CN103979615B - 硼掺杂α-Ni(OH)2及其制备方法、用途 - Google Patents

硼掺杂α-Ni(OH)2及其制备方法、用途 Download PDF

Info

Publication number
CN103979615B
CN103979615B CN201410173459.1A CN201410173459A CN103979615B CN 103979615 B CN103979615 B CN 103979615B CN 201410173459 A CN201410173459 A CN 201410173459A CN 103979615 B CN103979615 B CN 103979615B
Authority
CN
China
Prior art keywords
boron doped
preparation
boron
source
doped alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410173459.1A
Other languages
English (en)
Other versions
CN103979615A (zh
Inventor
杨敬贺
李亚敏
杨朵
李旭影
陈威
吴玉峰
张文凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN201410173459.1A priority Critical patent/CN103979615B/zh
Publication of CN103979615A publication Critical patent/CN103979615A/zh
Application granted granted Critical
Publication of CN103979615B publication Critical patent/CN103979615B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明属于电化学、储能及无机材料技术领域,公开了一种硼掺杂α-Ni(OH)2及其制备方法、用途。硼掺杂α-Ni(OH)2是由纳米片相互交叠组装而成的花状多孔球。将镍源和P123混合并溶解在水中,分两次加入硼源,第一次加入后室温下搅拌至少2h,然后第二次加入,搅拌至少200min,过滤,干燥,得到硼掺杂的α-Ni(OH)2材料。本发明的优点是制备方法简单,制备的硼掺杂α-Ni(OH)2比表面高,可达400m2/g;在充放电电流为3A/g时,比电容高达~2296F/g,甚至经过2000次循环后,当电流密度为28.6A/g,比电容也没有明显的衰减,在电化学应用领域有较好的应用前景。

Description

硼掺杂α-Ni(OH)2及其制备方法、用途
技术领域
本发明属于电化学、储能及无机材料技术领域,涉及一种硼掺杂α-Ni(OH)2及其制备方法、用途。
背景技术
近年来,空气污染的日益严重以及人们对于新能源的迫切需求促进了可再生清洁能源的储存和转换的研究热情(X.Li,G.Zhang,X.Bai,X.Sun,X.Wang,E.Wang,H.Dai,HighlyconductinggraphenesheetsandLangmuir-Blodgettfilms,NatNanotechnol,3(2008)538-542.)。电化学超级电容器,一种比较有前景的汽车应用和便携设备的能源,因其较蓄电池具有较高的功率密度和较长的循环寿命而被认为是能源储存的候选者。根据电化学电容器储存电能的机理的不同,可以将它分为双电层电容器(EDLC)和赝电容器(Pesudocapaeitor)。双电层电容器的基本原理是利用电极和电解质之间形成的界面双电层来存储能量的一种新型电子元件,需要电极材料具有高的比表面,比如活性碳材料,而赝电容器在电极和电解质间总是存在法拉第氧化还原反应过程,如金属氢氧化物、导电聚合物等(J.H.Chang,M.Park,D.Ham,S.B.Ogale,R.S.Mane,S.H.Han,Liquid-phasesynthesizedmesoporouselectrochemicalsupercapacitorsofnickelhydroxide,ElectrochimActa,53(2008)5016-5021.)。赝电容器电子的储存是源于活性材料的氧化还原反应,因而可获得比双电层电容更高的电容量和能量密度。氢氧化镍因其具有明确的氧化还原反应、多种合成方法、成本低且在自然界中含量丰富等特点而被公认为是一种比较有前景的赝电容电极材料,因此通过合成高比表面的多孔性纳米结构的氢氧化镍来提高其比电容的方法意义重大。
发明内容
本发明所要解决的技术问题在于提供一种生产成本低、制备方法简单、比电容量大的硼掺杂α-Ni(OH)2及其制备方法、用途。
本发明的技术方案:
硼掺杂α-Ni(OH)2,其结构为:由纳米片相互交叠组装而成的花状多孔球。
进一步,纳米片的片长为50nm、片宽为50nm、片厚为5nm,花状多孔球的直径为300nm。
制备方法:将镍源和P123混合并溶解在水中,分两次加入硼源,第一次加入后室温下搅拌至少2h,然后第二次加入,搅拌至少200min,过滤,干燥,得到硼掺杂的α-Ni(OH)2材料。
所述镍源可以为硫酸镍、醋酸镍、氯化镍或硝酸镍;所述硼源可以为硼氢化钠、氧化硼或硼酸钠。
硼源优选以其水溶液形式加入。
硼掺杂α-Ni(OH)2的用途:用作电极材,更优选用作镍氢电池、镉镍电池或超级电容器的电极材料。
硼掺杂α-Ni(OH)2是基于表面活性剂自组装及与两种前驱体相互作用形成的。在反应过程中,随着体系PH值的增加,镍便会以硼掺杂的α相的Ni(OH)2析出,其中分两次加入硼源并且要长时间搅拌的目的是使硼氢化钠有足够的时间水解并游离出OH-,保持OH-具有一定的浓度和足够长的持续时间,以便更好地与镍接触反应。
本发明的优点是制备方法简单,制备的硼掺杂α-Ni(OH)2比表面高,可达400m2/g;在充放电电流为3A/g时,比电容高达~2296F/g,甚至经过2000次循环后,当电流密度为28.6A/g,比电容也没有明显的衰减,在电化学应用领域有较好的应用前景。
附图说明
图1为该材料的XRD图。
图2为该材料的XPS分析图。
图3为该材料的扫描电子显微镜(A,B)和透射电子显微镜(C,D)图。
图4A为该材料用于超级电容器电极材料依次在电流密度3A/g,6A/g,12A/g,24A/g和48A/g条件下,测得的恒流充放电曲线,其中Time(s)为充放电时间,Potentialvs.Ag/AgCl(V)为充放电的电压;图4B为由图4A所计算出的比电容,其中DischargeCurrent(A/g)放电比电流,SpecificCapacitance(F/g)为放电比电容;图4C为在电流密度28.6A/g条件下测定的充放电循环曲线,其中Time(s)为充放电时间,Potentialvs.Ag/AgCl(V)为充放电的电压;图4D为在电流密度28.6A/g条件下测定的充放电的循环稳定性图,其中CycleNumber为循环次数,CapacitanceRetention(%)为电容保持率。
具体实施方式
实施例1
称取8.6g六水合硝酸镍,加入到40ml蒸馏水中,搅拌分散15分钟,使镍盐充分溶解。称取4gP123(Aldrich,EO20PO70EO20,Ma=5800),加入到400ml蒸馏水中,搅拌分散120分钟,使P123充分溶解。将硝酸镍溶液逐滴滴入P123溶液中,在40℃下搅拌2小时,然后自然降温,当温度下降至室温时,将20ml硼氢化钠溶液(含硼氢化钠1.5克)滴加到该混合溶液中,室温下搅拌2小时,然后再加入20ml硼氢化钠溶液(含硼氢化钠1.5克)到该混合溶液中,充分搅拌200分钟以后,生成浅绿色沉淀物,产物经蒸馏水、无水乙醇各洗涤3次,在真空干燥箱中80℃干燥24小时,即得到花状多孔球形的硼掺杂α-Ni(OH)2
产物的XRD结果如图1所示,XPS分析图如图2所示,形貌观察如图3所示。图1和图2充分证明制备的产物确实为硼掺杂α-Ni(OH)2。由图3可知:该花状多孔球形的硼掺杂α-Ni(OH)2直径约为300nm,纳米片的长度约为50nm、宽度约为50nm、厚度约为5nm;其主要暴露晶面取向为(006)和(101)。
通过micro公司的ASAP2010分析仪,以氮气多图吸附的方法测量产物的BET比表面积,结果高达400m2/g。
图4A为该材料用于超级电容器电极材料依次在电流密度3A/g,6A/g,12A/g,24A/g和48A/g条件下,测得的恒流充放电曲线,其中Time(s)为充放电时间,Potentialvs.Ag/AgCl(V)为充放电的电压;图4B为由图4A所计算出的比电容,其中DischargeCurrent(A/g)放电比电流,SpecificCapacitance(F/g)为放电比电容;图4C为充放电循环,其中Time(s)为充放电时间,Potentialvs.Ag/AgCl(V)为充放电的电压;图4D为充放电的循环稳定性,其中CycleNumber为循环次数,CapacitanceRetention(%)为电容保持率。由图4B可知:在充放电电流为3A/g时,比电容高达~2296F/g;由图4D可知:当电流密度为28.6A/g,甚至经过2000次循环后,比电容也没有明显的衰减。

Claims (5)

1.硼掺杂α-Ni(OH)2,其特征在于其结构为:由纳米片相互交叠组装而成的花状多孔球;按下法制备获得:将镍源和P123混合并溶解在水中,分两次加入硼源,第一次加入后室温下搅拌至少2h,然后第二次加入,搅拌至少200min,过滤,干燥,得到硼掺杂的α-Ni(OH)2材料。
2.如权利要求1所述的硼掺杂α-Ni(OH)2,其特征在于:纳米片的片长为50nm、片宽为50nm、片厚为5nm,花状多孔球的直径为300nm。
3.如权利要求1或2所述的硼掺杂α-Ni(OH)2的制备方法,其特征在于:将镍源和P123混合并溶解在水中,分两次加入硼源,第一次加入后室温下搅拌至少2h,然后第二次加入,搅拌至少200min,过滤,干燥,得到硼掺杂的α-Ni(OH)2材料。
4.如权利要求3所述的硼掺杂α-Ni(OH)2的制备方法,其特征在于:所述镍源为硫酸镍、醋酸镍、氯化镍或硝酸镍;所述硼源为硼氢化钠。
5.如权利要求4所述的硼掺杂α-Ni(OH)2的制备方法,其特征在于:硼源以其水溶液形式加入。
CN201410173459.1A 2014-04-28 2014-04-28 硼掺杂α-Ni(OH)2及其制备方法、用途 Expired - Fee Related CN103979615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410173459.1A CN103979615B (zh) 2014-04-28 2014-04-28 硼掺杂α-Ni(OH)2及其制备方法、用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410173459.1A CN103979615B (zh) 2014-04-28 2014-04-28 硼掺杂α-Ni(OH)2及其制备方法、用途

Publications (2)

Publication Number Publication Date
CN103979615A CN103979615A (zh) 2014-08-13
CN103979615B true CN103979615B (zh) 2016-04-13

Family

ID=51271822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410173459.1A Expired - Fee Related CN103979615B (zh) 2014-04-28 2014-04-28 硼掺杂α-Ni(OH)2及其制备方法、用途

Country Status (1)

Country Link
CN (1) CN103979615B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331491A (zh) * 2020-10-28 2021-02-05 沈阳师范大学 一种硼掺杂氧化镍/氢氧化镍电极材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103433044A (zh) * 2013-08-27 2013-12-11 安徽大学 一种钴-镍双金属氢氧化物纳米复合物的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103433044A (zh) * 2013-08-27 2013-12-11 安徽大学 一种钴-镍双金属氢氧化物纳米复合物的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Magnetic Ni/a-Ni(OH)2 porous superstructures:synthesis,influencing factors and applications in the removal of heavy metals";LeiCao, et al.;《RSCAdvances》;20130110;第3卷;第3585-3591页 *
"Porous Ni/b-Ni(OH)2 superstructures:Rapid solvothermal synthesis,characterization,and electrochemical property";Man Wang, et al.;《Journal of Colloid and Interface Science》;20130118;第401卷;第8-13页 *
"Surfactant-free preparation of NiO nanoflowers and their lithium storage properties";FengCao,et al.;《CrystEngComm》;20110610;第13卷;第4903-4908页 *
"Synthesis of porous NiO using NaBH4 dissolved in ethylene glycol as precipitant for high-performance supercapacitors";Miaomiao Liu, et al.;《Electrochimica Acta》;20130614;第107卷;第9-5页 *

Also Published As

Publication number Publication date
CN103979615A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
Sundriyal et al. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications
Shang et al. Synthesis of hollow ZnCo2O4 microspheres with enhanced electrochemical performance for asymmetric supercapacitor
Huang et al. Facilely synthesized porous ZnCo 2 O 4 rodlike nanostructure for high-rate supercapacitors
Hu et al. Fabrication of Ni (OH) 2 nanoflakes array on Ni foam as a binder-free electrode material for high performance supercapacitors
Wang et al. Electrochemical capacitors: mechanism, materials, systems, characterization and applications
Zhang et al. Self-supported 3D layered zinc/nickel metal-organic-framework with enhanced performance for supercapacitors
Long et al. Amorphous Ni–Co binary oxide with hierarchical porous structure for electrochemical capacitors
Wang et al. Superior asymmetric supercapacitor based on Ni-Co oxide nanosheets and carbon nanorods
CN102683037B (zh) 二氧化锰不对称超级电容器及其制备方法
Shivakumara et al. In-situ preparation of nanostructured α-MnO2/polypyrrole hybrid composite electrode materials for high performance supercapacitor
Islam et al. Recent advancements in electrochemical deposition of metal‐based electrode materials for electrochemical supercapacitors
Huang et al. Sewable and cuttable flexible zinc-ion hybrid supercapacitor using a polydopamine/carbon cloth-based cathode
Guan et al. Core/shell nanorods of MnO2/carbon embedded with Ag nanoparticles as high-performance electrode materials for supercapacitors
Chen et al. Controllable fabrication of ZnCo2O4 ultra-thin curved sheets on Ni foam for high-performance asymmetric supercapacitors
Staiti et al. Investigation of polymer electrolyte hybrid supercapacitor based on manganese oxide–carbon electrodes
Li et al. Enhancing the rate and cycling performance of spherical ZnO anode material for advanced zinc-nickel secondary batteries by combined in-situ doping and coating with carbon
Sheng et al. Design and synthesis of dendritic Co 3 O 4@ Co 2 (CO 3)(OH) 2 nanoarrays on carbon cloth for high-performance supercapacitors
Ye et al. Co ions doped NiTe electrode material for asymmetric supercapacitor application
Molahalli et al. Past decade of supercapacitor research–Lessons learned for future innovations
Liu et al. Facile synthesis of CoNi 2 S 4 nanoparticles grown on carbon fiber cloth for supercapacitor application
Haghshenas et al. CoFe2O4@ methyl cellulose core-shell nanostructure and their hybrids with functionalized graphene aerogel for high performance asymmetric supercapacitor
CN104600310A (zh) 无机盐介孔纳米管材料及其梯度热解静电纺丝制备方法和应用
Li et al. Constructing a novel carbon skeleton to anchor Sn/SnO2 nanodots for flexible supercapacitor with excellent rate capability
Liao et al. Hierarchical self-supported Ni (OH) 2@ Ni12P5 for supercapacitor electrodes with ultra-high area ratio capacitance
Siva et al. Gel combustion synthesized NiMoO4 anchored polymer nanocomposites as a flexible electrode material for solid state asymmetric supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160413

Termination date: 20170428

CF01 Termination of patent right due to non-payment of annual fee