CN103972514A - 一种新型三维纳米碳/不锈钢网复合生物阳极及其制备方法与用途 - Google Patents

一种新型三维纳米碳/不锈钢网复合生物阳极及其制备方法与用途 Download PDF

Info

Publication number
CN103972514A
CN103972514A CN201410158540.2A CN201410158540A CN103972514A CN 103972514 A CN103972514 A CN 103972514A CN 201410158540 A CN201410158540 A CN 201410158540A CN 103972514 A CN103972514 A CN 103972514A
Authority
CN
China
Prior art keywords
stainless
steel
wire
nano
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410158540.2A
Other languages
English (en)
Inventor
陈水亮
侯豪情
郑苏琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN201410158540.2A priority Critical patent/CN103972514A/zh
Publication of CN103972514A publication Critical patent/CN103972514A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

本发明公开了一种新型三维纳米碳/不锈钢网复合生物阳极及其制备方法与用途,该三维生物阳极是以纳米碳和不锈钢网为原材料,通过折叠和吸附组装构建而成。该三维纳米碳/不锈钢网复合生物阳极显示出优异的导电性能和机械性能,易加工成型;同时其在微生物燃料电池中具有优异的微生物电化学性能,其产生的面积电流密度高达40~300A/m2,体积电流密度高达5~35kA/m3。该电极材料可作为微生物燃料电池的阳极,并应用于污水处理、生物修复等领域。

Description

一种新型三维纳米碳/不锈钢网复合生物阳极及其制备方法与用途
技术领域
本发明涉及一种新型三维纳米碳/不锈钢网复合生物阳极及其制备方法与用途。
背景技术
电极材料的成本和性能对像微生物燃料电池(MFC)这样的微生物电化学系统的发展和应用起着非常关键的作用。碳材料具有良好的稳定性和微生物附着性能,因此不同结构的碳材料及其复合材料已被广泛用于作为MFCs的电极材料或集流体主要可分为一下两大类:(1)块状或粒状的多孔碳材料,如碳纸、碳纤维毡、网状的玻璃碳(RVC)、堆积的碳颗粒和石墨纤维刷、基于天然资源的三维多孔碳材料等;(2)粉状的碳材料,如碳纳米管、石墨烯、活性碳和碳黑等。块状多孔碳材料,一般直接作为电极使用或通过导电黏结剂固定在石墨或金属等集流体上制成电极使用。然而,块状碳电极具有机械强度低、本体电阻大、与外电连接的接触电阻大等缺点,其实际应用具有一定的局限性。粉状的碳材料可以通过以下两种方法制成电极:(1)黏结法:即采用聚合物粘结剂将粉状的碳材料固定到集流体上;(2)物理吸附法:以多孔聚合物为支撑体,通过分子间相互作用力吸附固定纳米碳,如碳纳米管、石墨烯等,形成纳米碳/聚合物复合电极。用黏结法制备的电极的孔隙率较低,其作为生物阳极时只能允许有限的微生物膜生长,产电效率低;其作为氧气还原阴极时,部分碳纳米材料催化剂的催化位点被粘结剂覆盖,利用率降低。采用物理吸附法制备的纳米碳/聚合物复合电极的支撑体为不导电的聚合物。电极主要靠吸附的纳米碳层导电,因此复合电极的内阻较大,其大规模应用将受到限制。
金属材料,如不锈钢等,具有高的导电性、优异的机械强度、耐腐蚀、低成本以及易成型加工等优点,被广泛用来作为MFC的电极或集流体。不锈钢表面的微生物附着性能相对较差,因此其直接作为生物阳极或生物阴极的产电效率较低【C. Dumas, A. Mollica, D. Feron, R. Basseguy, L. Etcheverry and A. Bergel, Electrochimica Acta, 2007, 53, 468-473】。采用化学气相沉积或火焰合成的方法,在不锈钢上原位修饰一层碳纳米材料,可以极大提高不锈钢电极表面的微生物附着性能【J. L. Lamp, J. S. Guest, S. Naha, K. A. Radavich, N. G. Love, M. W. Ellis and I. K. Puri, Journal of Power Sources, 2011, 196, 5829-5834】。但是,化学气相沉积或火焰合成等生长纳米碳的方法需要经历高温过程(如超过500 oC)。而高温热处理会改变不锈钢中金属的晶体结构和元素分布,产生元素偏析,从而极大降低了不锈钢基体的耐腐蚀性能。因此,采用该方法制备的纳米碳/不锈钢复合电极在MFC中的应用受到了极大的限制。
发明内容
针对目前MFC阳极规模化应用的限制,本发明结合纳米碳材料和不锈钢材料的优点,目的在于提供一种新型三维纳米碳/不锈钢网复合生物阳极及其制备方法。 为了实现上述目的,本发明采取的技术方案是:
(1) 将纳米碳材料均匀分散在分散介质中(如水、酒精等溶剂),形成均一的纳米碳分散液;
(2)将不锈钢网一定角度折叠形成的三维折叠结构,如图1所示;
(3)将三维折叠不锈钢网放入1 mol/L稀酸溶液 (如盐酸、硫酸和磷酸等) 浸泡1~4 h,进行表面处理,以达到一种粗糙表面的效果;
(4)将表面处理的三维折叠不锈钢网浸入到纳米碳分散液中,几分钟后取出烘干,并重复浸入/烘干循环1 ~ 5次;
纳米碳材料是碳纳米管、石墨烯和炭黑等具有1~ 100纳米尺寸的碳材料,分散介质为水、酒精等常用溶剂,分散液的浓度为2 ~ 20 g/L;
所示的不锈钢网,其材质包括SUS302、304、304L、316、316L、310s等,其孔隙大小为20 ~ 200目。
所述的一种新型三维纳米碳/不锈钢网复合生物阳极中的三维结构,其特征是按一定角度折叠而成的三维折叠结构,如图1所示。
所述的一种新型三维纳米碳/不锈钢网复合生物阳极,其折叠角度θ的范围为0 ~ 60o,电极厚度δ的范围为0.5 ~ 10 cm。
一种新型三维纳米碳/不锈钢网复合生物阳极,不锈钢网折叠成三维折叠结构,折叠后的不锈钢网表面覆盖有纳米尺寸的碳材料层形成复合生物阳极,其中不锈钢网折叠角度θ为0 ~ 60o,电极厚度δ的范围为0.5 ~ 10 cm。
所述的一种新型三维纳米碳/不锈钢网复合生物阳极的用途,所述新型三维纳米碳/不锈钢网复合生物阳极用于微生物燃料电池的生物阳极,其微生物电催化面积电流密度高达40 ~ 300 A/m2,体积电流密度高达5~ 35 kA /m3
本发明结合了不锈钢材料的优点,高导电性,优异的机械性能等优点,以及碳纳米材料的优点优异的微生物附着性能,构建了复合的纳米碳/不锈钢网电极材料。其扫描电镜图如附图2;同时通过折叠形成三维结构,增加可供微生物生长的面积,从而可极大增加微生物数量和提高产电电流密度。因此,所述的新型三维纳米碳/不锈钢网复合生物阳极用于微生物燃料电池,其作用效果的特征是该阳极具有以下优异性能:
(a)优异的导电性能和机械性能;
(b)良好的微生物附着性能,其微生物电催化面积电流密度高达40 ~ 300 A/m2,体积电流密度高达5 ~ 35 kA /m3
(c)低成本、易加工成型。
该新型三维纳米碳/不锈钢网复合电极可作为微生物燃料电池的阳极,并应用于污水处理、生物修复等领域。
附图说明
图1 新型三维纳米碳/不锈钢网复合生物阳极中的三维折叠结构示意图;
图2 纳米碳/不锈钢网复合电极的扫描电镜图;
图3 产电电流密度曲线,(A)纯不锈钢网(bare SSM)生物阳极,(B)炭黑/不锈钢网(CB/SSM)生物阳极;
图4(A和B)纯不锈钢网生物阳极以及(C和D)炭黑/不锈钢网生物阳极中的微生物膜的扫描电镜图片。
具体实施方式
实施实例:
1.单层的纳米碳/不锈钢网复合阳极的制备及产电性能测试
将目数为50目的304不锈钢网浸入1 mol/L 的硫酸溶液中浸泡1小时,用蒸馏水清洗干净后,浸入到5 g/L 的炭黑/酒精分散液中,取出烘干,并重复浸泡/烘干步骤3次,得到单层的纳米碳/不锈钢网复合阳极。
选用不同材质或目数的不锈钢网,重复上述步骤可制备不同孔隙大小的纳米碳/不锈钢网复合阳极。
阳极性能的测试条件见文献【Guanghua He, Yanli Gu, Shuijian He, Uwe Schreoer, Shuiliang Chen, Haoqing Hou. Effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes in microbial fuel cells. Bioresour. Technol.10763-10766 (2011)】,具体实验过程如下:以市政污水厂的活性污泥为接种体(南昌青山湖污水厂),通过电化学驯化1星期,筛选出电化学活性的微生物膜,并以之为阳极性能测试的接种体。以人造污水为媒介,醋酸钠为微生物的底物,采用电化学工作站的电流-时间技术来测试电极的阳极性能,即给工作电极施加0.2V(vs. Ag/AgCl参比电极)的电势,记录电流信号;测试过程中采用连续溶液或磁力搅拌溶液供给。在此条件下,测得以传统石墨板阳极的电流密度为11.1 A/m2,石墨毡(纤维直径10微米)阳极的电流密度为16.2 A/m2, 单层50目纯不锈钢网阳极的电流密度为0.025 A/m2,单层纳米碳/不锈钢网复合阳极的电流密度为15.5 A/m2
不同目数的单层纳米碳/不锈钢网复合阳极的产电性能结果如下:
目数 不锈钢材质 电流密度 A/m2
10 304 8.9
20 304 10.4
30 304 12.7
50 304 15.5
50 316L 13.8
60 304 14.1
2. 三维纳米碳/不锈钢网复合阳极的制备及产电性能测试
将目数为50目的304不锈钢网浸入1 mol/L 的硫酸溶液中浸泡1小时,用蒸馏水清洗干净后。将不锈钢网以30o 的角度折叠成厚度为6 mm 的三维不锈钢网,再将其浸入到5 g/L 的炭黑/酒精分散液中,取出烘干,并重复浸泡/烘干步骤3次,三维纳米碳/不锈钢网复合阳极。
重复上述步骤可制备角度分别为5o,10o,20 o,45 o,60 o,厚度任何尺寸的三维纳米碳/不锈钢网复合生物阳极。
不同尺寸三维纳米碳/不锈钢网复合阳极的性能测试结果如下:
角度 厚度/mm 面积电流密度 A/m2 体积电流密度 A/m3
0 o 6
5 o 6 130.5 23.84
5 o 10 180.5 20.11
5 o 15 250.5 15.23
10 o 6 101.6 18.42
20 o 6 64.5 11.84
30 o 6 47.9 8.97
45 o 6 32.7 6.57
60 o 6 25.9 4.32
与传统块三维多孔碳阳极材料相比,本发明所述的新型三维纳米碳/不锈钢网复合生物阳极具有更优异的导电性能和机械性能;同时,单层的纳米碳/不锈钢网复合生物阳极的产电电流密度为15 .5 A/m2(1.55 mA/cm2),如附图3 B,与传统石墨毡相当。单层的纳米碳/不锈钢网可加工成不同形状,形成三维阳极,具有更优异的产电性能,如附图3。
与纯不锈钢等金属电极相比,纳米碳/不锈钢网复合生物阳极具有更优的微生物附着性能。 纳米碳/不锈钢网复合生物阳极可产生比纯不锈钢网生物阳极的产电电流密度0.025 A/m2(0.0025 mA/cm2)高500多倍,如附图3A。附图4的微生物膜的扫描电镜形貌分析显示,产电后纳米碳/不锈钢网复合阳极被厚厚的微生物膜包裹,微生物膜的厚度超过了10微米;而纯SSM电极上微生物膜的比较稀疏,厚度只有约3微米。

Claims (5)

1.一种新型三维纳米碳/不锈钢网复合生物阳极,其特征在于:不锈钢网折叠成三维折叠结构,折叠后的不锈钢网表面覆盖有纳米尺寸的碳材料层形成复合生物阳极,其中不锈钢网折叠角度θ为0 ~ 60o,电极厚度δ的范围为0.5 ~ 10 cm。
2.一种权利要求1所述的一种新型三维纳米碳/不锈钢网复合生物阳极的用途,其特征在于所述新型三维纳米碳/不锈钢网复合生物阳极用于微生物燃料电池的生物阳极,其微生物电催化面积电流密度高达40 ~ 300 A/m2,体积电流密度高达5 ~ 35 kA /m3
3.一种权利要求1中所述的新型三维纳米碳/不锈钢网复合生物阳极的制备方法,其特征是方法步骤如下:
(1) 将纳米碳材料均匀分散在分散介质中,形成均一的纳米碳分散液;
(2)将不锈钢网折叠形成三维折叠结构;
(3)将三维折叠不锈钢网放入稀的酸溶液浸泡1 ~ 4 h,进行表面处理,以达到一种粗糙表面的效果;
(4)将表面处理的三维折叠不锈钢网浸入到纳米碳分散液中,几分钟后取出烘干,并重复浸入/烘干循环1 ~ 5次。
4.根据权利要求1、3所述的一种新型三维纳米碳/不锈钢网复合生物阳极,其特征在于:纳米碳材料是碳纳米管、石墨烯和炭黑等具有1~ 100纳米尺寸的碳材料,分散介质为水、酒精等常用溶剂,分散液的浓度为2 ~ 20 g/L。
5. 根据权利要求1、3所述的一种新型三维纳米碳/不锈钢网复合生物阳极,其特征在于:所述的不锈钢网,其材质包括SUS302、304、304L、316、316L、310s等,其孔隙大小为20 ~ 200目。
CN201410158540.2A 2014-04-21 2014-04-21 一种新型三维纳米碳/不锈钢网复合生物阳极及其制备方法与用途 Pending CN103972514A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410158540.2A CN103972514A (zh) 2014-04-21 2014-04-21 一种新型三维纳米碳/不锈钢网复合生物阳极及其制备方法与用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410158540.2A CN103972514A (zh) 2014-04-21 2014-04-21 一种新型三维纳米碳/不锈钢网复合生物阳极及其制备方法与用途

Publications (1)

Publication Number Publication Date
CN103972514A true CN103972514A (zh) 2014-08-06

Family

ID=51241769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410158540.2A Pending CN103972514A (zh) 2014-04-21 2014-04-21 一种新型三维纳米碳/不锈钢网复合生物阳极及其制备方法与用途

Country Status (1)

Country Link
CN (1) CN103972514A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716336A (zh) * 2015-03-25 2015-06-17 江西师范大学 一种水凝胶微生物电极及其制备方法
CN105024089A (zh) * 2015-06-15 2015-11-04 中国科学院广州能源研究所 一种处理污水并用于湿地供电的微生物燃料电池人工湿地装置
CN105355931A (zh) * 2015-12-08 2016-02-24 江西师范大学 一种不锈钢微生物电极及其制备方法和应用
CN110071297A (zh) * 2019-04-29 2019-07-30 西安交通大学 一种微生物燃料电池生物阳极及其制备方法
CN111668500A (zh) * 2020-05-08 2020-09-15 中国科学院生态环境研究中心 一种不锈钢丝表面覆碳修饰增强生物相容性的方法
CN113422081A (zh) * 2021-06-03 2021-09-21 大连海事大学 一种液流电池电极材料及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306807A (zh) * 2011-08-17 2012-01-04 华南理工大学 一种无膜空气微生物燃料电池阴极及其制备方法
CN102544524A (zh) * 2012-03-05 2012-07-04 江西师范大学 微生物燃料电池三维层状波纹碳阳极材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306807A (zh) * 2011-08-17 2012-01-04 华南理工大学 一种无膜空气微生物燃料电池阴极及其制备方法
CN102544524A (zh) * 2012-03-05 2012-07-04 江西师范大学 微生物燃料电池三维层状波纹碳阳极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YAPING ZHANG ET AL.: "Carbon nanotube-coated stainless steel mesh for enhanced oxygen reduction in biocathode microbial fuel cells", 《JOURNAL OF POWER SOURCES》 *
刘中良等: "微生物燃料电池阳极的研究进展", 《化学与生物工程》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716336A (zh) * 2015-03-25 2015-06-17 江西师范大学 一种水凝胶微生物电极及其制备方法
CN104716336B (zh) * 2015-03-25 2017-11-03 江西师范大学 一种水凝胶微生物电极及其制备方法
CN105024089A (zh) * 2015-06-15 2015-11-04 中国科学院广州能源研究所 一种处理污水并用于湿地供电的微生物燃料电池人工湿地装置
CN105355931A (zh) * 2015-12-08 2016-02-24 江西师范大学 一种不锈钢微生物电极及其制备方法和应用
CN110071297A (zh) * 2019-04-29 2019-07-30 西安交通大学 一种微生物燃料电池生物阳极及其制备方法
CN111668500A (zh) * 2020-05-08 2020-09-15 中国科学院生态环境研究中心 一种不锈钢丝表面覆碳修饰增强生物相容性的方法
CN113422081A (zh) * 2021-06-03 2021-09-21 大连海事大学 一种液流电池电极材料及应用

Similar Documents

Publication Publication Date Title
Mohamed et al. Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell
Gajda et al. Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder
Jourdin et al. A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
Yang et al. Biomass-derived carbon for electrode fabrication in microbial fuel cells: a review
Dong et al. Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells
Wei et al. Recent progress in electrodes for microbial fuel cells
CN103972514A (zh) 一种新型三维纳米碳/不锈钢网复合生物阳极及其制备方法与用途
Choi et al. Enhanced power production of a membrane electrode assembly microbial fuel cell (MFC) using a cost effective poly [2, 5-benzimidazole](ABPBI) impregnated non-woven fabric filter
JP5494996B2 (ja) 微生物燃料電池用電極及びそれを用いた微生物燃料電池
Zhang et al. Carbon nanotube-coated stainless steel mesh for enhanced oxygen reduction in biocathode microbial fuel cells
Hou et al. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs
CN102760888A (zh) 石墨烯/基底电极和聚苯胺-石墨烯/基底电极的制备及应用
Wu et al. Microbial biofuel cell operating effectively through carbon nanotube blended with gold–titania nanocomposites modified electrode
Priya et al. Advancements on sustainable microbial fuel cells and their future prospects: A review
Li et al. Improved performance of a tubular microbial fuel cell with a composite anode of graphite fiber brush and graphite granules
CN102334221A (zh) 用于微生物电解电池和微生物燃料电池的阴极
CN106876761B (zh) 一种自供给水凝胶电解质微生物燃料电池
CN101267045A (zh) 一种微生物燃料电池及应用
Liu et al. Enhanced performance of microbial fuel cell using carbon microspheres modified graphite anode
WO2011025021A1 (ja) 微生物燃料電池用電極及びそれを用いた微生物燃料電池
CN106915829A (zh) 碳纤维电极及其制备方法、双极室生物电化学设备
Karthikeyan et al. Ruthenium oxide/tungsten oxide composite nanofibers as anode catalysts for the green energy generation of Chlorella vulgaris mediated biophotovoltaic cells
Zhao et al. Using a three-dimensional hydroxyapatite/graphene aerogel as a high-performance anode in microbial fuel cells
Zhao et al. Promoting electricity generation of Shewanella putrefaciens in a microbial fuel cell by modification of porous poly (3-aminophenylboronic acid) film on carbon anode
CN104716336B (zh) 一种水凝胶微生物电极及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140806