Dc-dc converter | |
JP2010004596A (en) | Switching power supply device | |
US20070109820A1 (en) | Power converter having phase lock circuit for quasi-resonant soft switching | |
CN104022657B (en) | control circuit and control method | |
TWI523394B (en) | Control circuits and control methods | |
JP2013078217A (en) | Soft start circuit | |
JP5783597B2 (en) | Switching power supply | |
TW202308282A (en) | Resonant half-bridge flyback power converter with skipping cycles and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |