CN103959196A - 用于性能改善的可重配置图形处理器 - Google Patents

用于性能改善的可重配置图形处理器 Download PDF

Info

Publication number
CN103959196A
CN103959196A CN201180074955.6A CN201180074955A CN103959196A CN 103959196 A CN103959196 A CN 103959196A CN 201180074955 A CN201180074955 A CN 201180074955A CN 103959196 A CN103959196 A CN 103959196A
Authority
CN
China
Prior art keywords
power gating
process unit
power
graphic process
instruction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201180074955.6A
Other languages
English (en)
Inventor
N·卡布拉塞斯
E·C·萨姆森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Priority to CN201510996403.0A priority Critical patent/CN105573473B/zh
Priority to CN201810325284.XA priority patent/CN108509021B/zh
Publication of CN103959196A publication Critical patent/CN103959196A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/20Processor architectures; Processor configuration, e.g. pipelining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/324Power saving characterised by the action undertaken by lowering clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/08Power processing, i.e. workload management for processors involved in display operations, such as CPUs or GPUs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Power Sources (AREA)

Abstract

可使用对图形处理器的部分进行功率门控来改善性能或实现功率预算。可对处理器粒度如切片或子切片进行门控。

Description

用于性能改善的可重配置图形处理器
背景
本申请总体上涉及计算机系统中的图形处理。
图形处理器在不同的处理条件下运行。在一些情况下,它们可在高功耗模式下以及在低功耗模式下运行。可能令人期望的是,在给定图形处理器所运行的功耗模式的情况下,获得最大的可能性能。
附图简要说明
图1是本发明的一个实施例的框图。
图2是本发明的另一个实施例的流程图。
图3是本发明的一个实施例的示意图描绘。
图4是本发明的一个实施例的性能相对于功率预算的假想图;以及
图5是一个实施例的功率预算相对于时间的假想图。
详细说明
在一些实施例中,图形处理内核自动对其自身进行重配置以便通过对图形处理引擎的部分进行动态功率门控来在高功率和低功率包络中增加或最大化性能。如在此所使用的,功率门控包括激活或去激活内核部分。
尽管将使用平板计算机图形处理器提供示例,相同的概念应用于任何图形处理器。
图形处理内核通常包括执行算数、逻辑和其他操作的多个执行单元。可使用多个采样器进行纹理处理。采样器和多个执行单元是子切片(subslice)。可基于目标性能和功率预算在特定的图形处理内核中包括多个子切片。对子切片进行组合以形成图形处理切片(slice)。图形处理内核可包含一个或多个切片。在平板计算机图形处理内核中,通常使用单个切片以及一个、两个或三个子切片设计。多切片在客户端图形处理器中是常见的。
因此,参见图1,示出了典型的图形处理器内核,内核10包括切片编号1(标记为14),该切片可包括固定功能流水线逻辑16和多个子切片18a和18b。在一些实施例中,可包括更多切片和更多或更少的子切片。图形处理内核还包括固定功能逻辑12。
一个、两个和三个子切片设计的功率和性能特征不同,如图4所示。作为一个示例,性能线性地增加到性能相对于功率耗散的拐点A(例如,大约2.5瓦)。在该拐点以下,图形处理器在频率成比例的区域中工作,在该区域中,可在不升高工作电压的情况下升高图形处理器频率。在该拐点以上,图形处理器频率仅在电压也升高时才升高,这通常对功率耗散具有负面影响并且导致性能相对于功率耗散中比频率成比例区域经历更平缓的曲线。
可对图形处理器的子切片中的一个或多个进行功率门控。总体上,子切片越多,性能越高,但是性能间隙随着可用功率预算的减少而减少并且可能在图4中存在点B(例如,在大约1.5瓦),其中单一子切片配置表现得比两子切片配置更好。这种更优性能是由具有明显更多泄露功率以及因此更少用于动态功率的空间的更大配置造成的。在低功率预算中,更少用于动态功率的空间可显著地限制更大配置的频率和性能,使得其看起来没有更小配置那么吸引人。
在一些实施例中,功率共享机制可用于实现图形处理器子切片的高效动态功率门控。当然,代替对子切片功耗进行门控,相同的概念应用于具有多于一个切片的实施例中的任意数量的图形处理器切片的动态功率门控。
图形处理器可具有功率共享功能,该功能基本上随着时间增加(或降低)功率,如图5所示。在特定的时间点t1处,可由功率控制单元为图形处理器内核分配特定低水平的功率预算TDP1,该功率预算迫使图形处理器在特定频率f1下运行,该特定频率是允许图形处理器不超过其分配功率预算的最大频率。当功率预算随着时间增加时,图形内核可在逐渐更高的频率下运行。
在子切片功率门控下,功率控制单元事先得知图形处理器内核可配置有全套的执行单元和子切片或者配置有更少的执行单元和子切片。例如,一个实施例可包括十六个执行单元和两个子切片并且另一种操作模式可包括八个执行单元和一个子切片。当图形处理器可用的功率预算很小时,可在更小的内核配置中配置图形处理器,其中两个可用子切片之一被功率门控。
总体而言,不是简单地在任何特定时间点关闭子切片,因为其可能正在执行有效线程。当功率控制单元确定应当对子切片进行功率门控时,立即动作是阻挡新的图形处理线程被调度到该子切片上。因此,在已经在子切片上执行的线程完成并且子切片变为空闲之前需要一段时间。在一个实施例中,仅当这时对子切片进行实际功率门控。
在功率门控下,当功率预算逐渐增加时,在某一时间点,初始关闭的子切片变为打开。或者,相反地,当处理器从高功率预算变为低功率预算时,可关闭子切片(如图5所示)。
当关闭子切片时,频率可增加或翻倍(如果关闭了两个子切片之一)。结果是,性能可保持相对稳定,因为剩余的子切片运行得比两个子切片快两倍。这种频率增加确保了从较大的未门控图形内核到较小的门控图形内核的平滑转变(从性能角度出发)。相反地,当子切片未被门控并且我们转变到两切片图形内核时,时钟频率减半,以便将总体性能维持在大约相同的水平下。
如上所述的时钟频率改变被设计成在出现功率门控的时间点不显著地中断(例如翻倍或减半)图形内核的可缩放部分(图1所示子切片逻辑)的总体性能。然而,如果功率门控的动作由于其低泄露耗散已经产生了更功率高效的图形内核,这随后会允许图形内核升高其时钟频率和功率耗散从而满足其分配功率预算。这将导致增加的性能,而这就是功率门控的终极目标。
另一方面,当分配给图形内核的功率预算增加并允许增加子切片时,将时钟频率减半将初始地保留相同的性能。然而,给定增加的图形功率预算,图形内核然后将被允许也升高其频率,这将导致所希望的提高性能的结果。
在如上所述的动态功率门控的过程中升高或降低时钟频率针对图形内核的可缩放部分(即,图1所示的子切片)而言运行良好。然而,如果图形内核的不可缩放部分(例如,固定功能逻辑12,如图1所示)使用相同的时钟,则改变时钟频率可影响并且可能限制该逻辑的性能。这将不是所希望的。为了避免这种情况,不可缩放逻辑可使用其自身的独立时钟,该独立时钟不受可缩放图形逻辑内的时钟频率改变的影响。
从较大配置切换到较小配置可改善性能,因为其提供了泄露节省并且为更动态的功率提供了空间。同时,从较大配置切换到较小配置可能潜在地导致增加的动态功率,因为频率也相应地增加了。因此,从较大配置转变到较小配置由于相应的频率增加可能在所实现的泄露节省超过了动态功率成本时发生。当这种情况保持时,这种转变将存在净功率节省并且有余地来继续增加频率并且实现净性能增益。
因此,举一个例子,在十六执行单元下,两子切片单元转变到八执行单元,一个子切片单元作为功率门控的结果,以下泄露增量(LD)等式适用:
LD > f 8 * C 8 V 8 2 - f 16 * C 16 V 16 2 - - - ( 1 )
LD > f 8 * AR 8 * C max 8 * V 8 2 - f 16 * C 16 V 16 2 - - - ( 2 )
其中f8和f16是在功率门控或不门控事件发生时的时间点处八和十六执行单元配置的频率;V8和V16是当功率门控事件发生时两个图形处理内核的工作电压;C8和C16是当功率门控事件发生时两个图形处理内核的切换电容;Cmax8和Cmax16是对于功率病毒(virus)工作负载,两个图形内核的最大切换电容;以及AR16和AR8是就在功率门控或不门控事件之前和之后的两个内核的应用率。应用的“应用率”被定义为当该应用在内核上执行时图形内核切换电容与图形内核功率病毒的切换电容的比率。
这些等式可用于决定是否发起子切片功率门控。可能已经由图形处理器支持的封装功率共享机制涉及作为运行条件的函数的泄露功率的知识,包括管芯、电压以及温度并且通常熔融到该部分中,这样使得这种信息是可用的。根据该信息,还可通过简单地用当对子切片进行功率门控时合适的数字来缩放总泄露来动态地计算功率门控图形内核的泄露增量。
如果图形处理内核当前被配置为十六执行单元、两子切片内核,f16和V16是其当前频率和电压并且然后在对子切片进行功率门控后所切换至的目标频率f8是f16的两倍。还事先已知匹配电压V8。可使用在一些图形处理引擎中已经可用的涡轮能量计数器来估计当前切换电容C16。最大电容Cmax8也是事先已知并且熔融到该部分中的静态量。
因此,上述两个等式中未知并且不能直接使用现有的功率共享基础设施计算的量是目标切换电容C8以及我们想切换到其上的较小配置的目标应用率AR8。这两个量实质上是等效的,因为一个量可从另一个量计算(C8=AR8*Cmax8))。
一种估计C8或AR8的方法如下所述。针对大范围的工作负载,不同图形工作负载所采取的硅测量可表明在较大图形内核上运行的工作负载的应用率比在较小图形内核上运行的相同工作负载的应用率低相对可预测的扩展因数,如0.8x或0.7x。因此,一种途径是对在功率门控或不门控的图形内核上运行的一系列应用执行后硅表征。然后可计算平均十六执行单元相对于八执行单元应用率缩放因数并且将其编程为静态应用率缩放因数。当活跃在十六执行单元模式中时,图形内核可使用可用的涡轮能量计数器动态地估计其当前应用率并且然后通过使用上述缩放因数投射其在八个执行单元中运行时将具有的应用率AR8。
可替代地,能量监测计数器可用于将能量计数器的值不仅与当前十六执行单元图形内核(C16)而且与我们将在功率门控发生后切换到其上的目标十六执行单元图形内核相关(通过曲线拟合方法)。一旦估计了该电容,等式(2)可用于做出功率门控决定。这种方法可比之前的方法更准确,但是可能针对16和8执行单元配置两者而言涉及能量监测计数器的更详细的并且更耗时的后硅表征。
一旦已经完成了在从十六转变到八执行单元时采取的功率门控的决定,可测量功率并且因此还确定新的八执行单元配置中的切换电容或应用率。如果其证明比所估计的高很多,则所采取的功率门控决定是错误的。在这种情况下,可将决定反转,转变回较大配置。另一方面,如果在功率门控之前正确地完成了较小配置的电容估计,则在转变到较小配置后测量的额外动态功率小于功率节省。在这种情况下,可维护新的配置并且功率共享机制自然地推到一定程度上更高的频率,这是由相同性能处的净功率减少所导致的,提供了性能增益。当然,相同的考虑因素可用于处理多个子切片或切片的功率门控。
在去激活内核部分的情况下,我们可在一些情况下从八执行单元图形内核转变到十六执行单元图形内核。我们可使用等式(1)和(2)来确保十六执行单元图形内核的额外泄露将低于通过将时钟频率减半所实现的动态功率节省。在这种情况下,时钟频率可升高,这将增加性能。
图2示出了根据本发明的某些实施例的用于做出功率门控确定的序列。可在硬件、软件和/或固件中实现该序列。在软件和硬件实施例中,它可实现在存储在非瞬态计算机可读介质(如磁、光学、或半导体存储)中存储的计算机执行指令中。
在状态1中,在这个示例中,一个子切片活动,如框20所示。棱形22处的检查确定功率控制单元是否请求新的图形处理器涡轮频率。如果是,棱形24处的检查确定是否满足打开第二子切片的条件。如果否,设置新的图形涡轮频率(框26),如功率控制单元所请求的。如果是,打开第二子切片。设置试探图形处理器频率(框28),并且然后使功率门控决定生效。如果生效成功,如棱形30所确定的,流程进行到状态2。如果否,再次对子切片进行功率门控,如框32所示,并且处理器返回状态1。
在状态2,两个子切片活动,如框34所示,棱形36处的检查确定功率控制单元是否已经请求新的图形处理器涡轮频率。如果是,棱形38处的检查确定是否满足关闭子切片的条件。如果不满足,设置新的图形处理器涡轮频率(框40),如所请求的。否则,在框42,终止目标子切片上的线程调度。该序列等待目标子切片变为空闲,并且然后当它如此时,关闭目标子切片。设置试探图形频率,并且然后使功率不门控决定生效。如果决定在棱形44处生效,流程返回状态1。否则,再次将子切片上电,如框46所示。
图3所示的计算机系统130可包括通过总线104耦合到芯片集内核逻辑110的硬盘驱动器134和可移除介质136。计算机系统可是任意计算机系统,包括智能移动装置,如智能电话、平板计算机或移动互联网装置。键盘和鼠标120或其他常规组件可通过总线108耦合到芯片集内核逻辑。在一个实施例中,内核逻辑可通过总线105耦合到图形处理器112以及中央处理器100。图形处理器112还可通过总线106耦合到帧缓冲器114。帧缓冲器114还可通过总线107耦合到显示屏118。在一个实施例中,图形处理器112可是使用单指令多数据(SIMD)架构的多线程多内核并行处理器。
在软件实现的情况下,相关代码可存储在任何适当的半导体、磁、或光学存储器中,包括图形处理器中的主存储器132(如139处所示)或任意可用的存储器。因此,在一个实施例中,用于执行图2的序列的代码可存储在非瞬态机器或计算机可读介质中,如存储器132、和/或图形处理器112、和/或中央处理器100,并且在一个实施例中可由处理器100和/或图形处理器112执行。
在此所述的图形处理技术可在各种硬件架构中实现。例如,可将图形功能集成在芯片集中。可替代地,可使用离散图形处理器。作为又一个实施例,可通过通用处理器实现图形功能,包括多核处理器。
贯穿本说明书对“一个实施例”或“实施例”的引用是指在此结合实施例所述的特定特征、结构或特性包括在本发明中所包含的至少一种实现方式中。因此,短语“一个实施例”或“在实施例中”的出现并非必须指代相同的实施例。此外,特定的特征、结构或特性可被设置为其他合适的形式而不是所展示的特定实施例,并且所有这种形式可包含在本申请的权利要求中。
尽管已经针对有限数量的实施例描述了本发明,本领域技术人员将认识到从其延伸的多种修改和变形。旨在所附权利要求书涵盖所有这种修改和变形,落入本发明的真实精神和范围中。

Claims (30)

1.一种方法,包括:
对小于图形处理器整体的部分进行功率门控。
2.如权利要求1所述的方法,包括对切片进行功率门控。
3.如权利要求1所述的方法,包括对子切片进行功率门控。
4.如权利要求1所述的方法,包括在功率门控之后改变工作频率。
5.如权利要求1所述的方法,包括仅在已经完成了所述部分上的所有待决任务之后对所述部分进行功率门控关闭。
6.如权利要求1所述的方法,包括针对功率预算的功率门控。
7.如权利要求1所述的方法,包括确定功率门控是否改善了性能。
8.如权利要求1所述的方法,包括在功率门控之后检查功率预算。
9.如权利要求7所述的方法,包括确定目标切换电容与目标应用率。
10.如权利要求9所述的方法,包括使用硅测量或能量监测计数器之一。
11.一种非瞬态计算机可读介质,存储用于由计算机执行的指令以便:
仅对图形处理器的至少两个部分之一进行功率门控。
12.如权利要求11所述的介质,进一步存储用于对切片进行功率门控的指令。
13.如权利要求11所述的介质,进一步存储用于对子切片进行功率门控的指令。
14.如权利要求11所述的介质,进一步存储用于在功率门控之后改变工作频率的指令。
15.如权利要求11所述的介质,进一步存储用于仅在已经完成了所述部分上的所有待决任务之后对所述部分进行功率门控关闭的指令。
16.如权利要求11所述的介质,进一步存储用于针对功率预算的功率门控的指令。
17.如权利要求11所述的介质,进一步存储用于确定功率门控是否改善了性能的指令。
18.如权利要求11所述的介质,进一步存储用于在功率门控之后检查功率预算的指令。
19.如权利要求17所述的介质,进一步存储用于确定目标切换电容与目标应用率的指令。
20.如权利要求19所述的介质,进一步存储用于使用硅测量或能量监测计数器之一的指令。
21.一种图形处理器,包括:
所述图形处理器的第一和第二独立可门控的部分;以及
用于对所述图形处理器的第一部分而不是所述第二部分进行功率门控的逻辑。
22.如权利要求21所述的图形处理器,所述逻辑用于对切片进行功率门控。
23.如权利要求21所述的图形处理器,所述逻辑用于对子切片进行功率门控。
24.如权利要求21所述的图形处理器,所述逻辑用于在功率门控之后改变工作频率。
25.如权利要求21所述的图形处理器,所述逻辑用于仅在已经完成了所述部分上的所有未决任务之后对所述部分进行功率门控关闭。
26.如权利要求21所述的图形处理器,所述逻辑用于针对功率预算进行功率门控。
27.如权利要求21所述的图形处理器,所述逻辑用于确定功率门控是否改善了性能。
28.如权利要求21所述的图形处理器,所述逻辑用于在功率门控之后检查功率预算。
29.如权利要求27所述的图形处理器,所述逻辑用于确定目标切换电容与目标应用率。
30.如权利要求29所述的图形处理器,所述逻辑用于使用硅测量或能量监测计数器之一。
CN201180074955.6A 2011-11-21 2011-11-21 用于性能改善的可重配置图形处理器 Pending CN103959196A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510996403.0A CN105573473B (zh) 2011-11-21 2011-11-21 用于性能改善的可重配置图形处理器
CN201810325284.XA CN108509021B (zh) 2011-11-21 2011-11-21 用于性能改善的可重配置图形处理器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/061738 WO2013077848A1 (en) 2011-11-21 2011-11-21 Reconfigurable graphics processor for performance improvement

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201810325284.XA Division CN108509021B (zh) 2011-11-21 2011-11-21 用于性能改善的可重配置图形处理器
CN201510996403.0A Division CN105573473B (zh) 2011-11-21 2011-11-21 用于性能改善的可重配置图形处理器

Publications (1)

Publication Number Publication Date
CN103959196A true CN103959196A (zh) 2014-07-30

Family

ID=48470158

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201180074955.6A Pending CN103959196A (zh) 2011-11-21 2011-11-21 用于性能改善的可重配置图形处理器
CN201810325284.XA Active CN108509021B (zh) 2011-11-21 2011-11-21 用于性能改善的可重配置图形处理器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201810325284.XA Active CN108509021B (zh) 2011-11-21 2011-11-21 用于性能改善的可重配置图形处理器

Country Status (5)

Country Link
US (1) US10242418B2 (zh)
EP (2) EP3037910B1 (zh)
CN (2) CN103959196A (zh)
TW (1) TWI477955B (zh)
WO (1) WO2013077848A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9037889B2 (en) * 2012-09-28 2015-05-19 Intel Corporation Apparatus and method for determining the number of execution cores to keep active in a processor
US9703364B2 (en) * 2012-09-29 2017-07-11 Intel Corporation Rotational graphics sub-slice and execution unit power down to improve power performance efficiency
US10088891B2 (en) * 2013-09-23 2018-10-02 Cornell University Multi-core computer processor based on a dynamic core-level power management for enhanced overall power efficiency
US9563263B2 (en) 2013-12-19 2017-02-07 Intel Corporation Graphics processor sub-domain voltage regulation
US10025367B2 (en) 2014-08-19 2018-07-17 Intel Corporation Dynamic scaling of graphics processor execution resources
US9568982B1 (en) 2015-07-31 2017-02-14 International Business Machines Corporation Management of core power state transition in a microprocessor
US9952651B2 (en) * 2015-07-31 2018-04-24 International Business Machines Corporation Deterministic current based frequency optimization of processor chip
US20230104685A1 (en) * 2020-03-27 2023-04-06 Intel Corporation Power management circuitry
US11514551B2 (en) 2020-09-25 2022-11-29 Intel Corporation Configuration profiles for graphics processing unit
US20210136680A1 (en) * 2020-12-11 2021-05-06 Intel Corporation Energy aware network slicing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200959110Y (zh) * 2006-08-08 2007-10-10 杨帅 双图形处理器交替联合工作式笔记本电脑
CN101536080A (zh) * 2006-05-30 2009-09-16 Ati技术Ulc公司 具有多图形子系统及降能耗模式的设备、软件及方法
CN101604199A (zh) * 2008-05-16 2009-12-16 英特尔公司 操作特性的基于效率的确定
CN101802751A (zh) * 2007-06-27 2010-08-11 高通股份有限公司 多媒体处理功率管理的功率门控
TW201042573A (en) * 2009-05-25 2010-12-01 Inst Information Industry Graphics processing system with power-gating function, power-gating method, and computer program products thereof
US20110213950A1 (en) * 2008-06-11 2011-09-01 John George Mathieson System and Method for Power Optimization

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7137117B2 (en) * 2000-06-02 2006-11-14 Microsoft Corporation Dynamically variable idle time thread scheduling
US7516334B2 (en) * 2001-03-22 2009-04-07 Sony Computer Entertainment Inc. Power management for processing modules
US7562245B1 (en) 2006-06-09 2009-07-14 Vivante Corporation Single chip 3D and 2D graphics processor with embedded memory and multiple levels of power controls
US8397090B2 (en) * 2006-12-08 2013-03-12 Intel Corporation Operating integrated circuit logic blocks at independent voltages with single voltage supply
US7802118B1 (en) * 2006-12-21 2010-09-21 Nvidia Corporation Functional block level clock-gating within a graphics processor
US7664255B2 (en) 2007-03-30 2010-02-16 Thought Development Inc. Hands free aural device holder
DE102008004366A1 (de) * 2008-01-15 2009-07-16 Robert Bosch Gmbh Triebstranganordnung eines Fahrzeugs und Verfahren zur Steuerung des Betriebes einer Triebstranganordnung eines Fahrzeugs
US20090204835A1 (en) 2008-02-11 2009-08-13 Nvidia Corporation Use methods for power optimization using an integrated circuit having power domains and partitions
GB2463967B (en) * 2008-08-26 2011-12-28 Univ Glasgow Uses of electromagnetic interference patterns
CN101727172B (zh) * 2008-10-27 2012-12-19 联想(北京)有限公司 一种计算机进程功耗的测量方法及测量装置、计算机系统
US8347132B2 (en) 2009-01-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for reducing processor power consumption
US8316255B2 (en) * 2009-09-09 2012-11-20 Ati Technologies Ulc Method and apparatus for responding to signals from a disabling device while in a disabled state
US8775854B2 (en) 2009-11-13 2014-07-08 Marvell World Trade Ltd. Clock turn-on strategy for power management
US20130015904A1 (en) * 2010-03-22 2013-01-17 Freescale Semiconductor, Inc. Power gating control module, integrated circuit device, signal processing system, electronic device, and method therefor
US8484495B2 (en) * 2010-03-25 2013-07-09 International Business Machines Corporation Power management in a multi-processor computer system
US8527794B2 (en) * 2010-05-27 2013-09-03 Advanced Micro Devices, Inc. Realtime power management of integrated circuits
US9311102B2 (en) * 2010-07-13 2016-04-12 Advanced Micro Devices, Inc. Dynamic control of SIMDs
US8864005B2 (en) * 2010-07-16 2014-10-21 Corning Incorporated Methods for scribing and separating strengthened glass substrates
US8438416B2 (en) * 2010-10-21 2013-05-07 Advanced Micro Devices, Inc. Function based dynamic power control
US8415972B2 (en) * 2010-11-17 2013-04-09 Advanced Micro Devices, Inc. Variable-width power gating module
US9063730B2 (en) * 2010-12-20 2015-06-23 Intel Corporation Performing variation-aware profiling and dynamic core allocation for a many-core processor
US8468373B2 (en) * 2011-01-14 2013-06-18 Apple Inc. Modifying performance parameters in multiple circuits according to a performance state table upon receiving a request to change a performance state
US8542054B2 (en) * 2011-10-31 2013-09-24 Apple Inc. Power switch acceleration scheme for fast wakeup
US9035956B1 (en) 2012-05-08 2015-05-19 Apple Inc. Graphics power control with efficient power usage during stop

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536080A (zh) * 2006-05-30 2009-09-16 Ati技术Ulc公司 具有多图形子系统及降能耗模式的设备、软件及方法
CN200959110Y (zh) * 2006-08-08 2007-10-10 杨帅 双图形处理器交替联合工作式笔记本电脑
CN101802751A (zh) * 2007-06-27 2010-08-11 高通股份有限公司 多媒体处理功率管理的功率门控
CN101604199A (zh) * 2008-05-16 2009-12-16 英特尔公司 操作特性的基于效率的确定
US20110213950A1 (en) * 2008-06-11 2011-09-01 John George Mathieson System and Method for Power Optimization
TW201042573A (en) * 2009-05-25 2010-12-01 Inst Information Industry Graphics processing system with power-gating function, power-gating method, and computer program products thereof

Also Published As

Publication number Publication date
CN108509021B (zh) 2021-11-09
US20130286026A1 (en) 2013-10-31
EP3037910B1 (en) 2020-04-01
WO2013077848A1 (en) 2013-05-30
EP2783267A4 (en) 2015-07-08
TWI477955B (zh) 2015-03-21
TW201337527A (zh) 2013-09-16
CN108509021A (zh) 2018-09-07
EP2783267A1 (en) 2014-10-01
EP3037910A1 (en) 2016-06-29
US10242418B2 (en) 2019-03-26

Similar Documents

Publication Publication Date Title
CN103959196A (zh) 用于性能改善的可重配置图形处理器
US10564699B2 (en) Dynamically controlling cache size to maximize energy efficiency
EP2362297B1 (en) Technique for selecting a frequency of operation in a processor system
US9026816B2 (en) Method and system for determining an energy-efficient operating point of a platform
TWI477945B (zh) 用以控制處理器之渦輪加速模式頻率的方法、及能夠控制其之渦輪加速模式頻率的處理器
US20130155081A1 (en) Power management in multiple processor system
JP6130296B2 (ja) グラフィクスプロセッサにおけるsimdユニットの動的な有効化及び無効化
DE112008000603B4 (de) Verfahren zum Steuern von Kernarbeitsakten unter Verwendung von Niedrigleistungsmodi
CN104169832A (zh) 提供处理器的能源高效的超频操作
CN1608239A (zh) 控制微处理器电流变化速率的装置和方法
US8736619B2 (en) Method and system for load optimization for power
GB2459968A (en) Using the number of times a processor has to wait for a response to determine an efficiency metric and an operational characteristic for the processor
US20080301604A1 (en) Apparatus for and method of estimating the quality of clock gating solutions for integrated circuit design
US20160370848A1 (en) Techniques for managing system power using deferred graphics rendering
US9195514B2 (en) System and method for managing P-states and C-states of a system
US10242652B2 (en) Reconfigurable graphics processor for performance improvement
US20130173933A1 (en) Performance of a power constrained processor
CN105573473A (zh) 用于性能改善的可重配置图形处理器
Korol et al. MCEA: A resource-aware multicore CGRA architecture for the edge
TWI570543B (zh) 用於與圖形核心相關聯的能量節省之方法及系統
Zhang et al. Dynamic core scaling: Trading off performance and energy beyond DVFS
Yavits et al. Multiamdahl: Optimal resource allocation in heterogeneous architectures
Wang et al. Evolution Game Theory Analysis of the Improvement of Energy Efficiency Occurring in the Process of the Inter-Region Industry Transfer
Wolf et al. Services Grid Competence As Driver of Business Agility in Turbulent Environments-A Conceptual Model in the Financial Services Industry
Thomas et al. Variability Analysis in the Power Appetite of GPGPU Applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140730