CN103995149A - 孔缝八梁式加速度传感器芯片 - Google Patents

孔缝八梁式加速度传感器芯片 Download PDF

Info

Publication number
CN103995149A
CN103995149A CN201410235361.4A CN201410235361A CN103995149A CN 103995149 A CN103995149 A CN 103995149A CN 201410235361 A CN201410235361 A CN 201410235361A CN 103995149 A CN103995149 A CN 103995149A
Authority
CN
China
Prior art keywords
short
acceleration sensor
vdr
small sensitive
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410235361.4A
Other languages
English (en)
Other versions
CN103995149B (zh
Inventor
赵玉龙
王鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201410235361.4A priority Critical patent/CN103995149B/zh
Publication of CN103995149A publication Critical patent/CN103995149A/zh
Application granted granted Critical
Publication of CN103995149B publication Critical patent/CN103995149B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

孔缝八梁式加速度传感器芯片,包括硅基底和键合于硅基底背面的硼玻璃衬底,硅基底的中心空腔内配置有悬空质量块,四个短小敏感梁沿着悬空质量块的一组对边对称排布,四个宽大支撑梁分别与悬空质量块的另一组对边的四角相连,短小敏感梁和宽大支撑梁共同支撑悬空质量块,在每个短小敏感梁与悬空质量块相连接的半边设有一个应力集中孔,每个应力集中孔两侧布置的两根压敏电阻条连接组成一个压敏电阻,四个压敏电阻连接组成半开环惠斯通全桥检测电路与焊盘相连,本发明一方面通过在短小敏感梁上开孔缓解固有频率与测量灵敏度之间的制约关系,获得高频响、高灵敏度的加速度传感器,另一方面通过梁的四角排布方式有效的降低了横向灵敏度。

Description

孔缝八梁式加速度传感器芯片
技术领域
本发明涉及微加速度传感器芯片技术领域,特别涉及孔缝八梁式加速度传感器芯片。
背景技术
随着MEMS微加工技术的发展,压阻式加速度传感器出现了很多不同的敏感结构,包括单悬臂梁,双悬臂梁,单桥梁,双桥梁,十字梁,双岛五梁,复合多梁等。这些结构的出现,解决了传感器性能方面的很多问题。如双悬臂梁结构相对于单悬臂梁降低了传感器的横向交叉灵敏度;四梁结构,如双桥梁、十字梁等则在考虑横向交叉灵敏度的同时,提高了传感器的固有频率;双岛五梁结构则是为了通过自身结构特点来消除横向交叉灵敏度的干扰而被提出的。复合多梁结构则是通过长短梁的组合方式来提高传感器的综合性能。目前开发的硅微加速度传感器受敏感结构与传感方式的限制,大都性能不高,如频响范围较窄且横向灵敏度高,结构尺寸和质量也无法做到很小,限制了传感器的检测精度。此外,在高灵敏度硅微加速度传感器设计方面,虽然国内外学者提出了许多高灵敏度的机械传感元件,但大都采用微悬臂梁一质量块结构形式,而在微悬臂梁一质量块结构中,灵敏度与固有频率是无法避免的矛盾。因此,如何在保证测量带宽的条件下,来提高硅微加速度传感器的检测性能需要进一步研究。
压阻式硅微加速度传感器设计中,传感器的性能受结构、工艺、工作参数等的影响,且参数间大多交叉祸合。为了提高压阻式硅微加速度传感器的综合性能,需要综合考虑传感器的结构、工艺和工作参数等的影响,其多目标优化设计方法也需要进一步研究。综合考虑传感器固有频率和测量灵敏度以及横向灵敏度三个方面的因素,在之前的研究工作中,传感器的结构设计多旨在解决其中的某一个或者某两个方面的问题,通过牺牲非目标参数的数值来获取所需的性能提升。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供孔缝八梁式加速度传感器芯片,一方面通过在短小敏感梁上开孔缓解固有频率与测量灵敏度之间的制约关系,获得高频响、高灵敏度的加速度传感器,另一方面通过梁的四角排布方式有效的降低了横向灵敏度。
为了达到上述目的,本发明的技术方案是这样实现的:
孔缝八梁式加速度传感器芯片,包括硅基底1和键合于硅基底1背面的硼玻璃衬底2,硅基底1的中心空腔内配置有悬空质量块5,四个短小敏感梁3沿着悬空质量块5的一组对边对称排布,四个宽大支撑梁4分别与悬空质量块5的另一组对边的四角相连,短小敏感梁3和宽大支撑梁4共同支撑悬空质量块5,使其保持悬空状态,硼玻璃衬底2与悬空质量块5之间预留有工作间隙,
在每个短小敏感梁3与悬空质量块5相连接的半边设有一个应力集中孔9,每个应力集中孔9两侧布置两根压敏电阻条,两根压敏电阻条连接组成一个压敏电阻6,四个压敏电阻6通过芯片上的金属引线7连接组成半开环惠斯通全桥检测电路,半开环惠斯通全桥检测电路的输出端与芯片中的焊盘8相连,四个压敏电阻6按照短小敏感梁3上的应力分布规律布置,且位于硅晶体相同的晶向上。
所述的短小敏感梁3的长度和宽度均小于宽大支撑梁4,而短小敏感梁3和宽大支撑梁4的厚度相同。
所述的应力集中孔9为矩形孔槽,其长宽比为2,深度与短小敏感梁3的厚度相同,且布置于靠近悬空质量块5的一端。
所述的短小敏感梁3和宽大支撑梁4以及悬空质量块5与硅基底1之间存在着7-15μm的间隙。
所述的具有孔缝八梁结构的加速度传感器芯片是由MEMS制造技术制作的加速度转换芯片。
本发明的有益效果是:基于矩形孔缝的应力集中效应,在矩形孔缝周围产生应力集中,从而增加了传感器的检测灵敏度;采用了四边分布梁的方式使得整个结构的横向交叉干扰降低;通过引入的短小敏感梁增加了结构的整体刚度,使得传感器的固有频率增加。前人在双桥结构加速度传感器的基础上制作了孔缝双桥结构,虽然增加了传感器的灵敏度,但是是以牺牲传感器固有频率为代价的。本结构不仅增加了传感器的灵敏度,而且固有频率也有所提升。
附图说明
图1为本发明的结构示意图。
图2为本发明的正视图。
图3为短小敏感梁3上压敏电阻6的布置方式示意图。
图4为压敏电阻6构成的半开环惠斯通全桥检测电路示意图。
图5为本发明的工作原理示意图(取一半结构作为研究对象)。
具体实施方式
下面结合附图对本发明作进一步详细描述。
参照图1和图2,孔缝八梁式加速度传感器芯片,包括硅基底1和键合于硅基底1背面的硼玻璃衬底2,硅基底1的中心空腔内配置有悬空质量块5,四个短小敏感梁3沿着悬空质量块5的一组对边对称排布,四个宽大支撑梁4分别与悬空质量块5的另一组对边的四角相连,短小敏感梁3和宽大支撑梁4共同支撑悬空质量块5,使其保持悬空状态,硼玻璃衬底2与悬空质量块5之间预留有工作间隙,以保证悬空质量块5在传感器正常工作时能够始终悬空,从而在某些过载环境中其下底面能够与硼玻璃2接触,,而在某些过载环境中其下底面能够与硼玻璃2接触,防止过载破坏传感器芯片,
在每个短小敏感梁3与悬空质量块5相连接的半边设有一个应力集中孔9,每个应力集中孔9两侧布置两根压敏电阻条,两根压敏电阻条连接组成一个压敏电阻6,参照图3和图4,四个压敏电阻6中的第一个压敏电阻6-1、第二个压敏电阻6-2、第三个压敏电阻6-3、第四压敏电阻6-4均布置于短小敏感梁3和悬空质量块5连接的部位,第一压敏电阻6-1、第二压敏电阻6-2、第三压敏电阻6-3、第四压敏电阻6-4通过芯片上的金属引线7相互连接组成半开环惠斯通全桥检测电路,其中第一压敏电阻6-1和第四压敏电阻6-4位于一组相对的桥臂,第二压敏电阻6-2和第三压敏电阻6-3位于另一组相对的桥臂,半开环惠斯通全桥检测电路的输出端与芯片中的焊盘8相连,四个压敏电阻6按照短小敏感梁3上的应力分布规律布置,且位于硅晶体相同的晶向上。
所述的短小敏感梁3的长度和宽度均小于宽大支撑梁4,而短小敏感梁3和宽大支撑梁4的厚度相同。
所述的应力集中孔9为矩形孔槽,其长宽比为2,深度与短小敏感梁3的厚度相同,且布置于靠近悬空质量块5的一端,以便获得更大的应力集中数值。
所述的短小敏感梁3和宽大支撑梁4以及悬空质量块5与硅基底1之间存在着7-15μm的间隙,用以释放短小敏感梁3、宽大支撑梁4以及悬空质量块5连接组成的可动结构。
所述的具有孔缝八梁结构的加速度传感器芯片是由MEMS制造技术制作的加速度转换芯片。
本发明芯片的工作原理为:
参照图5,利用的单晶硅材料的压阻效应作为敏感原理,当压敏电阻6处于一定应力作用下时,由于载流子迁移率的变化,其电阻率发生变化,其阻值的变化与其所受应力之间的比例关系为:
ΔR R = π 1 σ i + π 2 τ i - - - ( 1 )
其中的π1、π2分别为压敏电阻6的横向压阻系数和纵向压阻系数,压阻系数是用来表征压阻效应强弱的,被定义为单位作用下电阻率的相对变化。压阻效应有各向异性特征,沿不同的方向施加应力和沿不同方向通过电流,其电阻率变化会不相同。σi、τi分别为压敏电阻的正应力和剪应力。
参照图4,对于有压敏电阻6组成的惠斯通半开环检测电路,采用恒压源供电时,其输出电压如下表示(不考虑后续的温补电路):
V o = ( R 3 + ΔR 3 R 1 + R 3 - ΔR 1 + ΔR 3 - R 4 - ΔR 4 R 2 + R 4 + ΔR 2 - ΔR 4 ) V i - - - ( 2 )
公式2中的Vo、Vi分别为电桥的输出电压和输出电压,R1、R2、R3、R4分别为第一压敏电阻6-1、第二压敏电阻6-2、第三压敏电阻6-3、第四压敏电阻6-4的电阻初始电阻值,相对应的,△R1为第一压敏电阻6-1的阻值变化量;△R2为第一压敏电阻6-2的阻值变化量;△R3为第一压敏电阻6-3的阻值变化量;△R4为第一压敏电阻6-4的阻值变化量;特别的,四个电阻的阻值相等,且变化量的绝对值相等的情况下,有如下公式:
V o = ΔR R V i - - - ( 3 )
根据牛顿定律可知,当悬空的质量块5受到某一方向加速度作用时,将会有一个与加速度成正比且同向的惯性力作用于悬空质量块5上,从而使得悬空质量块5产生一定的位移;短小敏感梁3和宽大支撑梁4均与悬空质量块5相连,两组梁都将在悬空质量块5的带动下发生弯曲变形,从而在短小敏感梁3表面产生相应的应力。芯片中的压敏电阻6布置于短小敏感梁3的应力集中孔9附近,当短小敏感梁3受应力作用时,根据压阻效应公式,各个压敏电阻6的阻值都会发生变化,引起电桥平衡失效,从而输出一个电压值,由于短小敏感梁3上产生的应力与输入加速度成正比,而压敏电阻6与短小敏感梁3上的应力成正比,因此输出电压与其所承受的加速度值成正比,最终实现了将加速度转化成电信号的功能。本发明中,由于孔缝的应力集中效应,在应力集中孔9周围产生应力集中,从而使得该区域的应力值变大,最终导致压敏电阻6的变化较其它结构有明显增大,因此增加了传感器的灵敏度。

Claims (5)

1.孔缝八梁式加速度传感器芯片,包括硅基底(1)和键合于硅基底(1)背面的硼玻璃衬底(2),硅基底(1)的中心空腔内配置有悬空质量块(5),其特征在于:四个短小敏感梁(3)沿着悬空质量块(5)的一组对边对称排布,四个宽大支撑梁(4)分别与悬空质量块(5)的另一组对边的四角相连,短小敏感梁(3)和宽大支撑梁(4)共同支撑悬空质量块(5),使其保持悬空状态,硼玻璃衬底(2)与悬空质量块(5)之间预留有工作间隙,
在每个短小敏感梁(3)与悬空质量块(5)相连接的半边设有一个应力集中孔(9),每个应力集中孔(9)两侧布置两根压敏电阻条,两根压敏电阻条连接组成一个压敏电阻(6),四个压敏电阻(6)通过芯片上的金属引线(7)连接组成半开环惠斯通全桥检测电路,半开环惠斯通全桥检测电路的输出端与芯片中的焊盘(8)相连,四个压敏电阻(6)按照短小敏感梁(3)上的应力分布规律布置,且位于硅晶体相同的晶向上。
2.根据权利要求1所述的孔缝八梁式加速度传感器芯片,其特征在于:所述的短小敏感梁(3)的长度和宽度均小于宽大支撑梁(4),而短小敏感梁(3)和宽大支撑梁(4)的厚度相同。
3.根据权利要求1所述的孔缝八梁式加速度传感器芯片,其特征在于:所述的应力集中孔(9)为矩形孔槽,其长宽比为2,深度与短小敏感梁(3)的厚度相同,且布置于靠近悬空质量块(5)的一端。
4.根据权利要求1所述的孔缝八梁式加速度传感器芯片,其特征在于:所述的短小敏感梁(3)和宽大支撑梁(4)以及悬空质量块(5)与硅基底(1)之间存在着7-15μm的间隙。
5.根据权利要求1所述的孔缝八梁式加速度传感器芯片,其特征在于:所述的具有孔缝八梁结构的加速度传感器芯片是由MEMS制造技术制作的加速度转换芯片。
CN201410235361.4A 2014-05-29 2014-05-29 孔缝八梁式加速度传感器芯片 Active CN103995149B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410235361.4A CN103995149B (zh) 2014-05-29 2014-05-29 孔缝八梁式加速度传感器芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410235361.4A CN103995149B (zh) 2014-05-29 2014-05-29 孔缝八梁式加速度传感器芯片

Publications (2)

Publication Number Publication Date
CN103995149A true CN103995149A (zh) 2014-08-20
CN103995149B CN103995149B (zh) 2017-04-19

Family

ID=51309369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410235361.4A Active CN103995149B (zh) 2014-05-29 2014-05-29 孔缝八梁式加速度传感器芯片

Country Status (1)

Country Link
CN (1) CN103995149B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105232080A (zh) * 2015-09-17 2016-01-13 中北大学 基于mems声传感器的可视化电子式听诊器
CN109708786A (zh) * 2018-12-07 2019-05-03 苏州长风航空电子有限公司 一种双重应力集中结构微压传感器芯体及制备方法
CN111474381A (zh) * 2020-04-27 2020-07-31 吉林大学 含有仿生十字梁传感器的空气流速传感装置及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090115006A1 (en) * 2007-08-17 2009-05-07 Oki Electric Industry Co., Ltd. SOI substrate and semiconductor acceleration sensor using the same
CN102298074A (zh) * 2011-05-23 2011-12-28 西安交通大学 一种孔缝双桥式加速度传感器芯片及其制备方法
CN102298075A (zh) * 2011-05-23 2011-12-28 西安交通大学 一种具有复合多梁结构的加速度传感器芯片及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090115006A1 (en) * 2007-08-17 2009-05-07 Oki Electric Industry Co., Ltd. SOI substrate and semiconductor acceleration sensor using the same
CN102298074A (zh) * 2011-05-23 2011-12-28 西安交通大学 一种孔缝双桥式加速度传感器芯片及其制备方法
CN102298075A (zh) * 2011-05-23 2011-12-28 西安交通大学 一种具有复合多梁结构的加速度传感器芯片及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HENRY V.ALLEN等: "Accelerometer systems with self-testable features", 《SENSORS AND ACTUATORS》, no. 20, 31 December 1989 (1989-12-31), pages 153 - 161 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105232080A (zh) * 2015-09-17 2016-01-13 中北大学 基于mems声传感器的可视化电子式听诊器
CN105232080B (zh) * 2015-09-17 2017-10-31 中北大学 基于mems声传感器的可视化电子式听诊器
CN109708786A (zh) * 2018-12-07 2019-05-03 苏州长风航空电子有限公司 一种双重应力集中结构微压传感器芯体及制备方法
CN111474381A (zh) * 2020-04-27 2020-07-31 吉林大学 含有仿生十字梁传感器的空气流速传感装置及其制备方法
CN111474381B (zh) * 2020-04-27 2021-06-01 吉林大学 含有仿生十字梁传感器的空气流速传感装置及其制备方法

Also Published As

Publication number Publication date
CN103995149B (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
US20200319040A1 (en) Microelectromechanical scalable bulk-type piezoresistive force/pressure sensor
US7578162B2 (en) Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing this apparatus
CN103941041B (zh) 一种三框架结构的单质量块三轴mems加速度计
CN101738494B (zh) 一种硅微加速度传感器芯片
CN103954793B (zh) 一种mems加速度计
CN102298074B (zh) 一种孔缝双桥式加速度传感器芯片及其制备方法
CN110389237B (zh) 一种面内双轴加速度传感器芯片及其制备方法
CN102647657B (zh) 单片集成mems压阻超声传感器
CN104568279B (zh) 一种多轴力传感器
CN109470385A (zh) 多轴力传感器、制造多轴力传感器的方法以及用于操作多轴力传感器的方法
CN102230818B (zh) 一种双c型压电式动态轴重传感器
CN110780088B (zh) 多桥路隧道磁阻双轴加速度计
CN103995151A (zh) 复合八梁高频响加速度传感器芯片
CN104950137B (zh) 具有应力隔离结构的横向敏感加速度传感器芯片
CN103995149A (zh) 孔缝八梁式加速度传感器芯片
CN105021846A (zh) 一种六轴一体式微加速度传感器及其制作方法
CN102680738B (zh) 具有抗横向干扰的硅纳米带巨压阻效应微加速度计
CN113933535B (zh) 一种二维双模式mems风速风向传感器及其制备方法
CN103076050B (zh) 一种梁膜单梁结构硅微流量传感器芯片
CN107271720B (zh) 低轴间耦合度的八梁三轴加速度传感器
CN106290983A (zh) 一种基于非晶态碳膜的加速度传感器芯片
CN106595786B (zh) 一种阵列悬臂梁膜结构硅微流量传感器芯片
CN204848255U (zh) 一种基于电磁感应的微惯性传感器
CN103090914B (zh) 一种四膜结构硅微流量传感器芯片
CN203324300U (zh) 一种双悬臂梁式微机械加速度传感器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant