TWI523394B - Control circuits and control methods - Google Patents

Control circuits and control methods Download PDF

Info

Publication number
TWI523394B
TWI523394B TW103120452A TW103120452A TWI523394B TW I523394 B TWI523394 B TW I523394B TW 103120452 A TW103120452 A TW 103120452A TW 103120452 A TW103120452 A TW 103120452A TW I523394 B TWI523394 B TW I523394B
Authority
TW
Taiwan
Prior art keywords
signal
circuit
switching signal
active
switching
Prior art date
Application number
TW103120452A
Other languages
Chinese (zh)
Other versions
TW201547173A (en
Inventor
楊大勇
劉晏銘
Original Assignee
崇貿科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崇貿科技股份有限公司 filed Critical 崇貿科技股份有限公司
Priority to TW103120452A priority Critical patent/TWI523394B/en
Publication of TW201547173A publication Critical patent/TW201547173A/en
Application granted granted Critical
Publication of TWI523394B publication Critical patent/TWI523394B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

控制電路以及控制方法 Control circuit and control method

本發明係關於一種主動箝制反馳式功率轉換器,特別是有關於一種用於主動箝制反馳式功率轉換器的控制電路。 The present invention relates to an active clamped flyback power converter, and more particularly to a control circuit for actively clamping a flyback power converter.

現有的主動箝制電路只可在特定的負載狀態下實現零電壓切換。此外,在輕負載期間的高循環電流導致較高的功率損失問題。相關的技術可在名稱為”Clamped Continuous Flyback Power Converter”且編號為5,570,278的美國專利、名稱為”Offset Resonance Zero Voltage Switching Flyback Converter”且編號為6,069,803的美國專利以及名稱為”Active-clamp Circuit for Quasi-resonant Flyback Power Converter Power Converter”且編號為20110305048的美國專利申請案中獲得。 Existing active clamping circuits can only achieve zero voltage switching under specific load conditions. In addition, high circulating currents during light loads result in higher power loss issues. A related art can be found in U.S. Patent No. 5,570,278, entitled "Offset Resonance Zero Voltage Switching Flyback Converter", and U.S. Patent No. 6,069,803, and entitled "Active-clamp Circuit for Quasi", entitled "Clamped Continuous Flyback Power Converter". -resonant Flyback Power Converter Power Converter" is available in U.S. Patent Application Serial No. 20110305048.

因此,本發明提出一種控制電路,其用於主動箝制反馳式功率轉換器。其可在重負載情況下實現零電壓切換且可在輕負載情況下達到高效率。本發明的目的在於提出一種方法以及裝置,其可確保主動箝制反馳式功率轉換器在重負載情況下實現零電壓切換且在輕負載情況下達到高效率。 Accordingly, the present invention provides a control circuit for actively clamping a flyback power converter. It achieves zero voltage switching under heavy load conditions and achieves high efficiency under light load conditions. It is an object of the present invention to provide a method and apparatus that ensures that an active clamped flyback power converter achieves zero voltage switching under heavy load conditions and achieves high efficiency under light load conditions.

本發明提供一種控制電路,用於主動箝制反馳式功率轉換器。此控制電路包括低壓側電晶體、高壓側電晶體、高壓 側驅動電路、控制器以及充泵電路。低壓側晶體管用來切換變壓器。高壓側電晶體與電容器串聯以形成主動箝制電路。此主動箝制電路與變壓器並聯。高壓側驅動電路用來驅動高壓側電晶體。控制器產生切換信號以及主動箝制信號。切換信號用來驅動低壓側電晶體。切換信號係依據回授信號而產生,以調節主動箝制反馳式功率轉換器的輸出。主動箝制信號耦接高壓側驅動電路以控制高壓側電晶體。主動箝制信號的脈波寬度係由第一電阻器所決定。主動箝制信號在切換信號禁能之後致能。切換信號可在主動箝制信號禁能後致能。在重負載狀態下,切換信號的最小頻率由第二電阻器所決定。控制電路包括遲滯偏壓產生器以及電容器。遲滯偏壓產生器產生遲滯偏壓以調整回授信號。比較器具有輕負載臨界值以控制遲滯偏壓。比較器依據回授信號的值以及輕負載臨界值來控制遲滯偏壓。切換信號將依據脈波信號而致能。此脈波信號係由控制器的一振盪電路來週期性地產生。充泵電路包括二極體以及充泵電容器。二極體耦接供應電壓。充泵電容器與二極體彼此串聯。充泵電容器耦接高壓側驅動電路。 The present invention provides a control circuit for actively clamping a flyback power converter. The control circuit includes a low-voltage side transistor, a high-voltage side transistor, and a high voltage Side drive circuit, controller and charge pump circuit. The low side transistor is used to switch the transformer. The high side transistor is connected in series with the capacitor to form an active clamp circuit. This active clamping circuit is connected in parallel with the transformer. The high side drive circuit is used to drive the high side transistor. The controller generates a switching signal as well as an active clamping signal. The switching signal is used to drive the low side transistor. The switching signal is generated based on the feedback signal to adjust the output of the active clamped flyback power converter. The active clamp signal is coupled to the high side drive circuit to control the high side transistor. The pulse width of the active clamp signal is determined by the first resistor. The active clamp signal is enabled after the switching signal is disabled. The switching signal can be enabled after the active clamp signal is disabled. In the heavy load state, the minimum frequency of the switching signal is determined by the second resistor. The control circuit includes a hysteresis bias generator and a capacitor. The hysteresis bias generator generates a hysteresis bias to adjust the feedback signal. The comparator has a light load threshold to control the hysteresis bias. The comparator controls the hysteresis bias based on the value of the feedback signal and the light load threshold. The switching signal will be enabled based on the pulse signal. This pulse signal is periodically generated by an oscillating circuit of the controller. The charge pump circuit includes a diode and a charge pump capacitor. The diode is coupled to the supply voltage. The charge pump capacitor and the diode are connected in series with each other. The charge pump capacitor is coupled to the high side drive circuit.

本發明也提供一種控制方法,用以控制主動箝制反馳式功率轉換器。此控制方法包括以下步驟:依據回授信號來產生切換信號,以切換低壓側電晶體並調節主動箝制反馳式功率轉換器的輸出;以及在切換信號禁能後,產生主動箝制信號。低壓側電晶體切換變壓器。切換信號驅動低壓側電晶體。主動箝制信號用來驅動高壓側電晶體。主動箝制信號的脈波寬度由第一電阻器所決定。高壓側電晶體與電容器串聯以形成主動箝制電路。此主動箝制電路與變壓器並聯。主動箝制信號在切換信號禁能之後 致能。切換信號在主動箝制信號禁能之後致能。在重負載狀態下,切換信號的最小頻率由第二電阻器所決定。此控制方法更包括步驟:產生遲滯偏壓以調整回授信號。遲滯偏壓係依據回授信號的值以及輕負載臨界值而產生。此控制方法還包括步驟:週期性地產生脈波信號,以致能切換信號。此脈波信號決定了切換信號的最大導通時間。 The present invention also provides a control method for controlling an active clamped flyback power converter. The control method includes the steps of: generating a switching signal according to the feedback signal to switch the low-voltage side transistor and adjusting an output of the active clamp-down power converter; and generating an active clamping signal after the switching signal is disabled. Low-voltage side transistor switching transformer. The switching signal drives the low side transistor. The active clamp signal is used to drive the high side transistor. The pulse width of the active clamp signal is determined by the first resistor. The high side transistor is connected in series with the capacitor to form an active clamp circuit. This active clamping circuit is connected in parallel with the transformer. Active clamping signal after the switching signal is disabled Enable. The switching signal is enabled after the active clamp signal is disabled. In the heavy load state, the minimum frequency of the switching signal is determined by the second resistor. The control method further includes the step of generating a hysteresis bias to adjust the feedback signal. The hysteresis bias is generated based on the value of the feedback signal and the light load threshold. The control method further includes the step of periodically generating a pulse wave signal to enable switching of the signal. This pulse signal determines the maximum on-time of the switching signal.

第1圖: Figure 1:

10‧‧‧變壓器 10‧‧‧Transformers

11‧‧‧漏電感 11‧‧‧Leakage inductance

15‧‧‧電容器 15‧‧‧ capacitor

20‧‧‧電晶體(低壓側電晶體) 20‧‧‧Optoelectronics (low voltage side transistor)

25‧‧‧本體二極體 25‧‧‧ Body diode

30‧‧‧電晶體(高壓側電晶體) 30‧‧‧Optotrans (high-voltage side transistor)

35‧‧‧本體二極體 35‧‧‧ Body diode

40‧‧‧電容器 40‧‧‧ capacitor

43‧‧‧整流器 43‧‧‧Rectifier

45‧‧‧電容器 45‧‧‧ capacitor

50‧‧‧高壓側驅動電路 50‧‧‧High-voltage side drive circuit

65‧‧‧電容器 65‧‧‧ capacitor

60‧‧‧整流器 60‧‧‧Rectifier

70‧‧‧二極體 70‧‧‧ diode

75‧‧‧電容器 75‧‧‧ capacitor

81‧‧‧第一電阻器 81‧‧‧First resistor

82‧‧‧第二電阻器 82‧‧‧second resistor

90‧‧‧光耦合器 90‧‧‧Optocoupler

93‧‧‧電阻器 93‧‧‧Resistors

95‧‧‧電壓調整器 95‧‧‧Voltage regulator

100‧‧‧控制器 100‧‧‧ Controller

NA‧‧‧輔助線圈 N A ‧‧‧Auxiliary coil

NP‧‧‧一次側線圈 N P ‧‧‧ primary side coil

NS‧‧‧二次側線圈 N S ‧‧‧ secondary coil

S1‧‧‧切換信號 S 1 ‧‧‧Switching signal

S2‧‧‧主動箝制信號 S 2 ‧‧‧Active clamp signal

VCC‧‧‧供應電壓 V CC ‧‧‧ supply voltage

VFB‧‧‧回授信號 V FB ‧‧‧Response signal

VIN‧‧‧輸入電壓 V IN ‧‧‧ input voltage

VO‧‧‧輸出電壓 V O ‧‧‧Output voltage

第2A-2D圖: Figure 2A-2D:

10‧‧‧變壓器 10‧‧‧Transformers

11‧‧‧漏電感 11‧‧‧Leakage inductance

15‧‧‧電容器 15‧‧‧ capacitor

20‧‧‧電晶體(低壓側電晶體) 20‧‧‧Optoelectronics (low voltage side transistor)

25‧‧‧本體二極體 25‧‧‧ Body diode

28‧‧‧寄生電容器 28‧‧‧Parasitic capacitors

30‧‧‧電晶體(高壓側電晶體) 30‧‧‧Optotrans (high-voltage side transistor)

35‧‧‧本體二極體 35‧‧‧ Body diode

38‧‧‧寄生電容器 38‧‧‧Parasitic capacitors

40‧‧‧電容器 40‧‧‧ capacitor

43‧‧‧整流器 43‧‧‧Rectifier

45‧‧‧電容器 45‧‧‧ capacitor

ICR‧‧‧循環電流 I CR ‧‧‧Circulating current

IDS、IP、IS‧‧‧電流 I DS , I P , I S ‧‧‧ current

NP‧‧‧一次側線圈 N P ‧‧‧ primary side coil

NS‧‧‧二次側線圈 N S ‧‧‧ secondary coil

S1‧‧‧切換信號 S 1 ‧‧‧Switching signal

S2‧‧‧主動箝制信號 S 2 ‧‧‧Active clamp signal

T1…T4‧‧‧狀態 T 1 ... T 4 ‧‧‧ state

VIN‧‧‧輸入電壓 V IN ‧‧‧ input voltage

VO‧‧‧輸出電壓 V O ‧‧‧Output voltage

第3圖: Figure 3:

ICR‧‧‧循環電流 I CR ‧‧‧Circulating current

S1‧‧‧切換信號 S 1 ‧‧‧Switching signal

S2‧‧‧主動箝制信號 S 2 ‧‧‧Active clamp signal

TCH‧‧‧狀態T2的期間 Period of T CH ‧‧‧State T 2

TDS‧‧‧狀態T3的最大期間 Maximum period of T DS ‧‧‧state T 3

TS1‧‧‧切換信號S1的脈波寬度 Pulse width of T S1 ‧‧‧ switching signal S 1

TS2‧‧‧主動箝制信號S2的脈波寬度 Pulse width of T S2 ‧‧‧ active clamp signal S 2

第4圖: Figure 4:

S1‧‧‧切換信號 S 1 ‧‧‧Switching signal

S2‧‧‧主動箝制信號 S 2 ‧‧‧Active clamp signal

TBT‧‧‧間歇期間 T BT ‧‧‧ Intermittent period

第5圖: Figure 5:

100‧‧‧控制器 100‧‧‧ Controller

110‧‧‧比較器 110‧‧‧ comparator

111‧‧‧正反器 111‧‧‧Factor

112‧‧‧及閘 112‧‧‧ and gate

113‧‧‧反相器 113‧‧‧Inverter

115‧‧‧及閘 115‧‧‧ and gate

117‧‧‧電流源 117‧‧‧current source

118‧‧‧開關 118‧‧‧ switch

119‧‧‧比較器 119‧‧‧ comparator

120‧‧‧位準移位電晶體 120‧‧‧bit shifting transistor

125、126‧‧‧電阻器 125, 126‧‧‧ resistors

130‧‧‧振盪電路 130‧‧‧Oscillation circuit

200‧‧‧信號產生電路 200‧‧‧Signal generation circuit

CLR‧‧‧清除信號 CLR‧‧‧clear signal

PLS‧‧‧脈波信號 PLS‧‧‧ pulse signal

RMP‧‧‧斜坡信號 RMP‧‧‧ ramp signal

S1‧‧‧切換信號 S 1 ‧‧‧Switching signal

S2‧‧‧主動箝制信號 S 2 ‧‧‧Active clamp signal

VB‧‧‧信號 V B ‧‧‧ signal

VCC‧‧‧供應電壓 V CC ‧‧‧ supply voltage

VFB‧‧‧回授信號 V FB ‧‧‧Response signal

VTL‧‧‧輕負載臨界值 V TL ‧‧‧ light load threshold

第6圖: Figure 6:

127‧‧‧電容器 127‧‧‧ capacitor

128‧‧‧開關 128‧‧‧ switch

130‧‧‧振盪電路 130‧‧‧Oscillation circuit

131‧‧‧電流源 131‧‧‧current source

132‧‧‧開關 132‧‧‧ switch

135‧‧‧電流源 135‧‧‧current source

136‧‧‧開關 136‧‧‧ switch

141、142、145‧‧‧比較器 141, 142, 145‧‧‧ comparator

146、151、152‧‧‧反及閘 146, 151, 152‧‧‧ anti-gate

156‧‧‧反相器 156‧‧‧Inverter

157‧‧‧反相器 157‧‧‧Inverter

165‧‧‧或閘 165‧‧‧ or gate

300‧‧‧脈波產生器 300‧‧‧ Pulse Generator

CKA、CKB‧‧‧頻率信號 CKA, CKB‧‧‧ frequency signals

CLR‧‧‧清除信號 CLR‧‧‧clear signal

PLS‧‧‧脈波信號 PLS‧‧‧ pulse signal

RMP‧‧‧斜坡信號 RMP‧‧‧ ramp signal

S2‧‧‧主動箝制信號 S 2 ‧‧‧Active clamp signal

SIN1‧‧‧信號 S IN1 ‧‧‧ signal

SOUT1‧‧‧輸出脈波信號 S OUT1 ‧‧‧ output pulse signal

VH、VL‧‧‧跳變點電壓 V H , V L ‧‧‧ jumping point voltage

VM‧‧‧臨界值電壓 V M ‧‧‧threshold voltage

第7圖: Figure 7:

200‧‧‧信號產生電路 200‧‧‧Signal generation circuit

270‧‧‧比較器 270‧‧‧ Comparator

271‧‧‧反相器 271‧‧‧Inverter

280‧‧‧電流源 280‧‧‧current source

281‧‧‧開關 281‧‧‧ switch

285‧‧‧電容器 285‧‧‧ capacitor

290‧‧‧正反器 290‧‧‧Factor

350‧‧‧延遲電路 350‧‧‧ Delay Circuit

S1‧‧‧切換信號 S 1 ‧‧‧Switching signal

S2‧‧‧主動箝制信號 S 2 ‧‧‧Active clamp signal

SIN2‧‧‧信號 S IN2 ‧‧‧ signal

SOUT2‧‧‧輸出脈波信號 S OUT2 ‧‧‧ Output pulse signal

VW‧‧‧臨界值 V W ‧‧‧ threshold

第8A-8B圖 Figure 8A-8B

PLS‧‧‧脈波信號 PLS‧‧‧ pulse signal

RMP‧‧‧斜坡信號 RMP‧‧‧ ramp signal

S1‧‧‧切換信號 S 1 ‧‧‧Switching signal

S2‧‧‧主動箝制信號 S 2 ‧‧‧Active clamp signal

VH、VL‧‧‧跳變點電壓 V H , V L ‧‧‧ jumping point voltage

VM‧‧‧臨界值電壓 V M ‧‧‧threshold voltage

第9A-9B圖: Figure 9A-9B:

300‧‧‧脈波產生器 300‧‧‧ Pulse Generator

310‧‧‧電流源 310‧‧‧current source

321‧‧‧反相器 321‧‧‧Inverter

322‧‧‧電晶體 322‧‧‧Optoelectronics

325‧‧‧電容器 325‧‧‧ capacitor

327‧‧‧反相器 327‧‧‧Inverter

329‧‧‧及閘 329‧‧‧ and gate

SIN1‧‧‧信號 S IN1 ‧‧‧ signal

SOUT1‧‧‧輸出脈波信號 S OUT1 ‧‧‧ output pulse signal

TP‧‧‧輸出脈波信號SOUT1的脈波寬度 Pulse width of T P ‧‧‧ output pulse signal S OUT1

第10A-10B圖: Figure 10A-10B:

350‧‧‧延遲電路 350‧‧‧ Delay Circuit

361‧‧‧反相器 361‧‧‧Inverter

362‧‧‧電晶體 362‧‧‧Optoelectronics

360‧‧‧電流源 360‧‧‧current source

365‧‧‧電容器 365‧‧‧ capacitor

369‧‧‧及閘 369‧‧‧ and gate

SIN2‧‧‧信號 S IN2 ‧‧‧ signal

SOUT2‧‧‧輸出脈波信號 S OUT2 ‧‧‧ Output pulse signal

TB‧‧‧延遲電路350產生的延遲時間 T B ‧‧‧ delay time of the delay circuit 350 generates a

第1圖表示根據本發明一實施例的反馳式功率轉換器。 Figure 1 shows a flyback power converter in accordance with an embodiment of the present invention.

第2A-2D圖分別表示根據本發明一實施例,功率轉換器的電流的四種狀態。 2A-2D are diagrams showing four states of current of a power converter, respectively, in accordance with an embodiment of the present invention.

第3圖表示切換信號、主動箝制信號以及循環電流的波形。 Figure 3 shows the waveforms of the switching signal, the active clamp signal, and the circulating current.

第4圖表示切換信號以及主動箝制信號的間歇波形。 Figure 4 shows the intermittent waveform of the switching signal and the active clamping signal.

第5圖表示根據本發明一實施例在功率轉換器中的控制器。 Figure 5 shows a controller in a power converter in accordance with an embodiment of the present invention.

第6圖表示根據本發明一實施例在控制器中的振盪電路。 Figure 6 shows an oscillating circuit in a controller in accordance with an embodiment of the present invention.

第7圖表示根據本發明一實施例在控制器中的信號產生電路。 Figure 7 shows a signal generating circuit in a controller in accordance with an embodiment of the present invention.

第8A圖表示斜坡信號以及脈波信號的波形。 Fig. 8A shows the waveforms of the ramp signal and the pulse wave signal.

第8B圖表示斜坡信號、脈波信號、切換信號以及主動箝制信號的波形。 Fig. 8B shows the waveforms of the ramp signal, the pulse wave signal, the switching signal, and the active clamp signal.

第9A圖表示根據本發明一實施例在振盪電路中的脈波產生器的電路架構。 Fig. 9A is a diagram showing the circuit configuration of a pulse wave generator in an oscillation circuit according to an embodiment of the present invention.

第9B圖表示在第9A圖中脈波產生器的輸入信號以及輸出信 號的波形。 Figure 9B shows the input signal and output signal of the pulse generator in Figure 9A. The waveform of the number.

第10A圖表示根據本發明一實施例在信號產生電路中的延遲電路的電路架構。 Fig. 10A is a diagram showing the circuit configuration of a delay circuit in a signal generating circuit according to an embodiment of the present invention.

第10B圖表示在第10A圖中延遲電路的輸入信號以及輸出信號的波形。 Fig. 10B is a diagram showing the waveforms of the input signal and the output signal of the delay circuit in Fig. 10A.

為使本發明之上述目的、特徵和優點能更明顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說明如下。 The above described objects, features and advantages of the present invention will become more apparent from the description of the appended claims.

第1圖係表示根據本發明一實施例的反馳式功率轉換器。變壓器10接收功率轉換器的輸入電壓VIN。電晶體(也稱為”低壓側電晶體”)20耦接來切換變壓器10的一次側線圈NP。控制器100在其端點S1產生切換信號S1,而切換信號S1係用來驅動電晶體20以調整功率轉換器的輸出電壓VO。切換信號S1係依據在控制器100的端點FB的回授信號VFB而產生的。回授信號VFB與功率轉換器的輸出電壓VO相關聯。變壓器10的二次側線圈NS將透過整流器43以及電容器45來產生輸出電壓VO。電阻器93、電壓調整器95(基納二極體)以及光耦合器90形成一個回授電路,以依據輸出電壓VO來產生回授信號VFB。變壓器20包括輔助線圈NA,其透過整流器60來產生跨越電容器65的供應電壓VCC。供應電壓VCC係用來供電給控制器100。電晶體(也稱為”高壓側電晶體”)30與電容器15串聯已形成一主動箝制電路。此主動箝制電路與變壓器10的一次側線圈NP彼此並聯。當電晶體20截止時,變壓器10的漏電感11的能量將透過電晶體30以及其本體二極體35而存入至電容器15。高 壓側驅動電路50係用來驅動電晶體30。由二極體70以及電容器75所組成的充泵電路接收供應電壓VCC,並為高壓側驅動電路50供電。電容器75與二極體70彼此串聯。在第1圖的實施例中,電晶體20、控制器100、高壓側驅動電路50、主動箝制電路以及充泵電路形成一控制電路。 Figure 1 is a diagram showing a flyback power converter in accordance with an embodiment of the present invention. Transformer 10 receives the input voltage V IN of the power converter. A transistor (also referred to as a "low voltage side transistor") 20 is coupled to switch the primary side coil N P of the transformer 10. The controller 100 generates a switching signal S 1 at its end point S1, and the switching signal S 1 is used to drive the transistor 20 to adjust the output voltage V O of the power converter. The switching signal S 1 is generated in accordance with the feedback signal V FB at the terminal FB of the controller 100. The feedback signal V FB is associated with the output voltage V O of the power converter. The secondary side coil N S of the transformer 10 will pass through the rectifier 43 and the capacitor 45 to generate an output voltage V O . Resistor 93, voltage regulator 95 (kina diode) and optocoupler 90 form a feedback circuit for generating feedback signal V FB in accordance with output voltage V O . Transformer 20 includes an auxiliary winding N A that passes through rectifier 60 to produce a supply voltage V CC across capacitor 65. The supply voltage V CC is used to supply power to the controller 100. A transistor (also referred to as "high voltage side transistor") 30 in series with capacitor 15 has formed an active clamping circuit. This active clamp circuit and the primary side coil N P of the transformer 10 are connected in parallel with each other. When the transistor 20 is turned off, the energy of the leakage inductance 11 of the transformer 10 is stored in the capacitor 15 through the transistor 30 and its body diode 35. The high side drive circuit 50 is used to drive the transistor 30. The charge pump circuit composed of the diode 70 and the capacitor 75 receives the supply voltage V CC and supplies power to the high side drive circuit 50. The capacitor 75 and the diode 70 are connected in series to each other. In the embodiment of Fig. 1, the transistor 20, the controller 100, the high side drive circuit 50, the active clamp circuit, and the charge pump circuit form a control circuit.

控制器100在其端點S2上產生主動箝制信號S2,以控制高壓側驅動電路50。主動箝制信號S2的脈波寬度係由第一電阻器81的電阻值所決定。第一電阻器81耦接控制器100的端點RT。主動箝制信號S2只在切換信號S1禁能時致能。在重負載狀態的期間,切換信號S1將在主動箝制信號S2禁能之後致能。第二電阻器82耦接控制器100的端點RM,以在重負載狀態下決定切換信號S1的最小頻率(最大導通時間)。 The controller 100 generates an active clamp signal S 2 at its end point S2 to control the high side drive circuit 50. The pulse width of the active clamp signal S 2 is determined by the resistance value of the first resistor 81. The first resistor 81 is coupled to the terminal RT of the controller 100. The active clamp signal S 2 is only enabled when the switching signal S 1 is disabled. During the heavy load condition, the switching signal S 1 will be enabled after the active clamp signal S 2 is disabled. The second resistor 82 is coupled to the terminal RM of the controller 100 to determine the minimum frequency (maximum on-time) of the switching signal S 1 under heavy load conditions.

第2A-2D圖係分別表示根據本發明實施例,功率轉換器的電流的四種狀態。參閱第2A圖,在狀態T1下,切換信號S1導通(ON)電晶體20。電流IP流經變壓器10且儲存能量至變壓器10。此能量也將儲存至變壓器10的漏電感11。 2A-2D are diagrams showing four states of current of a power converter, respectively, in accordance with an embodiment of the present invention. Refer to FIG. 2A, in the state T 1, switching signals S 1 is turned on (ON) transistor 20. Current I P flows through transformer 10 and stores energy to transformer 10. This energy will also be stored to the leakage inductance 11 of the transformer 10.

參閱第2B圖,在狀態T2下,切換信號S1截止(OFF)電晶體20。儲存在變壓器10的能量將藉由電流IS傳送至功率轉換器的輸出,以產生輸出電壓VO。此外,儲存在變壓器10以及漏電感11的能量將透過電晶體30的本體二極體35傳送至電容器15。循環電流ICR則表示流入電容器15的能量。在這之後。主動箝制信號S2將導通電晶體30。 See Figure 2B, in the state T 2, the switching signals S 1 is turned off (OFF) transistor 20. The energy stored in the output transformer 10 by current I S will be transmitted to the power converter to generate an output voltage V O. In addition, the energy stored in the transformer 10 and the leakage inductance 11 is transmitted to the capacitor 15 through the body diode 35 of the transistor 30. The circulating current I CR represents the energy flowing into the capacitor 15. after this. The active clamping signal S 2 will conduct the crystal 30.

參閱第2C圖,在狀態T3下,儲存在電容器15中的能量將透過電晶體30而被變壓器10以及漏電感11再利用。電容器15藉 由循環電流ICR並透過漏電感11來放電。漏電感11以及電容器15則形成了諧振槽且決定其諧振頻率。 Refer first to FIG 2C, in the state T 3, the energy stored in the capacitor 15 through transistor 30 will be 10 and the leakage inductance of the transformer 11 for reuse. The capacitor 15 is discharged by circulating the current I CR and passing through the leakage inductance 11. The leakage inductance 11 and the capacitor 15 form a resonant tank and determine its resonant frequency.

參閱第2D圖,在狀態T4下,主動箝制信號S2截止電晶體30。儲存在漏電感11中的能量將藉由電流IDS傳送至輸入電壓VIN。在此同時,電晶體20的寄生電容器28將放電,且電晶體20的本體二極體25可被導通以在下一個切換週期實現電晶體20的零電壓切換操作(狀態T1)。 See FIG. 2D, at state T 4, the clamping signal S 2 active transistor 30 is turned off. The energy stored in the leakage inductance 11 will be transferred to the input voltage V IN by the current I DS . In the meantime, the parasitic capacitor 28 of the transistor 20 will be discharged and the transistor 20 of the body diode 25 may be turned on to the next switching cycle to achieve zero-voltage transistor 20 of the switching operation (state T 1).

第3圖係表示切換信號S1、主動箝制信號S2以及循環電流ICR的波形。期間TCH係表示狀態T2的期間。期間TDS係表示狀態T3的最大期間。TS1係表示切換信號S1的脈波寬度。TS2係表示主動箝制信號S2的脈波寬度。為了起始狀態T3(期間TDS),主動箝制信號S2必須在期間TCH結束之前致能。為了完成零電壓切換,主動箝制信號S2必須在期間TDS結束之前禁能。期間TCH以及期間TDS都由諧振槽的諧振頻率所決定。 Fig. 3 shows waveforms of the switching signal S 1 , the active clamp signal S 2 , and the circulating current I CR . The period T CH indicates the period of the state T 2 . The period T DS indicates the maximum period of the state T 3 . T S1 represents the pulse width of the switching signal S 1 . T S2 represents the pulse width of the active clamp signal S 2 . For the initial state T 3 (period T DS ), the active clamp signal S 2 must be enabled before the end of the period T CH . In order to complete the zero voltage switching, the active clamp signal S 2 must be disabled before the end of the period T DS . The period T CH and the period T DS are both determined by the resonant frequency of the resonant tank.

第4圖係表示切換信號S1以及主動箝制信號S2的間歇波形(burst waveform)。期間TBT為間歇期間(burst period)。 Fig. 4 shows a burst waveform of the switching signal S 1 and the active clamp signal S 2 . The period T BT is a burst period.

第5圖係表示根據本發明一實施例,在功率轉換器中的控制器100。控制器100包括振盪電路130,其產生脈波信號PLS、斜坡信號RMP以及清除信號CLR。脈波信號PLS透過反相器113、正反器111以及及閘115來致能切換信號S1。主動箝制信號S2以及第二電阻器82(顯示於第1圖)耦合至振盪電路130以用來產生切換信號S1。因此,一旦主動箝制信號S2禁能,切換信號S1則致能。第二電阻器82決定了切換信號S1的最小切換頻率(最低切換頻率)。第一電阻器81(顯示於第1圖)以及切換信號S1耦接至信號產生電 路200以產生主動箝制信號S2。一旦切換信號S1禁能,主動箝制信號S2則致能。位準移位電晶體120以及電阻器125與126依據回授信號VFB而產生信號VB。斜坡信號RMP與信號VB在比較器110中進行比較以透過及閘112來產生用以禁能切換信號S1的一信號,藉此實現脈寬調製操作。振盪電路130所產生的清除信號CLR係用來重置正反器111,以禁能切換信號S1並限制切換信號S1的最大導通時間。 Figure 5 is a diagram showing a controller 100 in a power converter in accordance with an embodiment of the present invention. The controller 100 includes an oscillating circuit 130 that generates a pulse signal PLS, a ramp signal RMP, and a clear signal CLR. The pulse signal PLS passes through the inverter 113, the flip-flop 111, and the AND gate 115 to enable the switching signal S 1 . The active clamp signal S 2 and the second resistor 82 (shown in Figure 1) are coupled to the oscillating circuit 130 for generating the switching signal S 1 . Therefore, once the active clamp signal S 2 is disabled, the switching signal S 1 is enabled. The second resistor 82 determines the minimum switching frequency of the switching signal S 1 (lowest switching frequency). A first resistor 81 (shown in FIG. 1) and a switching signal S 1 are coupled to the signal generating circuit 200 to generate an active clamp signal S 2 . Once the switching signal S 1 is disabled, the active clamping signal S 2 is enabled. The level shifting transistor 120 and the resistors 125 and 126 generate a signal V B in response to the feedback signal V FB . The ramp signal RMP is compared with the signal V B in the comparator 110 to pass through the AND gate 112 to generate a signal for disabling the switching signal S 1 , thereby implementing a pulse width modulation operation. The clear signal CLR generated by the oscillating circuit 130 is used to reset the flip flop 111 to disable the switching signal S 1 and limit the maximum on time of the switching signal S 1 .

比較器119用來比較信號VB與輕負載臨界值VTL。當信號VB低於輕負載臨界值VTL時,磁滯偏壓將由信號VB的電流位準開始減少。包括電阻器125與126以及電流源117的磁滯偏壓產生器產生上述磁滯電壓,其係由電流源117的大小以及電阻器125與126的等效電阻所決定。由比較器119所控制的開關118導通/截止電流源117。當信號VB高於輕負載臨界值VTL,磁滯偏壓將加入至信號VB。當信號VB低於輕負載臨界值VTL,磁滯偏壓由信號VB的電流位準開始減少。因此,透過此反饋回路,磁滯偏壓將導致間歇切換,以減少切換信號S1的切換頻率並改善輕負載狀態(信號VB低於輕負載臨界值VTL)下的輕負載效能。 Comparator 119 is used to compare signal V B with light load threshold V TL . When the signal V B is below the light load threshold V TL , the hysteresis bias will begin to decrease from the current level of the signal V B . The hysteresis bias generator including resistors 125 and 126 and current source 117 produces the hysteresis voltage described above, which is determined by the magnitude of current source 117 and the equivalent resistance of resistors 125 and 126. The switch 118 controlled by the comparator 119 turns on/off the current source 117. When the signal V B is above the light load threshold V TL , the hysteresis bias will be added to the signal V B . When the signal V B is below the light load threshold V TL , the hysteresis bias begins to decrease from the current level of the signal V B . Therefore, through this feedback loop, the hysteresis bias will cause intermittent switching to reduce the switching frequency of the switching signal S 1 and improve the light load performance under light load conditions (signal V B is lower than the light load threshold V TL ).

第6圖係表示根據本發明一實施例,在控制器100中的振盪電路130。電流源131與135係分別透過開關132與136來對電容器127充電以及放電。斜坡信號RMP跨於電容器127而產生。斜坡信號RMP更耦合至比較器141、142、與145。比較器141具有跳變點電壓(trip-point voltage)VH。比較器142具有跳變點電壓VL。比較器145具有臨界值電壓VM。跳變點電壓VH的位準大於臨界值電壓VM的位準。臨界值電壓VM的位準則大於跳變點電壓VL的位準。反 及閘151與152形成栓鎖電路,其接收比較器141與142的輸出信號。此栓鎖電路以及反相器156產生了頻率信號CKA與CKB。頻率信號CKA係用來控制開關136以使電容器127放電。頻率信號CKB係用來控制開關132以使電容器127充電。比較器145的輸出以及頻率信號CKA透過反及閘146來產生清除信號CLR。主動箝制信號S2的下降緣透過反相器157以及脈波產生器300而在或閘165的一輸入端產生單擊信號。或閘165的另一輸入端接收頻率信號CKA。單擊信號以及頻率信號CKA兩者透過或閘165來產生脈波信號PLS。因此,每當主動箝制信號S2禁能時,脈波信號PLS將被產生。此外,當達到斜坡信號RMP的最大振盪週期時,脈波信號PLS將依據頻率信號CKA而產生。由於清除信號CLR依據頻率信號CKA(頻率信號CKA與脈波信號PLS相關聯)所產生的,脈波信號PLS將因此限制切換信號S1的最大導通時間。連接端點RM的第二電阻器82(顯示於第1圖)的電阻值控制電流源131的大小。因此,第二電阻器82係用來決定斜坡信號RMP的最大振盪週期。 Figure 6 shows an oscillating circuit 130 in the controller 100 in accordance with an embodiment of the present invention. Current sources 131 and 135 pass through switches 132 and 136, respectively, to charge and discharge capacitor 127. The ramp signal RMP is generated across the capacitor 127. The ramp signal RMP is further coupled to comparators 141, 142, and 145. The comparator 141 has a trip-point voltage V H . The comparator 142 has a trip point voltage V L . The comparator 145 has a threshold voltage V M . The level of the trip point voltage V H is greater than the level of the threshold voltage V M . The bit criterion of the threshold voltage V M is greater than the level of the trip point voltage V L . The anti-gates 151 and 152 form a latch circuit that receives the output signals of the comparators 141 and 142. This latch circuit and inverter 156 generate frequency signals CKA and CKB. The frequency signal CKA is used to control the switch 136 to discharge the capacitor 127. The frequency signal CKB is used to control the switch 132 to charge the capacitor 127. The output of comparator 145 and frequency signal CKA are passed through inverse gate 146 to produce a clear signal CLR. Active clamping signal S 2 of the falling edge 300 generates a click signal input terminal of OR gate 165 through inverter 157 and pulse generator. The other input of the OR gate 165 receives the frequency signal CKA. Both the click signal and the frequency signal CKA pass through the OR gate 165 to generate the pulse signal PLS. Therefore, the pulse signal PLS will be generated each time the active clamp signal S 2 is disabled. Furthermore, when the maximum oscillation period of the ramp signal RMP is reached, the pulse signal PLS will be generated in accordance with the frequency signal CKA. Since the clear signal CLR signal CKA accordance with the frequency (CKA and the clock signal associated with the pulse wave signal PLS) generated, the pulse signal PLS thus limiting the switching signal S 1 of the maximum on time. The resistance value of the second resistor 82 (shown in FIG. 1) connected to the terminal RM controls the magnitude of the current source 131. Therefore, the second resistor 82 is used to determine the maximum oscillation period of the ramp signal RMP.

第7圖係表示根據本發明一實施例,在控制器100中的信號產生電路200。切換信號S1係透過反相器271、延遲電路350以及正反器290來產生主動箝制信號S2。因此,當切換信號S1禁能時,主動箝制信號S2將在延遲電路350所決定的一延遲時間之後致能。一旦切換信號S1禁能,開關281將被截止。電流源280將開始對電容器285充電。當跨越電容器285的電壓高於臨界值VW時,比較器270則透過正反器290來禁能主動箝制信號S2。耦接於端點RT的第一電阻器81(顯示於第1圖)的電阻值控制了電流源280的大小。因此,第一電阻器81、電容器285以及臨界值VW決定了主動箝 制信號S2的脈波寬度。第一電阻器81是實施來決定主動箝制信號S2的脈波寬度TS2,以實現零電壓切換。脈波寬度TS2必須符合以下條件:TS2>TCH以及TS2<”TCH+TDS”(顯示於第3圖)。 Figure 7 is a diagram showing a signal generating circuit 200 in the controller 100 in accordance with an embodiment of the present invention. The switching signal S 1 is generated by the inverter 271, the delay circuit 350, and the flip-flop 290 to generate the active clamp signal S 2 . Thus, when the switching signals S 1 disabled, active clamping signal S 2 will be enabled after a delay time determined by delay circuit 350. Once the switching signal S 1 is disabled, the switch 281 will be turned off. Current source 280 will begin to charge capacitor 285. When the voltage across the capacitor 285 is higher than the threshold value V W, the comparator 270 through the flip-flop 290 to disable the active clamping signal S 2. The resistance value of the first resistor 81 (shown in FIG. 1) coupled to the terminal RT controls the magnitude of the current source 280. Therefore, the first resistor 81, the capacitor 285, and the threshold V W determine the pulse width of the active clamp signal S 2 . The first resistor 81 is implemented to determine the pulse width T S2 of the active clamp signal S 2 to achieve zero voltage switching. Pulse width T S2 must meet the following conditions: T S2> T CH and T S2 <"T CH + T DS" ( shown in FIG. 3).

第8A圖係表示斜坡信號RMP以及脈波信號PLS的波形。在第8A圖中的脈波信號PLS係依據頻率信號CKA所產生的,如第6圖所示。 Fig. 8A shows waveforms of the ramp signal RMP and the pulse wave signal PLS. The pulse wave signal PLS in Fig. 8A is generated based on the frequency signal CKA as shown in Fig. 6.

第8B圖係表示斜坡信號RMP、脈波信號PLS、切換信號S1以及主動箝制信號S2的波形。主動箝制信號S2將在切換信號S1禁能之後產生。切換信號S1將在主動箝制信號S2禁能之後產生。即是,切換信號S1以及主動箝制信號S2係以交錯的方式產生而不會同時致能。脈波信號PLS則是週期性地產生,以在間歇切換模式期間切換信號S1不被致能的情況下來致能切換信號S1。第8B圖中的脈波信號PLS係依據產生在脈波產生器300的輸出上的單擊信號而產生的。此外,切換信號S1的最大導通時間由斜坡信號RMP的最大週期所限制。 Figure 8B are diagrams of the ramp signal RMP, the pulse signal PLS, and a waveform switching signals S 1 to active clamping signal S 2. The active clamp signal S 2 will be generated after the switching signal S 1 is disabled. The switching signal S 1 will be generated after the active clamping signal S 2 is disabled. That is, the switching signal S 1 and the active clamping signal S 2 are generated in an interleaved manner without being simultaneously enabled. The pulse signal PLS is periodically generated to enable the switching signal S 1 in the case where the switching signal S 1 is not enabled during the intermittent switching mode. The pulse wave signal PLS in Fig. 8B is generated in accordance with a click signal generated on the output of the pulse wave generator 300. Furthermore, the maximum on-time of the switching signal S 1 is limited by the maximum period of the ramp signal RMP.

第9A圖係表示根據本發明一實施例,在振盪電路130內的脈波產生器300。參閱第9A圖,電流源310係耦接來對電容器325充電。電晶體322則是用來對電容器325放電。在脈波產生器300的端點IN1上的信號SIN1透過反相器321來控制電晶體322。信號SIN1更耦合至及閘329的輸入端。及閘329的另一輸入端透過反相器327耦接電容器325。在脈波產生器300的端點OUT1上的輸出脈波信號SOUT1的脈波寬度係由電流源310的電流以及電容器325的電容值所決定。在此實施例中,第9A圖的脈波產生器300所接收的信號SIN1係由反相器157(顯示於第6圖)的輸出端所提供,且輸出脈波信 號SOUT1則提供至或閘165(顯示於第6圖)的輸入端以作為單擊信號。 Figure 9A shows a pulse generator 300 within an oscillating circuit 130, in accordance with an embodiment of the present invention. Referring to Figure 9A, current source 310 is coupled to charge capacitor 325. The transistor 322 is used to discharge the capacitor 325. The signal S IN1 at the end point IN1 of the pulse generator 300 is passed through the inverter 321 to control the transistor 322. Signal S IN1 is further coupled to the input of AND gate 329. The other input of the AND gate 329 is coupled to the capacitor 325 via an inverter 327. The pulse width of the output pulse signal S OUT1 at the end point OUT1 of the pulse generator 300 is determined by the current of the current source 310 and the capacitance of the capacitor 325. In this embodiment, the signal S IN1 received by the pulse generator 300 of FIG. 9A is provided by the output of the inverter 157 (shown in FIG. 6), and the output pulse signal S OUT1 is supplied to Or the input of gate 165 (shown in Figure 6) as a click signal.

第9B圖係表示脈波產生器300的輸入信號SIN1以及輸出脈波信號SOUT1的波形。TP表示輸出脈波信號SOUT1的脈波寬度。 FIG 9B shows a waveform of the input pulse train generator 300 of the signal S IN1 and the output of the pulse signal S OUT1. T P represents the pulse width of the output pulse wave signal S OUT1 .

第10A圖係表示在信號產生電路200中延遲電路350的電路架構圖。參閱10A圖,電流源360係耦接來對電容器365充電。電晶體362則是耦接來對電容器365放電。在延遲電路350的端點IN2上的信號SIN2透過反相器361來控制電晶體362。信號SIN2更耦合至及閘369的輸入端。及閘369的另一輸入端則耦接電容器365。在延遲電路350的端點OUT2上的輸出脈波信號SOUT2的脈波寬度係由電流源360的電流以及電容器365的電容值所決定。在此實施例中,第10A圖的延遲電路350所接收的信號SIN2係由反相器271(顯示於第7圖)的輸出端所提供,且輸出脈波信號SOUT2則提供至正反器290(顯示於第7圖)以產生主動箝制信號S2Fig. 10A is a circuit diagram showing the delay circuit 350 in the signal generating circuit 200. Referring to FIG. 10A, current source 360 is coupled to charge capacitor 365. The transistor 362 is coupled to discharge the capacitor 365. Signal S IN2 at terminal IN2 of delay circuit 350 is passed through inverter 361 to control transistor 362. Signal S IN2 is further coupled to the input of AND gate 369. The other input of the AND gate 369 is coupled to the capacitor 365. The pulse width of the output pulse signal S OUT2 at the terminal OUT2 of the delay circuit 350 is determined by the current of the current source 360 and the capacitance of the capacitor 365. In this embodiment, the signal S IN2 received by the delay circuit 350 of FIG. 10A is provided by the output of the inverter 271 (shown in FIG. 7), and the output pulse signal S OUT2 is supplied to the front and back. A 290 (shown in Figure 7) is used to generate the active clamp signal S 2 .

第10B圖係表示延遲電路350的輸入信號SIN2以及輸出脈波信號SOUT2的波形。TB表示延遲電路350產生的延遲時間。 FIG 10B shows a waveform based on the input signal S IN2 of the delay circuit 350 and the output OUT2 of the pulse signal S is. T B represents the delay time generating circuit 350.

本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為准。 The present invention has been disclosed in the above preferred embodiments, and is not intended to limit the scope of the present invention. Any one of ordinary skill in the art can make a few changes without departing from the spirit and scope of the invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims.

100‧‧‧控制器 100‧‧‧ Controller

110‧‧‧比較器 110‧‧‧ comparator

111‧‧‧正反器 111‧‧‧Factor

112‧‧‧及閘 112‧‧‧ and gate

113‧‧‧反相器 113‧‧‧Inverter

115‧‧‧及閘 115‧‧‧ and gate

117‧‧‧電流源 117‧‧‧current source

118‧‧‧開關 118‧‧‧ switch

119‧‧‧比較器 119‧‧‧ comparator

120‧‧‧位準移位電晶體 120‧‧‧bit shifting transistor

125、126‧‧‧電阻器 125, 126‧‧‧ resistors

130‧‧‧振盪電路 130‧‧‧Oscillation circuit

200‧‧‧信號產生電路 200‧‧‧Signal generation circuit

CLR‧‧‧清除信號 CLR‧‧‧clear signal

PLS‧‧‧脈波信號 PLS‧‧‧ pulse signal

RMP‧‧‧斜坡信號 RMP‧‧‧ ramp signal

S1‧‧‧切換信號 S 1 ‧‧‧Switching signal

S2‧‧‧主動箝制信號 S 2 ‧‧‧Active clamp signal

VB‧‧‧信號 V B ‧‧‧ signal

VCC‧‧‧供應電壓 V CC ‧‧‧ supply voltage

VFB‧‧‧回授信號 V FB ‧‧‧Response signal

VTL‧‧‧負載臨界值 V TL ‧‧‧ load threshold

Claims (12)

一種控制電路,用於一主動箝制反馳式功率轉換器,包括:一低壓側電晶體,用來切換一變壓器;一高壓側電晶體,與一電容器串聯以形成一主動箝制電路,其中,該主動箝制電路與該變壓器並聯;一高壓側驅動電路,用來驅動該高壓側電晶體;以及一控制器,產生一切換信號以及一主動箝制信號;其中,該切換信號用來驅動該低壓側電晶體,且該切換信號係依據一回授信號而產生以調節該主動箝制反馳式功率轉換器的一輸出;以及其中,該主動箝制信號耦接該高壓側驅動電路以控制該高壓側電晶體,且該主動箝制信號的一脈波寬度係由一第一電阻器所決定。 A control circuit for an active clamped flyback power converter includes: a low voltage side transistor for switching a transformer; a high side transistor, connected in series with a capacitor to form an active clamp circuit, wherein An active clamping circuit is connected in parallel with the transformer; a high voltage side driving circuit for driving the high voltage side transistor; and a controller for generating a switching signal and an active clamping signal; wherein the switching signal is used to drive the low voltage side current a crystal, and the switching signal is generated according to a feedback signal to adjust an output of the active clamped flyback power converter; and wherein the active clamp signal is coupled to the high side driver circuit to control the high side transistor And a pulse width of the active clamp signal is determined by a first resistor. 如申請專利範圍第1項所述之控制電路,其中,該主動箝制信號在該切換信號禁能之後致能,且該切換信號可在該主動箝制信號禁能後致能。 The control circuit of claim 1, wherein the active clamp signal is enabled after the switching signal is disabled, and the switching signal is enabled after the active clamp signal is disabled. 如申請專利範圍第1項所述之控制電路,其中,在一重負載狀態下,該切換信號的一最小頻率由一第二電阻器所決定。 The control circuit of claim 1, wherein a minimum frequency of the switching signal is determined by a second resistor under a heavy load condition. 如申請專利範圍第1項所述之控制電路,其中,該控制器包括:一遲滯偏壓產生器,產生一遲滯偏壓以調整該回授信號;以及 一比較器,具有一輕負載臨界值以控制該遲滯偏壓;其中,該比較器依據該回授信號的值以及該輕負載臨界值來控制該遲滯偏壓。 The control circuit of claim 1, wherein the controller comprises: a hysteresis bias generator that generates a hysteresis bias to adjust the feedback signal; A comparator having a light load threshold to control the hysteresis bias; wherein the comparator controls the hysteresis bias based on the value of the feedback signal and the light load threshold. 如申請專利範圍第1項所述之控制電路,其中,該切換信號將依據一脈波信號而致能,且該脈波信號係由該控制器的一振盪電路週期性地產生。 The control circuit of claim 1, wherein the switching signal is enabled according to a pulse signal, and the pulse signal is periodically generated by an oscillation circuit of the controller. 如申請專利範圍第1項所述之控制電路,更包括一充泵電路,其中,該充泵電路包括:一二極體,耦接一供應電壓;以及一充泵電容器,與該二極體彼此串聯;其中,該充泵電容器耦接該高壓側驅動電路。 The control circuit of claim 1, further comprising a charge pump circuit, wherein the charge pump circuit comprises: a diode coupled to a supply voltage; and a charge pump capacitor, and the diode Connected to each other in series; wherein the charge pump capacitor is coupled to the high side drive circuit. 一種控制方法,用以控制主動箝制反馳式功率轉換器,包括:依據一回授信號來產生一切換信號,以切換一低壓側電晶體並調節該主動箝制反馳式功率轉換器的一輸出;以及在該切換信號禁能後,產生一主動箝制信號;其中,該低壓側電晶體切換一變壓器,且該切換信號驅動該低壓側電晶體;其中,該主動箝制信號用來驅動一高壓側電晶體,且該主動箝制信號的一脈波寬度由一第一電阻器所決定;以及其中,該高壓側電晶體與一電容器串聯以形成一主動箝制電路,且該主動箝制電路與該變壓器並聯。 A control method for controlling an active clamped flyback power converter includes: generating a switching signal according to a feedback signal to switch a low voltage side transistor and adjusting an output of the active clamped flyback power converter And generating an active clamping signal after the switching signal is disabled; wherein the low-voltage side transistor switches a transformer, and the switching signal drives the low-voltage side transistor; wherein the active clamping signal is used to drive a high-voltage side a transistor, and a pulse width of the active clamp signal is determined by a first resistor; and wherein the high side transistor is connected in series with a capacitor to form an active clamp circuit, and the active clamp circuit is connected in parallel with the transformer . 如申請專利範圍第7項所述之控制方法,其中,該主動箝制信號在該切換信號禁能之後致能,且該切換信號在該主動箝制信號禁能之後致能。 The control method of claim 7, wherein the active clamp signal is enabled after the switching signal is disabled, and the switching signal is enabled after the active clamp signal is disabled. 如申請專利範圍第7項所述之控制方法,其中,在一重負載狀態下,該切換信號的一最小頻率由一第二電阻器所決定。 The control method of claim 7, wherein a minimum frequency of the switching signal is determined by a second resistor under a heavy load condition. 如申請專利範圍第7項所述之控制方法,更包括:產生一遲滯偏壓以調整該回授信號;其中,該遲滯偏壓係依據該回授信號的值以及一輕負載臨界值而產生。 The control method of claim 7, further comprising: generating a hysteresis bias to adjust the feedback signal; wherein the hysteresis bias is generated according to the value of the feedback signal and a light load threshold . 如申請專利範圍第7項所述之控制方法,更包括:週期性地產生一脈波信號,以致能該切換信號。 The control method of claim 7, further comprising: periodically generating a pulse wave signal to enable the switching signal. 如申請專利範圍第11項所述之控制方法,其中,該脈波信號決定了該切換信號的一最大導通時間。 The control method of claim 11, wherein the pulse wave signal determines a maximum on time of the switching signal.
TW103120452A 2014-06-13 2014-06-13 Control circuits and control methods TWI523394B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103120452A TWI523394B (en) 2014-06-13 2014-06-13 Control circuits and control methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103120452A TWI523394B (en) 2014-06-13 2014-06-13 Control circuits and control methods

Publications (2)

Publication Number Publication Date
TW201547173A TW201547173A (en) 2015-12-16
TWI523394B true TWI523394B (en) 2016-02-21

Family

ID=55407620

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103120452A TWI523394B (en) 2014-06-13 2014-06-13 Control circuits and control methods

Country Status (1)

Country Link
TW (1) TWI523394B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI652890B (en) 2017-07-27 2019-03-01 群光電能科技股份有限公司 Power conversion system with clamp mode switching
US11757360B1 (en) * 2022-03-08 2023-09-12 xMEMS Labs, Inc. Method applied in driving circuit and driving circuit using the same
US11906940B2 (en) 2022-03-08 2024-02-20 xMEMS Labs, Inc. Two-tier feedback control system and related method

Also Published As

Publication number Publication date
TW201547173A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
US9276483B2 (en) Control circuit for active-clamp flyback power converter with programmable switching period
TWI499191B (en) Active clamp circuits
US9991811B1 (en) Control method and control apparatus for flyback circuit
TWI509970B (en) Control circuit for flyback power converter with predicted timing control
JP3371962B2 (en) DC-DC converter
TWI448063B (en) Controllers and switching methods for power converters and controlling methods for quasi-resonant power converters
US7394670B2 (en) Switching power source
JP5182503B2 (en) Switching power supply
JP2003169469A (en) Dc-dc converter
US8711584B2 (en) Reducing voltage stress in a flyback converter design
JP2002101655A (en) Switching power supply device
TW201509103A (en) Switched-mode DC power supply for providing stable voltage output
JP2014045594A (en) Switching power supply device
CN111585444A (en) Switching converter and method for operating a switching converter
TW201537882A (en) Method of controlling synchronous rectifier for power converter, control circuit, and power converter thereof
TWI523394B (en) Control circuits and control methods
TWI720196B (en) Dc-to-dc controller and control method thereof
TWI491156B (en) Synchronous rectifier
TWI822091B (en) Half-bridge flyback power converter and control method thereof
TWI571037B (en) A switching control circuit? of power converters
CN104022657B (en) control circuit and control method
JP2013078217A (en) Soft start circuit
JP5108600B2 (en) Switching power supply
JP7400188B2 (en) Control device
TWI672894B (en) Power controllers and control methods thereof