CN104020313B - 一种全金属电容极板微加速度传感器 - Google Patents

一种全金属电容极板微加速度传感器 Download PDF

Info

Publication number
CN104020313B
CN104020313B CN201410263417.7A CN201410263417A CN104020313B CN 104020313 B CN104020313 B CN 104020313B CN 201410263417 A CN201410263417 A CN 201410263417A CN 104020313 B CN104020313 B CN 104020313B
Authority
CN
China
Prior art keywords
electrode
fixedly connected
anchor point
plate
bonding face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410263417.7A
Other languages
English (en)
Other versions
CN104020313A (zh
Inventor
唐彬
席仕伟
姚明秋
程永生
李玉萍
王旭光
沈朝阳
谭刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronic Engineering of CAEP
Original Assignee
Institute of Electronic Engineering of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronic Engineering of CAEP filed Critical Institute of Electronic Engineering of CAEP
Priority to CN201410263417.7A priority Critical patent/CN104020313B/zh
Publication of CN104020313A publication Critical patent/CN104020313A/zh
Application granted granted Critical
Publication of CN104020313B publication Critical patent/CN104020313B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供了一种全金属电容极板微加速度传感器。所述的传感器为三层全金属结构,包括动极板和上、下固定极板;其中,动极板包含锚点、质量块、悬臂梁、框架。其连接关系是,所述的锚点与悬臂梁固定连接;悬臂梁和质量块固定连接,构成敏感芯片的可动部分;锚点和框架固定连接;质量块与上、下固定极板之间存在间隙,间隙上、下表面均为全金属结构;所述的上固定极板与动极板锚点上表面通过键合连接;所述的下固定极板与锚点下表面通过键合连接。本发明的键合采用热压键合完成,质量块与上、下极板间的空隙可以灵活精确控制。

Description

一种全金属电容极板微加速度传感器
技术领域
本发明属于微电子机械系统领域,具体涉及一种全金属电容极板微加速度传感器,与CMOS具有良好的兼容性,该器件通过氧化层控制电容间隙,可以灵活调整灵敏度,封装采用更可靠的热压键合。
背景技术
对于电容式微加速度传感器,保证极板间电容间隙的一致性是非常重要的,一般采用湿法腐蚀的方法制作极板间隔,但是腐蚀液和腐蚀条件的不一致,如腐蚀液浓度、腐蚀温度等条件的变化会导致腐蚀结果有很大变化,直接导致较小电容间隙难以精确控制。
为保护电容使微加速度传感器免受外界外界环境的污染,使传感器结构保持稳定,需对其进行封装处理。封装要保证不影响传感器的性能,引线和安装可靠,且简单易实现,便于批量生产,目前的封装主要采用键合完成。若键合材料不同,热膨胀系数不同,键合时必然会引入残余应力,这种情况下必须考虑温度对传感器性能的影响。若键合时需要加高电压,会存在强烈的静电引力,因电容式微传感器包含可动部分,可能会出现中间极板与上或下极板粘连,破坏传感器结构。另外,考虑MEMS与CMOS的兼容性,最优的电容式微加速度传感器必然是全金属结构的。
发明内容
本发明的目的在于提供一种全金属电容极板微加速度传感器,传感器为三层结构,电容极板间距离由氧化硅厚度决定,可以精确控制微加速度传感器的灵敏度,且工艺简单易操作,重复性强,易于实现批量化。电容极板为全金属结构,封装采用金-金热压键合,无需加电压,可以避免因电压使两块极板粘结造成的微结构损坏,且用于键合的材料相同,可以避免因热膨胀系数不同而引入的残余应力。
本发明是通过以下技术方案实现的。
本发明的全金属电容极板微加速度传感器,其特点是,所述的传感器包括上固定极板、下固定极板、动极板;其中,动极板含有锚点、悬臂梁、质量块、上表面动电极、下表面动电极、锚点上键合面、锚点下键合面、上传输电极、下传输电极、框架、引线盘。上固定极板含有上限位凸台、上键合面、上引线盘、上基板。下固定极板含有下限位凸台、下键合面、下引线盘、下基板。其连接关系是,所述的锚点与锚点上键合面、锚点下键合面分别固定连接;所述的锚点与悬臂梁固定连接;所述的锚点与框架、引线盘分别固定连接。所述的悬臂梁与上传输电极、下传输电极分别固定连接;所述的悬臂梁与质量块固定连接。所述的质量块与上表面动电极、下表面动电极分别固定连接。所述的上固定极板与上限位凸台固定连接。所述的上限位凸台与上键合面固定连接。所述的上引线盘与上基板固定连接。所述的下固定极板与下限位凸台固定连接。所述的下限位凸台与下键合面固定连接。所述的下引线盘与下基板固定连接。所述的动极板与上固定极板、下固定极板分别通过键合连接。
所述的动极板与上固定极板、下固定极板之间的上间隙、下间隙分别通过上限位凸台、下限位凸台设置。
所述的动极板与上固定极板通过锚点上键合面、上键合面固定连接。
所述的动极板与下固定极板通过锚点下键合面、下键合面固定连接。
所述的上表面动电极、下表面动电极、锚点上键合面、锚点下键合面、上传输电极、下传输电极、上键合面、下键合面、上固定电极与下固定电极厚度均相同。
本发明的全金属电容极板微加速度传感器,当沿器件法线方向的加速度作用于器件时,惯性力使质量块发生偏移,导致上下两个电容发生变化,产生电容差,得到控制电压,再反馈到施力电极,产生的静电力作用于质量块上,质量块回到原来的位置。反馈电压与被测加速度存在一定关系,从而测出加速度。
本发明的全金属电容极板微加速度传感器其优点是:
1.电容上、下两个极板均为全金属平面结构,与硅-硅面电容和硅-金属面电容相比更接近于理想电容。
2.设计的电容式微加速度传感器为全金属结构,可以与CMOS兼容。
3.采用金-金热压键合。热压键合无需加电压,避免因电压使两块极板粘结造成的微结构损坏。
4.键合需要在高温下进行,相同金属材料键合可以避免因不同材料热膨胀系数不同而引入的残余应力,不用考温度对灵敏度的影响。
5.采用氧化层控制电容极板间距。用硅表面生长氧化层代替腐蚀硅来制作质量块动电极和上、下固定电极之间的间隔,可以通过控制氧化硅生长厚度精确控制电容间隙,实现了微小电容间距的制作,可以灵活控制灵敏度,且工艺实现简单,利于批量生产。
6.上、下固定电极制作在低阻硅表面,且动极板和上、下固定极板为全金属结构,引线操作简单。
7.动极板金属层覆盖整个表面,动电极信号沿质量块、悬臂梁和锚点表面金属层传出,避免图形化金属层必须的光刻、腐蚀等一些工艺步骤造成的污染。
附图说明
图1为本发明的全金属电容极板微加速度传感器整体图;
图2为本发明的全金属电容极板微加速度传感器分解图;
图3为本发明的全金属电容极板微加速度传感器中的敏感芯片示意图;
图4为本发明的全金属电容极板微加速度传感器中的敏感芯片俯视图;
图5为沿图1A-A剖线的剖面图;
图中,1.锚点2.上基板3.下基板4.悬臂梁5.质量块61.锚点上键合面62.锚点下键合面63.上传输电极64.下传输电极71.上键合面72.下键合面81.上限位凸台82.下限位凸台91.上固定电极92.下固定电极101.上间隙102.下间隙11.动极板12.框架13.上引线盘14.引线盘15.下引线盘16.上固定极板17.下固定极板。
具体实施方式
下面结合附图对本发明作进一步描述。
实施例1
图1为本发明的全金属电容极板微加速度传感器整体图,图2为本发明的全金属电容极板微加速度传感器分解图,图3为本发明的全金属电容极板微加速度传感器中的敏感芯片示意图,图4为本发明的全金属电容极板微加速度传感器中的敏感芯片俯视图,图5为沿图1A-A剖线的剖面图。在图1~5中,本发明的全金属电容极板微加速度传感器,包括上固定极板16、下固定极板17、动极板11;其中,动极板11含有锚点1、悬臂梁4、质量块5、上表面动电极65、下表面动电极66、锚点上键合面61、锚点下键合面62、上传输电极63、下传输电极64、框架12、引线盘14;上固定极板16含有上限位凸台81、上键合面71、上引线盘13、上基板2;下固定极板17含有下限位凸台82、下键合面72、下引线盘15、下基板3;其连接关系是,所述的锚点1与锚点上键合面61、锚点下键合面62分别固定连接;所述的锚点1与悬臂梁4固定连接;所述的锚点1与框架12、引线盘14分别固定连接;所述的悬臂梁4与上传输电极63、下传输电极64分别固定连接;所述的悬臂梁4与质量块5固定连接;所述的质量块5与上表面动电极65、下表面动电极66分别固定连接;所述的上固定极板16与上限位凸台81固定连接;所述的上限位凸台81与上键合面71固定连接;所述的上引线盘13与上基板2固定连接;所述的下固定极板17与下限位凸台82固定连接;所述的下限位凸台82与下键合面72固定连接;所述的下引线盘15与下基板3固定连接;所述的动极板11与上固定极板16、下固定极板17分别通过键合连接。
所述的动极板11与上固定极板16、下固定极板17之间的上间隙101、下间隙102分别通过上限位凸台81、下限位凸台82设置。
所述的动极板11与上固定极板16通过锚点上键合面61、上键合面71固定连接。
所述的动极板11与下固定极板17通过锚点下键合面62、下键合面72固定连接。
所述的动极板11与上固定极板16之间的上间隙101为2μm;与下固定极板17之间的下间隙102为2μm,一方面使敏感芯片有一定的运动间隙,另一方面可以调整灵敏度。
所述的上表面动电极65、下表面动电极66、上固定电极91、下固定电极92分别为厚度0.5μm的金属材料。
所述的上传输电极63、下传输电极64分别为厚度0.5μm的金属。
所述的锚点上键合面61、锚点下键合面62、上键合面71、下键合面72分别为厚度0.5μm的金属。
所述的上固定极板16与下固定极板17均为厚度400μm的低阻硅。
所述的动极板11为厚度400μm的高阻硅。
本实施例中,敏感芯片长度为6000μm,宽度为6000μm,厚度为400μm;质量块长度为2000μm,宽度为2000μm,厚度为400μm;悬臂梁长度为150μm,宽度为1000μm,厚度为50μm;引线盘长度为1000μm,宽度为800μm,厚度为400μm。
本发明绝非仅局限于实施例。

Claims (5)

1.一种全金属电容极板微加速度传感器,其特征在于:所述的传感器包括上固定极板(16)、下固定极板(17)、动极板(11);其中,动极板(11)含有锚点(1)、悬臂梁(4)、质量块(5)、上表面动电极(65)、下表面动电极(66)、锚点上键合面(61)、锚点下键合面(62)、上传输电极(63)、下传输电极(64)、框架(12)、引线盘(14);上固定极板(16)含有上限位凸台(81)、上键合面(71)、上引线盘(13)、上基板(2);下固定极板(17)含有下限位凸台(82)、下键合面(72)、下引线盘(15)、下基板(3);其连接关系是,所述的锚点(1)与锚点上键合面(61)、锚点下键合面(62)分别固定连接;所述的锚点(1)与悬臂梁(4)固定连接;所述的锚点(1)与框架(12)、引线盘(14)分别固定连接;所述的悬臂梁(4)与上传输电极(63)、下传输电极(64)分别固定连接;所述的悬臂梁(4)与质量块(5)固定连接;所述的质量块(5)与上表面动电极(65)、下表面动电极(66)分别固定连接;所述的上固定极板(16)与上限位凸台(81)固定连接;所述的上限位凸台(81)与上键合面(71)固定连接;所述的上引线盘(13)与上基板(2)固定连接;所述的下固定极板(17)与下限位凸台(82)固定连接;所述的下限位凸台(82)与下键合面(72)固定连接;所述的下引线盘(15)与下基板(3)固定连接;所述的动极板(11)与上固定极板(16)、下固定极板(17)分别通过键合连接。
2.根据权利要求1所述的全金属电容极板微加速度传感器,其特征在于:所述的动极板(11)与上固定极板(16)、下固定极板(17)之间的上间隙(101)、下间隙(102)分别通过上限位凸台(81)、下限位凸台(82)设置。
3.根据权利要求1所述的全金属电容极板微加速度传感器,其特征在于:所述的动极板(11)与上固定极板(16)通过锚点上键合面(61)、上键合面(71)固定连接。
4.根据权利要求1所述的全金属电容极板微加速度传感器,其特征在于:所述的动极板(11)与下固定极板(17)通过锚点下键合面(62)、下键合面(72)固定连接。
5.根据权利要求1所述的全金属电容极板微加速度传感器,其特征在于:所述的上表面动电极(65)、下表面动电极(66)、锚点上键合面(61)、锚点下键合面(62)、上传输电极(63)、下传输电极(64)、上键合面(71)、下键合面(72)、上固定电极(91)与下固定电极(92)厚度均相同。
CN201410263417.7A 2014-06-16 2014-06-16 一种全金属电容极板微加速度传感器 Active CN104020313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410263417.7A CN104020313B (zh) 2014-06-16 2014-06-16 一种全金属电容极板微加速度传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410263417.7A CN104020313B (zh) 2014-06-16 2014-06-16 一种全金属电容极板微加速度传感器

Publications (2)

Publication Number Publication Date
CN104020313A CN104020313A (zh) 2014-09-03
CN104020313B true CN104020313B (zh) 2016-05-25

Family

ID=51437178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410263417.7A Active CN104020313B (zh) 2014-06-16 2014-06-16 一种全金属电容极板微加速度传感器

Country Status (1)

Country Link
CN (1) CN104020313B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106908626B (zh) * 2015-12-23 2019-06-11 北京自动化控制设备研究所 一种电容式微加速度计敏感结构
CN106841683B (zh) * 2017-04-06 2023-09-01 中国工程物理研究院电子工程研究所 石英摆式加速度计及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6196067B1 (en) * 1998-05-05 2001-03-06 California Institute Of Technology Silicon micromachined accelerometer/seismometer and method of making the same
CN103293337A (zh) * 2013-05-15 2013-09-11 中北大学 无线无源电容式加速度计
CN103675346A (zh) * 2012-09-21 2014-03-26 中国科学院地质与地球物理研究所 一种加速度计及其制造工艺
CN203909067U (zh) * 2014-06-16 2014-10-29 中国工程物理研究院电子工程研究所 一种全金属电容极板微加速度传感器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175087A (ja) * 2008-01-28 2009-08-06 Tateyama Kagaku Kogyo Kk 加速度センサ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6196067B1 (en) * 1998-05-05 2001-03-06 California Institute Of Technology Silicon micromachined accelerometer/seismometer and method of making the same
CN103675346A (zh) * 2012-09-21 2014-03-26 中国科学院地质与地球物理研究所 一种加速度计及其制造工艺
CN103293337A (zh) * 2013-05-15 2013-09-11 中北大学 无线无源电容式加速度计
CN203909067U (zh) * 2014-06-16 2014-10-29 中国工程物理研究院电子工程研究所 一种全金属电容极板微加速度传感器

Also Published As

Publication number Publication date
CN104020313A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
Niu et al. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity
CN201653604U (zh) 一种压力传感器
CN107673306B (zh) 一种mems压力传感器的制备方法
CN102931878B (zh) 一种多悬臂宽频mems压电俘能器
CN112505438B (zh) 基于静电力和压阻效应的微型电场传感器件
CN109342836B (zh) 基于压电压阻式宽频高场强微型电场传感器的生产工艺
CN107515060A (zh) 一种电容式压力传感器、线性补偿方法及制备方法
Berger et al. Touch-mode capacitive pressure sensor with graphene-polymer heterostructure membrane
CN204129068U (zh) 压电式加速度传感器
CN103983395B (zh) 一种微压力传感器及其制备与检测方法
CN104596683A (zh) 基于层状材料的压力传感器及压电效应测量系统
CN105174198A (zh) 一种封装结构的加速度传感器及其制备方法
CN104020313B (zh) 一种全金属电容极板微加速度传感器
US9903884B2 (en) Parallel plate capacitor and acceleration sensor comprising same
CN103926028A (zh) 一种应变片的结构设计及制作工艺
Singh et al. Enhanced sensitivity of SAW-based pirani vacuum pressure sensor
Tang et al. Structure design and optimization of SOI high-temperature pressure sensor chip
JP6184006B2 (ja) 圧力センサ
CN109437089B (zh) 悬臂梁结构的微型电场传感器的制备工艺流程
CN104950136A (zh) 一种改进结构的压电式加速度传感器
CN203909067U (zh) 一种全金属电容极板微加速度传感器
CN102901520A (zh) 一种用于提高电容式微机械传感器温度稳定性的方法及微机械传感器
CN111017861A (zh) 基于逆压电效应的电容-悬臂梁微型式电场测量传感器件
CN204831651U (zh) 一种多晶硅压阻式密封表压压力传感器芯片
CN111024213A (zh) 柔性电容式振动传感器及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant