CN103992616A - 一种低逾渗阈值高热稳定性碳纳米管三元复合材料及其制备方法 - Google Patents

一种低逾渗阈值高热稳定性碳纳米管三元复合材料及其制备方法 Download PDF

Info

Publication number
CN103992616A
CN103992616A CN201410222650.0A CN201410222650A CN103992616A CN 103992616 A CN103992616 A CN 103992616A CN 201410222650 A CN201410222650 A CN 201410222650A CN 103992616 A CN103992616 A CN 103992616A
Authority
CN
China
Prior art keywords
matrix material
composite material
polyether
thermal stability
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410222650.0A
Other languages
English (en)
Other versions
CN103992616B (zh
Inventor
姜振华
高聪
张淑玲
林宇津
韩冰
王贵宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201410222650.0A priority Critical patent/CN103992616B/zh
Publication of CN103992616A publication Critical patent/CN103992616A/zh
Application granted granted Critical
Publication of CN103992616B publication Critical patent/CN103992616B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7461Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92266Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92619Diameter or circumference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92638Length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92695Viscosity; Melt flow index [MFI]; Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

一种低逾渗阈值高热稳定性的三元导电复合材料及其制备方法,属于高分子导电复合材料领域。是以聚醚醚酮和热塑性聚酰亚胺的共混物为聚合物基体,两种树脂的质量比为4:6~6:4;以碳纳米管为导电填料,占复合材料总质量的0.1%~3.0wt%。本发明制备的复合材料经扫描电镜测试表明碳纳米管选择性地分布在聚酰亚胺中,聚合物基体形成双连续结构,复合材料的逾渗阈值低至0.2~1.0wt%,103Hz频率下的交流电导率为5.0×10‐10~2.0×10‐1S/m,同时该复合材料在200~240℃高温区的储能模量为740~900MPa,有很好的高温使用性能,可广泛应用于航空航天的导电、抗静电、电磁屏蔽材料等领域。

Description

一种低逾渗阈值高热稳定性碳纳米管三元复合材料及其制备方法
技术领域
本发明属于高分子复合材料技术领域,具体涉及一种以聚醚醚酮和聚酰亚胺共混物为基体,以碳纳米管为导电填料,具有低逾渗阈值高热稳定性的三元导电复合材料及其制备方法。
背景技术
导电材料因在电磁屏蔽、电致变色显示器、光电转换、抗静电材料等领域的应用价值而引起人们广泛的研究兴趣。相比于传统的金属导电材料,聚合物基导电材料具有质轻、耐腐蚀、易加工的优势。其中,特征工程塑料(聚醚醚酮、聚醚砜、聚酰亚胺等)因具有优异的综合性能而被认为是航空航天领域中金属材料的良好替代品。
聚醚醚酮(PEEK)是一种结晶型高性能热塑性树脂,是商业化聚芳醚酮类树脂中最重要的品种之一。但PEEK的玻璃化转变温度(Tg)只有143℃,超过Tg后,其储能模量有明显的下降,这大大限制了PEEK在高温领域的应用。南京岳子化工有限公司开发的新型热塑性聚酰亚胺(TPI)是一种无定形的热塑性树脂,其Tg高达254℃,在250℃高温下仍能保持很高的储能模量,在耐高温材料领域有明显的竞争优势。但TPI的无定形结构决定了其耐溶剂性较差,并且TPI的熔体粘度较高、加工流动性不容乐观。将PEEK和TPI共混,可以使其优势互补,开发高温下综合性能优越的材料。需要注意的是,因PEEK与TPI的相容性较差,PEEK/TPI共混物的综合性能不仅取决于PEEK和TPI的性质,更取决于两相的形貌。而具有双连续结构的共混物可大幅提高共混物的性能,包括弹性模量、导电性、导热性等。因此,制备具有双连续结构的PEEK/TPI共混物成为人们急需解决的问题。
在不相容聚合物中加入纳米填料是调控共混物相形貌的有效方法。碳纳米管因具有优异的电学性质、力学性能和高长径比而被认为是聚合物基体的理想填料。碳纳米管在不相容聚合物中的选择性分布可以很好地诱导两相结构由海‐岛向双连续转变,得到具有双连续结构的共混物。更重要的是,在具有双连续结构的共混体系中,碳纳米管选择性地分布在其中一相中达到逾渗阈值(一级逾渗),这一相又在整个共混体系中达到逾渗阈值(双逾渗),这叫做双逾渗现象。由双逾渗效应,碳纳米管在具有双连续结构的不相容聚合物基体中的选择性分布,可以有效降低逾渗阈值,提高复合材料导电性能。
因此,本专利选择PEEK/TPI共混物为聚合物基体,碳纳米管为导电填料,通过碳纳米管的选择性分布诱导共混物形成双连续结构,开发一种具有低逾渗阈值高热稳定性的三元导电复合材料。
在中国专利“CN102875819A”中介绍了PEEK/TPI共混物的制备方法,此发明侧重于制备一种嵌段共聚物,来提高PEEK/TPI共混物的相容性;在中国专利“CN103374198A”中介绍了一种用玄武岩纤维做增强填料,提高PEEK/TPI共混物机械性能的制备方法;而本发明侧重于制备一种聚合物基导电复合材料,用碳纳米管作为导电填料,诱导PEEK/TPI共混物形成双连续结构,开发具有低逾渗阈值的导电复合材料。
在中国专利“CN102321338A”中介绍了PEEK基复合电磁屏蔽材料的制备方法,此发明以PEEK单一聚合物为基体,聚醚砜作为导电填料的分散剂,使导电填料均匀分散在PEEK基体中,制备电磁屏蔽材料;在中国专利“CN102942780A”中介绍了聚醚醚酮导电薄膜的制备方法,此发明以PEEK单一聚合物为基体,通过拉伸、热压等方式使导电填料均匀分散在PEEK基体中,制备导电薄膜;而本发明以PEEK/TPI共混物为基体,由碳纳米管选择性地分布在PEEK/TPI共混物基体中,得到具有双连续结构的三元导电复合材料。
在中国专利“CN102190830A”中介绍了一种低炭黑含量聚合物基PTC材料的制备方法,此发明以聚丙烯/聚偏氟乙烯为聚合物基体,属于通用塑料和工程塑料领域,材料使用温度低于150℃;而本发明旨在开发一种高热稳定性的导电材料,以PEEK/TPI共混物为聚合物基体,属于特种工程塑料领域,材料使用温度在200℃以上。
发明内容
本发明的目的在于提供一种低逾渗阈值、高热稳定性的碳纳米管三元导电复合材料及其制备方法。
本发明的一种低逾渗阈值高热稳定性碳纳米管复合材料,其特征在于:由聚醚醚酮(PEEK)和热塑性聚酰亚胺(TPI)的物理共混物为聚合物基体,两种聚合物的质量比为4:6~6:4;碳纳米管选择性地分布在聚酰亚胺中,所述的碳纳米管为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管中的一种或几种,碳纳米管(碳纳米管与聚合物基体间也是物理共混)占复合材料总质量的0.1%~3.0wt%。复合材料在103Hz频率下的交流电导率为5.0×10‐10~2.0×10‐1S/m(安捷伦4294A型精密阻抗分析仪,室温测试),其逾渗阈值为0.2wt%~1.0wt%,在200~240℃高温区的储能模量为740MPa~900MPa(美国TA公司Q800型动态机械性能分析仪)。
本发明所述的聚醚醚酮树脂的熔融指数为80~120g/10min(熔融指数测试条件:测试温度400℃,载荷为5kg),对数比浓粘度为0.66~0.60(测试条件:25℃,溶剂为浓硫酸,溶液浓度0.01g/min),其结构式如Ⅰ所示,n表示聚合度,n≥1的整数。(聚醚醚酮树脂的具体制备方法见发明专利“含氟聚醚醚酮类三元共聚物及其合成方法”,专利号:ZL200710055849.9)
本发明所述的碳纳米管三元导电复合材料的制备方法,包括以下步骤:将PEEK和TPI在120~240℃下干燥2~4小时,然后将干燥后的聚合物与碳纳米管在高速混料机内进行预混,得到含导电填料的复合材料粉料;然后将预混的粉料加入到微型挤出机(Mini‐Haake双螺杆挤出机)内并于340~400℃熔融共混,挤出后造粒;最后将粒料烘干后采用注塑成型或热压成型的方式,得到碳纳米管三元导电复合材料。
本发明所述的碳纳米管导电复合材料,其特征在于:通过碳纳米管选择性分布在聚酰亚胺中,复合材料形成双连续结构,与单一聚合物基体相比,该复合材料具有很低的逾渗阈值和良好的导电性能。此外,该复合材料在200~240℃高温区的储能模量为740MPa~900MPa,有很好的高温使用性能。本方法工艺简单、容易实施、易于工业化生产操作,所制备的复合材料因其优异的导电性能和高温使用性能而在导电、抗静电、电磁屏蔽等领域有广泛的应用前景。
附图说明
图1:(a)实施例2中复合材料淬断面的扫描电镜照片,其中的聚酰亚胺预先被刻蚀掉以区分两相结构,(a)中黑色区域为聚酰亚胺,灰色区域为聚醚醚酮,可以看到复合材料形成了双连续结构,即聚醚醚酮相为连续的结构,聚酰亚胺相也为连续的结构;(b)是(a)中白色实线区域的放大图,可以看到黑色的聚酰亚胺区域分布有碳纳米管;(c)是(a)中白色虚线区域的放大图,说明灰色的聚醚醚酮区域没有碳纳米管的存在;(d)是实施例2中复合材料淬断面的扫描电镜照片,但其中的聚酰亚胺未被刻蚀,(d)图可以看到碳纳米管的存在,(c)与(d)对比可说明聚醚醚酮中没有碳纳米管。因此,综合图1可以说明,碳纳米管选择性地分布在聚酰亚胺中,复合材料形成双连续结构。碳纳米管的选择性分布主要是由于所选用的聚醚醚酮和聚酰亚胺的分子极性差异,两者对碳纳米管的浸润吸附作用不同,碳纳米管倾向于分布在对其浸润吸附更强的聚酰亚胺中。
图2:用实施例1、2、3所示的方法制备的复合材料的电导率‐填料量关系图可以看到,图中电导率变化最快的点对应的填料量(即逾渗阈值)为0.6wt%。
具体实施方式
下面通过实施例对本发明进行具体描述,所述的实施例只是对本发明的权利要求的具体描述,权利要求包括但不局限于所述的实施例内容。
实施例1:
将熔融指数为100g/10min、对数比浓粘度0.63的聚醚醚酮和热塑性聚酰亚胺在180℃干燥3h,导电复合材料按各组分和100.0wt%计算,含49.95wt%的聚醚醚酮,49.95wt%的热塑性聚酰亚胺,0.1wt%的双壁碳纳米管,在高速混料机内预混2min得到复合材料粉料。将上述复合材料粉料加入到双螺杆挤出机中在360℃熔融挤出,得到碳纳米管重量百分数0.1wt%,聚醚醚酮和聚酰亚胺质量比为5:5的导电复合材料。熔融挤出后,造粒得到粒料。
最后将粒料烘干后注塑成型(Mini‐Jet注塑机,注塑温度380℃),注塑成直径20mm,厚度2mm的圆形样品,用安捷伦4294A型精密阻抗分析仪测试在103Hz下的交流电导率为8.0×10‐10S/m。此外,用美国TA公司Q800型动态机械性能分析仪测得,该复合材料在200~240℃高温区的储能模量为750MPa。
本发明所用的热塑性聚酰亚胺为南京岳子化工有限公司生产,型号YZPI-JL100。所用的碳纳米管为成都时代纳米科技有限公司生产,外径10~20nm,长度约30μm,纯度≥95%。
实施例2:
将熔融指数为100g/10min、对数比浓粘度0.63的聚醚醚酮和热塑性聚酰亚胺在180℃干燥3h,导电复合材料按各组分和100.0wt%计算,含49.5wt%的聚醚醚酮,49.5wt%的热塑性聚酰亚胺,1.0wt%的双壁碳纳米管,在高速混料机内预混2min得到复合材料粉料。将上述复合材料粉料加入到双螺杆挤出机中在360℃熔融挤出,得到碳纳米管重量百分数1.0wt%,聚醚醚酮和聚酰亚胺质量比为5:5的导电复合材料。熔融挤出后,造粒得到粒料。
最后将粒料烘干后注塑成型(Mini‐Jet注塑机,注塑温度380℃),注塑成直径20mm,厚度2mm的圆形样品,用安捷伦4294A型精密阻抗分析仪测试在103Hz下的交流电导率为1.5×10‐4S/m。此外,用美国TA公司Q800型动态机械性能分析仪测得,该复合材料在200~240℃高温区的储能模量为810MPa。
实施例3:
将熔融指数为100g/10min、对数比浓粘度0.63的聚醚醚酮和热塑性聚酰亚胺在180℃干燥3h,导电复合材料按各组分和100.0wt%计算,含48.5wt%的聚醚醚酮,48.5wt%的热塑性聚酰亚胺,3.0wt%的双壁碳纳米管,在高速混料机内预混2min得到复合材料粉料。将上述复合材料粉料加入到双螺杆挤出机中在360℃熔融挤出,得到碳纳米管重量百分数3.0wt%,聚醚醚酮和聚酰亚胺质量比为5:5的导电复合材料。熔融挤出后,造粒得到粒料。
最后将粒料烘干后注塑成型(Mini‐Jet注塑机,注塑温度380℃),注塑成直径20mm,厚度2mm的圆形样品,用安捷伦4294A型精密阻抗分析仪测试在103Hz下的交流电导率为1.1×10‐2S/m。此外,用美国TA公司Q800型动态机械性能分析仪测得,该复合材料在200~240℃高温区的储能模量为880MPa。
由实施例1、2、3中的方法,所制备的复合材料有良好的导电性,由附图2表明其逾渗阈值为0.6wt%。
实施例4:
将熔融指数为80g/10min、对数比浓粘度0.66的聚醚醚酮和热塑性聚酰亚胺在120℃干燥4h,导电复合材料按各组分和100.0wt%计算,含39.96wt%的聚醚醚酮,59.94wt%的热塑性聚酰亚胺,0.1wt%的多壁碳纳米管,在高速混料机内预混2min得到复合材料粉料。将上述复合材料粉料加入到双螺杆挤出机中在340℃熔融挤出,得到碳纳米管重量百分数0.1wt%,聚醚醚酮和聚酰亚胺质量比为4:6的导电复合材料。熔融挤出后,造粒得到粒料。
最后将粒料烘干后热压成型(吉林大学科教仪器厂RY‐20型热压机,热压温度360℃),得到厚度约0.5mm的片状样品,用安捷伦4294A型精密阻抗分析仪测试在103Hz下的交流电导率为5.0×10‐10S/m。此外,用美国TA公司Q800型动态机械性能分析仪测得,该复合材料在200~240℃高温区的储能模量为740MPa。
实施例5:
将熔融指数为80g/10min、对数比浓粘度0.66的聚醚醚酮和热塑性聚酰亚胺在120℃干燥4h,导电复合材料按各组分和100.0wt%计算,含39.6wt%的聚醚醚酮,59.4wt%的热塑性聚酰亚胺,1.0wt%的多壁碳纳米管,在高速混料机内预混2min得到复合材料粉料。将上述复合材料粉料加入到双螺杆挤出机中在340℃熔融挤出,得到碳纳米管重量百分数1.0wt%,聚醚醚酮和聚酰亚胺质量比为4:6的导电复合材料。熔融挤出后,造粒得到粒料。
最后将粒料烘干后热压成型(吉林大学科教仪器厂RY‐20型热压机,热压温度360℃),得到厚度约0.5mm的片状样品,用安捷伦4294A型精密阻抗分析仪测试在103Hz下的交流电导率为8.4×10‐5S/m。此外,用美国TA公司Q800型动态机械性能分析仪测得,该复合材料在200~240℃高温区的储能模量为790MPa。
实施例6:
将熔融指数为80g/10min、对数比浓粘度0.66的聚醚醚酮和热塑性聚酰亚胺在120℃干燥4h,导电复合材料按各组分和100.0wt%计算,含39.0wt%的聚醚醚酮,58.0wt%的热塑性聚酰亚胺,3.0wt%的多壁碳纳米管,在高速混料机内预混2min得到复合材料粉料。将上述复合材料粉料加入到双螺杆挤出机中在340℃熔融挤出,得到碳纳米管重量百分数3.0wt%,聚醚醚酮和聚酰亚胺质量比为4:6的导电复合材料。熔融挤出后,造粒得到粒料。
最后将粒料烘干后热压成型(吉林大学科教仪器厂RY‐20型热压机,热压温度360℃),得到厚度约0.5mm的片状样品,用安捷伦4294A型精密阻抗分析仪测试在103Hz下的交流电导率为7.7×10‐3S/m。此外,用美国TA公司Q800型动态机械性能分析仪测得,该复合材料在200~240℃高温区的储能模量为840MPa。
由实施例4、5、6中的方法,所制备的复合材料有良好的导电性,其逾渗阈值为1.0wt%。
实施例7:
将熔融指数为120g/10min、对数比浓粘度0.60的聚醚醚酮和热塑性聚酰亚胺在240℃干燥2h,导电复合材料按各组分和100.0wt%计算,含59.94wt%的聚醚醚酮,39.96wt%的热塑性聚酰亚胺,0.1wt%的单壁碳纳米管,在高速混料机内预混2min得到复合材料粉料。将上述复合材料粉料加入到双螺杆挤出机中在400℃熔融挤出,得到碳纳米管重量百分数0.1wt%,聚醚醚酮和聚酰亚胺质量比为6:4的导电复合材料。熔融挤出后,造粒得到粒料。
最后将粒料烘干后注塑成型(Mini‐Jet注塑机,注塑温度380℃),注塑成厚度4mm的板材,用安捷伦4294A型精密阻抗分析仪测试在103Hz下的交流电导率为2.8×10‐9S/m。此外,用美国TA公司Q800型动态机械性能分析仪测得,该复合材料在200~240℃高温区的储能模量为780MPa。
实施例8:
将熔融指数为120g/10min、对数比浓粘度0.60的聚醚醚酮和热塑性聚酰亚胺在240℃干燥2h,导电复合材料按各组分和100.0wt%计算,含59.4wt%的聚醚醚酮,39.6wt%的热塑性聚酰亚胺,1.0wt%的单壁碳纳米管,在高速混料机内预混2min得到复合材料粉料。将上述复合材料粉料加入到双螺杆挤出机中在400℃熔融挤出,得到碳纳米管重量百分数1.0wt%,聚醚醚酮和聚酰亚胺质量比为6:4的导电复合材料。熔融挤出后,造粒得到粒料。
最后将粒料烘干后注塑成型(Mini‐Jet注塑机,注塑温度380℃),注塑成厚度4mm的板材,用安捷伦4294A型精密阻抗分析仪测试在103Hz下的交流电导率为3.9×10‐3S/m。此外,用美国TA公司Q800型动态机械性能分析仪测得,该复合材料在200~240℃高温区的储能模量为810MPa。
实施例9:
将熔融指数为120g/10min、对数比浓粘度0.60的聚醚醚酮和热塑性聚酰亚胺在240℃干燥2h,导电复合材料按各组分和100.0wt%计算,含58.0wt%的聚醚醚酮,39.0wt%的热塑性聚酰亚胺,3.0wt%的单壁碳纳米管,在高速混料机内预混2min得到复合材料粉料。将上述复合材料粉料加入到双螺杆挤出机中在400℃熔融挤出,得到碳纳米管重量百分数3.0wt%,聚醚醚酮和聚酰亚胺质量比为6:4的导电复合材料。熔融挤出后,造粒得到粒料。
最后将粒料烘干后注塑成型(Mini‐Jet注塑机,注塑温度380℃),注塑成厚度4mm的板材,用安捷伦4294A型精密阻抗分析仪测试在103Hz下的交流电导率为2.0×10‐1S/m。此外,用美国TA公司Q800型动态机械性能分析仪测得,该复合材料在200~240℃高温区的储能模量为900MPa。
由实施例7、8、9中的方法,所制备的复合材料有良好的导电性,其逾渗阈值为0.2wt%。

Claims (5)

1.一种低逾渗值高热稳定性碳纳米管三元复合材料,其特征在于:以聚醚醚酮和热塑性聚酰亚胺的共混物为聚合物基体,两种聚合物的质量比为4:6~6:4;导电填料为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管中的一种或几种,碳纳米管选择性地分布在聚酰亚胺中,碳纳米管占复合材料总质量的0.1%~3.0wt%。
2.如权利要求1所述的一种低逾渗值高热稳定性碳纳米管三元复合材料,其特征在于:聚醚醚酮树脂的熔融指数为80~120g/10min,对数比浓粘度为0.66~0.60。
3.如权利要求1所述的一种低逾渗值高热稳定性碳纳米管三元复合材料,其特征在于:在103Hz频率下的交流电导率为5.0×10‐10~2.0×10‐1S/m,其逾渗阈值为0.2wt%~1.0wt%,复合材料在200~240℃高温区的储能模量为740MPa~900MPa。
4.权利要求1所述的低逾渗值高热稳定性碳纳米管三元复合材料的制备方法,其特征在于:将聚醚醚酮和热塑性聚酰亚胺在120~240℃下干燥2~4小时,然后将干燥后的聚合物与碳纳米管预混,得到含导电填料的复合材料粉料;然后将预混的粉料加入到挤出机内并于340~400℃熔融共混,挤出后造粒;最后将粒料烘干后采用注塑成型或热压成型的方式,得到三元复合导电材料。
5.权利要求1~3任何一项所述的低逾渗值高热稳定性碳纳米管三元复合材料在导电、抗静电或电磁屏蔽材料中的应用。
CN201410222650.0A 2014-05-23 2014-05-23 一种低逾渗阈值高热稳定性碳纳米管三元复合材料及其制备方法 Expired - Fee Related CN103992616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410222650.0A CN103992616B (zh) 2014-05-23 2014-05-23 一种低逾渗阈值高热稳定性碳纳米管三元复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410222650.0A CN103992616B (zh) 2014-05-23 2014-05-23 一种低逾渗阈值高热稳定性碳纳米管三元复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN103992616A true CN103992616A (zh) 2014-08-20
CN103992616B CN103992616B (zh) 2016-02-03

Family

ID=51306969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410222650.0A Expired - Fee Related CN103992616B (zh) 2014-05-23 2014-05-23 一种低逾渗阈值高热稳定性碳纳米管三元复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN103992616B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102286207A (zh) * 2011-06-22 2011-12-21 四川大学 一种热塑性聚合物基导热复合材料及其制备方法
CN102321338A (zh) * 2011-07-15 2012-01-18 吉林大学 聚醚醚酮基复合电磁屏蔽材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102286207A (zh) * 2011-06-22 2011-12-21 四川大学 一种热塑性聚合物基导热复合材料及其制备方法
CN102321338A (zh) * 2011-07-15 2012-01-18 吉林大学 聚醚醚酮基复合电磁屏蔽材料及其制备方法

Also Published As

Publication number Publication date
CN103992616B (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
Qi et al. Selective localization of multi-walled carbon nanotubes in bi-component biodegradable polyester blend for rapid electroactive shape memory performance
Rybak et al. Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices
Xu et al. Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler
Xu et al. Enhancement of electrical conductivity by changing phase morphology for composites consisting of polylactide and poly (ε-caprolactone) filled with acid-oxidized multiwalled carbon nanotubes
CN102585348B (zh) 一种增韧导电材料及其制备方法
KR101309738B1 (ko) 고분자/필러의 전기전도성 복합체 및 이의 제조방법
Park et al. Effect of multi-walled carbon nanotube dispersion on the electrical and rheological properties of poly (propylene carbonate)/poly (lactic acid)/multi-walled carbon nanotube composites
Pötschke et al. Liquid sensing properties of melt processed polypropylene/poly (ε-caprolactone) blends containing multiwalled carbon nanotubes
CN102953137B (zh) 高弹性导电纤维及其制备方法
CN102585349B (zh) 一种抗静电材料、制备方法及其应用
Zhang et al. Improvement of the thermal/electrical conductivity of PA6/PVDF blends via selective MWCNTs-NH2 distribution at the interface
Wang et al. Polypyrrole/poly (vinyl alcohol-co-ethylene) nanofiber composites on polyethylene terephthalate substrate as flexible electric heating elements
Zhou et al. Electrical, morphological and thermal properties of microinjection molded polyamide 6/multi-walled carbon nanotubes nanocomposites
Zhan et al. Electrical, thermal, and mechanical properties of polyarylene ether nitriles/graphite nanosheets nanocomposites prepared by masterbatch route
Huang et al. Parallel carbon nanotube stripes in polymer thin film with tunable microstructures and anisotropic conductive properties
CN105647017A (zh) 具有连续隔离结构的导电高分子复合材料及其制备方法
Liu et al. Constructing a double-percolated conductive network in a carbon nanotube/polymer-based flexible semiconducting composite
Yan et al. Effect of compounding sequence on localization of carbon nanotubes and electrical properties of ternary nanocomposites
CN103709744A (zh) 一种碳纤/碳纳米管增强尼龙复合材料及其制备方法
Bijarimi et al. Preparation and characterization of poly (lactic acid)(PLA)/polyamide 6 (PA6)/graphene nanoplatelet (GNP) blends bio-based nanocomposites
CN108192218B (zh) 一种三维互穿网络结构导电合金材料及其制备方法
Lv et al. A facile rheological approach for the determination of “super toughness point” of nylon1212/POE-g-MAH/MWCNT nanocomposites
Li et al. Electrically conductive charcoal powder/ultrahigh molecular weight polyethylene composites
CN102863787B (zh) 一种导电-抗静电复合材料及其制备方法
Lai et al. High positive temperature coefficient effect of resistivity in conductive polystyrene/polyurethane composites with ultralow percolation threshold of MWCNTs via interpenetrating structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160203

Termination date: 20160523

CF01 Termination of patent right due to non-payment of annual fee