CN103957365A - CMOS image sensor structure for realizing predictive coding image compression - Google Patents
CMOS image sensor structure for realizing predictive coding image compression Download PDFInfo
- Publication number
- CN103957365A CN103957365A CN201410137993.7A CN201410137993A CN103957365A CN 103957365 A CN103957365 A CN 103957365A CN 201410137993 A CN201410137993 A CN 201410137993A CN 103957365 A CN103957365 A CN 103957365A
- Authority
- CN
- China
- Prior art keywords
- circuit
- pixel
- predictive coding
- value
- image sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007906 compression Methods 0.000 title claims abstract description 29
- 230000006835 compression Effects 0.000 title claims abstract description 27
- 238000005070 sampling Methods 0.000 claims abstract description 21
- 230000002596 correlated effect Effects 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 239000003990 capacitor Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 abstract description 10
- 238000013461 design Methods 0.000 abstract description 3
- 238000004377 microelectronic Methods 0.000 abstract description 2
- 238000012545 processing Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000012935 Averaging Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
技术领域technical field
本发明涉及微电子学的集成电路设计领域和数字图像编码压缩领域,特别涉及一种用于实现预测编码的CMOS图像传感器结构。The invention relates to the field of integrated circuit design of microelectronics and the field of digital image coding and compression, in particular to a CMOS image sensor structure for realizing predictive coding.
技术背景technical background
传统基于CMOS图像传感器的视频信号采集处理过程需要将全部像素值量化,传输到芯片以外进行压缩处理,压缩后的数据可以进行存储或者传输。不难发现,CMOS图像传感器的读出端对全部数据都进行了读取,在随后的压缩过程中又对大量冗余数据进行了舍弃,整个图像压缩过程做了大量的无用功,使得处理效率低下。如果可以在CMOS图像传感器的读出端直接获取压缩以后的数据则可以将冗余数据消除在源头上,特别是随着像素阵列规模的不断增大,需要处理的数据量不断猛增,这样的片上压缩步骤显得更加有意义,而CMOS工艺的不断发展为在片上兼容图像压缩功能提供了可能性。The traditional CMOS image sensor-based video signal acquisition and processing process needs to quantify all pixel values and transmit them outside the chip for compression processing. The compressed data can be stored or transmitted. It is not difficult to find that the readout end of the CMOS image sensor reads all the data, and discards a large amount of redundant data in the subsequent compression process. The entire image compression process has done a lot of useless work, making the processing efficiency low. . If the compressed data can be obtained directly at the readout end of the CMOS image sensor, redundant data can be eliminated at the source, especially as the scale of the pixel array continues to increase, the amount of data to be processed continues to soar, such On-chip compression steps are more meaningful, and the continuous development of CMOS technology provides the possibility for on-chip compatible image compression.
由于图像压缩功能多集成于移动设备上,所以对芯片的面积和功耗都提出了不少限制。这使得并不是所有压缩算法都适用于片上压缩,经典的图像压缩算法有块矩阵变换、小波变换和预测编码等,前两种方法需要向量的乘积和累加等比较复杂的操作,往往需要用DSP来实现,其硬件消耗巨大,它在图像压缩方面带来的优势会被它过大的功耗和面积所抵消。相对来说预测编码要容易实现的多,它只需要利用当前像素周边的像素对其值进行预测,并将预测值与当前像素值相减产生残余值就可完成预测编码。另外,2D-DCT和小波变换等图像压缩方法都为有损图像压缩,在有些领域,例如医疗、航天等,这样的有损图像是不能被接受的,预测编码作为一种无损图像压缩方法具有无可比拟的优势。现有的焦平面压缩方法多为块矩阵转换法,这需要大量的开关电容电路和庞大的电容阵列,这不仅会使模拟电路低精度的缺点被放大,还很难满足面积的要求。Since image compression functions are mostly integrated on mobile devices, there are many restrictions on chip area and power consumption. This makes not all compression algorithms suitable for on-chip compression. Classic image compression algorithms include block matrix transformation, wavelet transformation, and predictive coding. The first two methods require complex operations such as vector multiplication and accumulation, and often require DSP To realize it, its hardware consumption is huge, and its advantages in image compression will be offset by its excessive power consumption and area. Relatively speaking, predictive coding is much easier to implement. It only needs to use the pixels around the current pixel to predict its value, and subtract the predicted value from the current pixel value to generate a residual value to complete predictive coding. In addition, image compression methods such as 2D-DCT and wavelet transform are all lossy image compression. In some fields, such as medical treatment, aerospace, etc., such lossy images are unacceptable. As a lossless image compression method, predictive coding has Incomparable advantages. Most of the existing focal plane compression methods are block-matrix conversion methods, which require a large number of switched capacitor circuits and huge capacitor arrays, which will not only amplify the low precision of analog circuits, but also make it difficult to meet the area requirements.
发明内容Contents of the invention
为克服现有技术的不足,提出一种新型的可以实现预测编码图像压缩的CMOS图像传感器结构。与传统处理流程相比,在不降低图像传感质量的基础上,减少由于额外使用的预测编码模块(如DSP或用于预测编码变换的ASIC电路)引入的面积和功耗。在图像获取的同时完成预测编码,并在编码的过程中消除由运算放大器带来的失调。为此,本发明采取的技术方案是,用于实现预测编码图像压缩的CMOS图像传感器结构,具体为,从像素阵列中读出的像素值首先传送到相关双采样(correlated double sample,CDS)电路中进行相关双采样以消除固定模式噪声,接下来预测编码电路将在时序电路的控制下进行预测值的求取操作,求得预测值之后将利用列级减法器求得预测值和原始像素值之间的差,即残余值,最后将残余值进行模数转换(AD)就得到了最终的输出编码;In order to overcome the deficiencies of the existing technology, a new CMOS image sensor structure that can realize predictive coding image compression is proposed. Compared with the traditional processing flow, the area and power consumption introduced by the additional predictive coding module (such as DSP or ASIC circuit for predictive coding transformation) are reduced without reducing the quality of image sensing. The predictive encoding is completed while the image is acquired, and the offset caused by the operational amplifier is eliminated during the encoding process. For this reason, the technical solution adopted by the present invention is a CMOS image sensor structure for realizing predictive coding image compression, specifically, the pixel values read out from the pixel array are first transmitted to a correlated double sample (CDS) circuit Correlated double sampling is carried out in order to eliminate the fixed pattern noise. Next, the predictive encoding circuit will perform the operation of obtaining the predicted value under the control of the sequential circuit. After obtaining the predicted value, the column-level subtractor will be used to obtain the predicted value and the original pixel value. The difference between is the residual value, and finally the residual value is subjected to analog-to-digital conversion (AD) to obtain the final output code;
预测编码电路以2×2的像素块为单元来进行,每两像素两列共用一个预测编码电路,2×2的像素块按照从上到下的顺序依次传送到预测编码电路中,预测编码电路由积分电路和存储电路两部分组合而成,其中积分电路用于求取平均值,即预测值;存储电路用于以列为单位存储2×2像素块中的像素值;列级减法器用于对像素值和预测值进行求差运算以求得残余值。The predictive encoding circuit is carried out in units of 2×2 pixel blocks. Every two pixels and two columns share a predictive encoding circuit. The 2×2 pixel blocks are transmitted to the predictive encoding circuit in sequence from top to bottom. The predictive encoding circuit It is composed of an integral circuit and a storage circuit. The integral circuit is used to calculate the average value, that is, the predicted value; the storage circuit is used to store the pixel values in the 2×2 pixel block in units of columns; the column-level subtractor is used to The pixel value is subtracted from the predicted value to find the residual value.
积分电路由分别连接到两像素列的两个采样电容CS、运放、采样电容CS同相输入控制开关、采样电容CS反相输入控制开关、运放反馈电容CC、运放反馈电容CC控制开关、运放反馈开关、参考点位至运放反馈电容CC间开关构成。The integral circuit consists of two sampling capacitors C S connected to two pixel columns, an operational amplifier, a non-inverting input control switch of the sampling capacitor C S , an inverting input control switch of the sampling capacitor C S , an operational amplifier feedback capacitor C C , and an operational amplifier feedback capacitor CC control switch, op amp feedback switch, switch between reference point and op amp feedback capacitor CC .
存储电路由分别连接到两像素列的两个采样电容、运放、采样电容反相输入控制开关、运放反馈电容控制开关、运放反馈开关构成。The storage circuit is composed of two sampling capacitors respectively connected to the two pixel columns, an operational amplifier, an inverting input control switch of the sampling capacitor, a feedback capacitance control switch of the operational amplifier, and a feedback switch of the operational amplifier.
本发明的技术特点与效果:Technical characteristics and effects of the present invention:
本发明提供了一种可以实现预测编码图像压缩的CMOS图像传感器结构。将预测编码融入到CMOS图像传感器固有的处理流程之中完成了无损图像压缩,具有块矩阵转换等有损图像压缩无法比拟的优势。利用模拟电路完成了以往只能用DSP或者复杂ASIC电路完成的预测编码工作,具有模拟电路固有的低功耗和低面积的优点。预测编码在2×2像素块中进行,四个像素值求平均即可得到预测值,算法简单易于硬件实现,而且由于预测编码带来的误差不会被累加。在求预测值的同时也完成了消除运算放大器失调的工作。输出数据可以进行任何的编码,提高了图像传感器效率,适用于无线传感、视频监控、生物医疗等领域。The invention provides a CMOS image sensor structure capable of realizing predictive coding image compression. Integrating predictive coding into the inherent processing flow of CMOS image sensors completes lossless image compression, which has incomparable advantages over lossy image compression such as block matrix conversion. The analog circuit is used to complete the predictive coding work that can only be completed by DSP or complex ASIC circuits in the past, and has the inherent advantages of low power consumption and low area of the analog circuit. Predictive coding is carried out in 2×2 pixel blocks, and the predicted value can be obtained by averaging four pixel values. The algorithm is simple and easy to implement in hardware, and the errors caused by predictive coding will not be accumulated. While seeking the predicted value, the work of eliminating the offset of the operational amplifier is also completed. The output data can be encoded in any way, which improves the efficiency of the image sensor and is suitable for wireless sensing, video surveillance, biomedical and other fields.
附图说明Description of drawings
图1是所提出的CMOS图像传感器的整体结构示意图;Figure 1 is a schematic diagram of the overall structure of the proposed CMOS image sensor;
图2是预测编码电路模块的结构示意图;Fig. 2 is the structural representation of predictive encoding circuit module;
图3是预测编码模块的电路原理示意图;Fig. 3 is a schematic diagram of the circuit principle of the predictive encoding module;
图4是预测编码模块的时序电路示意图。Fig. 4 is a schematic diagram of a sequential circuit of a predictive encoding module.
具体实施方式Detailed ways
为了减小芯片的电路复杂度,提高处理效率,将预测编码操作在模拟域完成。本发明提供了一种可以实现预测编码图像压缩的CMOS图像传感器结构。由像素阵列、读出及相关双采样电路、预测编码电路、模数转换器(analog to digital converter,ADC)以及时序控制电路组成,参见图1。从像素阵列中读出的像素值首先传送到相关双采样(correlated doublesample,CDS)电路中进行相关双采样以消除固定模式噪声,接下来预测编码电路将在时序电路的控制下进行预测值的求取操作,求得预测值之后将利用列级减法器求得预测值和原始像素值之间的差,即残余值,最后将残余值进行模数转换(AD)就得到了最终的输出编码。主要发明部分为预测编码电路。In order to reduce the circuit complexity of the chip and improve the processing efficiency, the predictive coding operation is completed in the analog domain. The invention provides a CMOS image sensor structure capable of realizing predictive coding image compression. It consists of a pixel array, readout and correlated double sampling circuit, predictive encoding circuit, analog to digital converter (ADC) and timing control circuit, see Figure 1. The pixel values read from the pixel array are first sent to the correlated double sampling (CDS) circuit for correlated double sampling to eliminate fixed pattern noise, and then the predictive coding circuit will calculate the predicted value under the control of the sequential circuit After obtaining the predicted value, the column-level subtractor will be used to obtain the difference between the predicted value and the original pixel value, that is, the residual value. Finally, the residual value is subjected to analog-to-digital conversion (AD) to obtain the final output code. The main inventive part is the predictive coding circuit.
整体架构采用列级处理形式,预测编码以2×2的像素块为单元来进行,所以预测编码电路每两列共用一个,2×2的像素块按照从上到下的顺序依次传送到预测编码电路中,模块图参见图2,电路原理图见图3,它由积分电路和存储电路两部分组合而成,其中积分电路用于求取平均值,即预测值,具体通过开关电容电路将2×2像素块中的四个像素值进行累加并利用电容比例完成除四的操作,由电容CS、CC和运放A1构成,采用了运放共享,两列像素共用一个运放进行电荷转移的操作,其中CC的容值是CS的四倍以完成除以四的求平均操作;存储电路用于以列为单位存储2×2像素块中的像素值,所以每列单独用一个,其由C1、C2、Cf、A2、C1’、C2’、Cf’、A3’构成,两列为相同的电路结构。各个电容的容值大小为:CS=1/4CC=0.5pf、C1=C2=Cf=C1’=C2’=Cf’=0.5pf。;列级减法器用于对像素值和预测值进行求差运算以求得残余值。The overall architecture adopts the column-level processing form, and the predictive encoding is performed in units of 2×2 pixel blocks, so the predictive encoding circuit shares one for every two columns, and the 2×2 pixel blocks are sequentially transmitted to the predictive encoding in order from top to bottom. In the circuit, see Figure 2 for the module diagram and Figure 3 for the schematic diagram of the circuit. It is composed of an integral circuit and a storage circuit. The integral circuit is used to calculate the average value, that is, the predicted value. Specifically, the 2 The four pixel values in the ×2 pixel block are accumulated and the operation of dividing by four is completed by using the capacitance ratio. It is composed of capacitors CS, CC and the op amp A1. The op amp is shared. Two columns of pixels share an op amp for charge transfer. Operation, where the capacitance of CC is four times that of CS to complete the averaging operation divided by four; the storage circuit is used to store the pixel values in the 2×2 pixel block in units of columns, so each column uses one alone, which consists of C1, C2, Cf, A2, C1', C2', Cf', A3', the two columns have the same circuit structure. The capacitance of each capacitor is: CS=1/4CC=0.5pf, C1=C2=Cf=C1’=C2’=Cf’=0.5pf. ; The column-level subtractor is used to subtract the pixel value and the predicted value to obtain the residual value.
工作时序图如图4所示,整个预测编码过程分为三个工作状态:复位相、积分相和读出相。下面以一个2×2的像素块为例说明电路的具体工作原理,如图3所示,相关双采样以后的像素值以列为单位依次读出到存储电路和预测值产生电路中,同一行的像素同时读出。The working sequence diagram is shown in Figure 4. The entire predictive coding process is divided into three working states: reset phase, integral phase and readout phase. The following takes a 2×2 pixel block as an example to illustrate the specific working principle of the circuit. As shown in Figure 3, the pixel values after correlated double sampling are sequentially read out to the storage circuit and the predicted value generation circuit in units of columns. The pixels are read out simultaneously.
在复位阶段,Kr、K1、Kr’、K1’置高,CS两端的电压变为VCS=Vref+Voff1-Vcds[i](i=1或2,表示行数),Cc上的电荷为QCc=4C*Voff1,其中Vref为运算放大器的参考电压,Voff1为A1的失调电压,Vcds1为经过相关双采样以后的像素值。下方的存储电路在复位操作之后Cf两端的电压变为VCf=Voff2,VCf’=Voff3,这里Voff2和Voff3是A2和A3两个运放的失调电压。In the reset phase, Kr, K1, Kr', K1' are set high, the voltage across CS becomes VCS=Vref+Voff1-Vcds[i] (i=1 or 2, indicating the number of rows), and the charge on Cc is QCc =4C*Voff1, where Vref is the reference voltage of the operational amplifier, Voff1 is the offset voltage of A1, and Vcds1 is the pixel value after correlated double sampling. After the reset operation of the lower storage circuit, the voltage across Cf becomes VCf=Voff2, VCf’=Voff3, where Voff2 and Voff3 are the offset voltages of the two operational amplifiers A2 and A3.
在求平均值阶段,K2置高,Cs两端电压变为Voff1,使得Cs上的电荷转移到Cc上,这时QCc=4C*Voff1+C*(Vpix[1,1]+Vpix[1,2]),括号中为第一行第一列和第一行第二列的两个像素值。这样的操作会再重复一个周期,使四个像素值都完成累加和除四的操作。这时QCc=4C*Voff1+C*(Vpix[1,1]+Vpix[1,2]+Vpix[2,1]+Vpix[2,2]),由于Cc两端的电压为Vom和Voff1,所以(Voff1+Vref-Vom)*4C=4C*Voff1+C*(Vpix[1,1]+Vpix[1,2]+Vpix[2,1]+Vpix[2,2]),可得Vom=Vref-1/4C*(Vpix[1,1]+Vpix[1,2]+Vpix[2,1]+Vpix[2,2])。这样通过预测电路就可以得到像素块的平均值,同时也消除了运算放大器的失调电压。在以上求平均值的同时,像素值也按列分别存储到各自的存储电路中,C1、C1’和C2、C2’分别存储了第一行和第二行的像素值,具体的操作是利用两相不交叠时钟控制S1和S2的选通来读取像素值。C1两端的电压为VC1=VCDS[1,2]-Voff2,C2两端的电压为VC2=VCDS[2,2]-Voff2,C1’两端的电压为VC1=VCDS[1,1]-Voff3,C2’两端的电压为VC2=VCDS[2,1]-Voff3。In the averaging stage, K2 is set high, and the voltage across Cs becomes Voff1, so that the charge on Cs is transferred to Cc. At this time, QCc=4C*Voff1+C*(Vpix[1,1]+Vpix[1, 2]), the two pixel values in the first row, first column and first row, second column are in brackets. Such an operation will be repeated for another cycle, so that the four pixel values are all accumulated and divided by four. At this time QCc=4C*Voff1+C*(Vpix[1,1]+Vpix[1,2]+Vpix[2,1]+Vpix[2,2]), since the voltage across Cc is Vom and Voff1, So (Voff1+Vref-Vom)*4C=4C*Voff1+C*(Vpix[1,1]+Vpix[1,2]+Vpix[2,1]+Vpix[2,2]), you can get Vom =Vref-1/4C*(Vpix[1,1]+Vpix[1,2]+Vpix[2,1]+Vpix[2,2]). In this way, the average value of the pixel block can be obtained through the prediction circuit, and the offset voltage of the operational amplifier is also eliminated. While calculating the average value above, the pixel values are also stored in their respective storage circuits by column. C1, C1' and C2, C2' respectively store the pixel values of the first row and the second row. The specific operation is to use Two-phase non-overlapping clocks control the gating of S1 and S2 to read pixel values. The voltage across C1 is VC1=VCDS[1,2]-Voff2, the voltage across C2 is VC2=VCDS[2,2]-Voff2, the voltage across C1' is VC1=VCDS[1,1]-Voff3, C2 'The voltage at both ends is VC2=VCDS[2,1]-Voff3.
当信号读取阶段到来时预测电路已经完成了求平均值的操作,因此Vom保持稳定的输出。存储电路在K1’、K2’、S1’和S2’的控制下完成C1、C1’、C2和C2’上电荷的转移。当把第一行的两个像素值读出之后,QCf=-C*Voff2+C*VCDS[1,1],QCf’=-C*Voff2+C*VCDS[1,2]。When the signal reading phase arrives, the prediction circuit has completed the averaging operation, so Vom maintains a stable output. The storage circuit completes the transfer of charges on C1, C1', C2 and C2' under the control of K1', K2', S1' and S2'. After reading out the two pixel values of the first row, QCf=-C*Voff2+C*VCDS[1,1], QCf’=-C*Voff2+C*VCDS[1,2].
因此Vo1=Vref-Vpix[1,1],Vo2=Vref-Vpix[1,2]。接下来,Vom、Vo1和Vom、Vo2将分别传送到各自的列级减法器中进行作差运算,求出残余值为So Vo1=Vref-Vpix[1,1], Vo2=Vref-Vpix[1,2]. Next, Vom, Vo1 and Vom, Vo2 will be sent to their respective column-level subtractors for difference operation, and the residual value is calculated as
其中VR[i,j]表示第i行第j列像素值的残余值,像素块中四个像素值的平均值,即预测值。Where VR[i,j] represents the residual value of the pixel value of row i, column j, The average of the four pixel values in the pixel block, which is the predicted value.
至此已经求出像素的残余值,接下来残余值将输送到列级ADC中进行量化操作,量化后的数字码值即可进行储存或者传送到片外进行熵编码。So far, the residual value of the pixel has been calculated, and then the residual value will be sent to the column-level ADC for quantization operation, and the quantized digital code value can be stored or sent to off-chip for entropy coding.
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图给出一个具体数值的例子以作进一步地详细描述。In order to make the purpose, technical solution and advantages of the present invention clearer, an example of specific numerical values will be given below in conjunction with the accompanying drawings for further detailed description.
由于预测电路以2×2的像素块为单位进行工作,整体架构就是以这样的像素单元为基础的。故只对一个2×2的像素块举出具体的数值进行说明。Since the prediction circuit works in units of 2×2 pixel blocks, the overall architecture is based on such pixel units. Therefore, only specific numerical values are given for a 2×2 pixel block for illustration.
现假设像素块中四个像素经过读出和相关双采样以后的数值分别为V[1,1]=1.3、V[1,2]=1.4、V[2,1]=1.6、V[2,2]=1.7,则第一行的像素值V[1,1]和V[1,2]将首先传送到预测电路中进行处理。它们会被分别传送到各自的列级积分电路和采样电路中,一个时钟周期之后积分电路中CC两端的电压值为(V[1,1]+V[1,2])/4,而两个列级储存电路中的C1则会分别对V[1,1]和V[1,2]进行存储。第二个时钟周期到来的时候,V[2,1]和V[2,2]会以同样的方式传送到预测电路中,一个时钟周期之后,积分电路中CC的电压值为(V[1,1]+V[1,2]+V[2,1]+V[2,2])/4,这是像素块中电压的平均值,即为预测值,而两个列级储存电路中的C2则会分别对V[2,1]和V[2,2]进行存储。此时,积分电路中VCC=1.5,第一列存储电路中VC1=1.3、VC2=1.6,第二列存储电路中VC1=1.4、VC2=1.7。至此预测电路的工作已经完成,接下来将进行残余值的求取工作。Now assume that the values of the four pixels in the pixel block after readout and correlated double sampling are V[1,1]=1.3, V[1,2]=1.4, V[2,1]=1.6, V[2 ,2]=1.7, then the pixel values V[1,1] and V[1,2] of the first row will be firstly sent to the prediction circuit for processing. They will be sent to their respective column-level integration circuits and sampling circuits. After one clock cycle, the voltage across CC in the integration circuit is (V[1,1]+V[1,2])/4, and the two C1 in each column-level storage circuit stores V[1,1] and V[1,2] respectively. When the second clock cycle arrives, V[2,1] and V[2,2] will be sent to the prediction circuit in the same way. After one clock cycle, the voltage value of CC in the integrating circuit is (V[1 ,1]+V[1,2]+V[2,1]+V[2,2])/4, this is the average value of the voltage in the pixel block, which is the predicted value, and the two column-level storage circuits C2 in will store V[2,1] and V[2,2] respectively. At this time, VCC=1.5 in the integration circuit, VC1=1.3, VC2=1.6 in the storage circuit of the first column, and VC1=1.4, VC2=1.7 in the storage circuit of the second column. So far, the work of the prediction circuit has been completed, and the calculation of the residual value will be carried out next.
四个像素值与预测值将按列分别传送到各自的列级模拟减法器中进行作差的操作,得出四个残余值分别为0.2,0.1,0.1和0.2。最后列级ADC会对残余值按列进行量化操作以得出最终的预测编码值。The four pixel values and predicted values are sent to the respective column-level analog subtractors for subtraction operation, and the four residual values are respectively 0.2, 0.1, 0.1 and 0.2. Finally, the column-level ADC performs quantization operation on the residual value by column to obtain the final predictive coding value.
可见,本发明可将预测编码操作融入到CMOS图像传感器的传感过程中,大大提升了图像压缩处理效率。It can be seen that the present invention can integrate the predictive coding operation into the sensing process of the CMOS image sensor, which greatly improves the image compression processing efficiency.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410137993.7A CN103957365A (en) | 2014-04-08 | 2014-04-08 | CMOS image sensor structure for realizing predictive coding image compression |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410137993.7A CN103957365A (en) | 2014-04-08 | 2014-04-08 | CMOS image sensor structure for realizing predictive coding image compression |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103957365A true CN103957365A (en) | 2014-07-30 |
Family
ID=51334580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410137993.7A Pending CN103957365A (en) | 2014-04-08 | 2014-04-08 | CMOS image sensor structure for realizing predictive coding image compression |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103957365A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104796638A (en) * | 2015-04-20 | 2015-07-22 | 中国航天科技集团公司第九研究院第七七一研究所 | High-speed flow water output type correlated double-sampling circuit used for CMOS (complementary metal-oxide-semiconductor transistor) image sensor |
CN106506999A (en) * | 2016-10-18 | 2017-03-15 | 天津大学 | FPN correction method for TDI‑CMOS image sensor based on moment matching |
CN107872632A (en) * | 2016-09-22 | 2018-04-03 | 索尼公司 | Apparatus and method for P-phase data compression |
CN112449125A (en) * | 2019-08-29 | 2021-03-05 | 天津大学青岛海洋技术研究院 | Image sensor reading circuit based on self-adaptive threshold adjustment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101212562A (en) * | 2006-12-28 | 2008-07-02 | 比亚迪股份有限公司 | Fixed pattern noise cancelling circuit for CMOS image sensor |
US20090147089A1 (en) * | 2007-07-02 | 2009-06-11 | Artyom Tonkikh | Column noise reduction device and method thereof |
CN102833494A (en) * | 2012-07-24 | 2012-12-19 | 天津大学 | Noise removing device of complementary metal oxide semiconductor (CMOS) digital pixel sensor based on predictive encoding |
-
2014
- 2014-04-08 CN CN201410137993.7A patent/CN103957365A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101212562A (en) * | 2006-12-28 | 2008-07-02 | 比亚迪股份有限公司 | Fixed pattern noise cancelling circuit for CMOS image sensor |
US20090147089A1 (en) * | 2007-07-02 | 2009-06-11 | Artyom Tonkikh | Column noise reduction device and method thereof |
CN102833494A (en) * | 2012-07-24 | 2012-12-19 | 天津大学 | Noise removing device of complementary metal oxide semiconductor (CMOS) digital pixel sensor based on predictive encoding |
Non-Patent Citations (1)
Title |
---|
赵士彬: "基于压缩感知的低功耗高效率CMOS图像传感器设计", 《传感技术学报》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104796638A (en) * | 2015-04-20 | 2015-07-22 | 中国航天科技集团公司第九研究院第七七一研究所 | High-speed flow water output type correlated double-sampling circuit used for CMOS (complementary metal-oxide-semiconductor transistor) image sensor |
CN104796638B (en) * | 2015-04-20 | 2017-12-01 | 中国航天科技集团公司第九研究院第七七一研究所 | A kind of high speed flowing water output type correlated double sampling circuit for cmos image sensor |
CN107872632A (en) * | 2016-09-22 | 2018-04-03 | 索尼公司 | Apparatus and method for P-phase data compression |
CN107872632B (en) * | 2016-09-22 | 2020-05-01 | 索尼公司 | Apparatus and method for P-phase data compression |
CN106506999A (en) * | 2016-10-18 | 2017-03-15 | 天津大学 | FPN correction method for TDI‑CMOS image sensor based on moment matching |
CN112449125A (en) * | 2019-08-29 | 2021-03-05 | 天津大学青岛海洋技术研究院 | Image sensor reading circuit based on self-adaptive threshold adjustment |
CN112449125B (en) * | 2019-08-29 | 2022-06-17 | 天津大学青岛海洋技术研究院 | Image sensor reading circuit based on self-adaptive threshold adjustment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103957411A (en) | Focal plane image compression device based on CMOS image sensor | |
CN102595066B (en) | Low-power digital domain accumulation CMOS-TDI image sensor | |
CN102595060B (en) | Analog accumulator capable of implementing time delay integration (TDI) function inside complementary metal-oxide semiconductor (CMOS) image sensor | |
US8625012B2 (en) | Apparatus and method for improving dynamic range and linearity of CMOS image sensor | |
CN103139500B (en) | Reading circuit and operation time sequence based on sigma-delta analog to digital converter (ADC) and used for imaging sensor | |
CN104219468B (en) | Line frequency CMOS TDI imageing sensors high | |
CN103024309B (en) | CMOS (complementary metal oxide semiconductor) image sensor for quick acquisition of single low-order accumulative images | |
CN103546695B (en) | Be applied to time domain accumulation method and the accumulator of TDI-CIS | |
CN103957365A (en) | CMOS image sensor structure for realizing predictive coding image compression | |
CN106454164A (en) | Charge-number mixed accumulation type CMOS-TDI image sensor | |
CN102710906B (en) | CMOS (complementary metal-oxide-semiconductor transistor) image sensor for realizing two-dimensional discrete cosine transformation | |
CN105072359B (en) | Cmos image sensor imaging system based on compressed sensing and method | |
CN102595068A (en) | Digital-domain accumulation complementary metal oxide semiconductor-time delay integration (CMOS-TDI) image sensor | |
Chen et al. | A 12 pj/pixel analog-to-information converter based 816× 640 pixel cmos image sensor | |
JP2015056903A (en) | CMOS solid-state imaging device | |
CN102186025A (en) | CMOS (complementary metal-oxide-semiconductor transistor) imaging measured value obtaining system based on compressed sensing and method thereof | |
CN101354288A (en) | High-speed and low-power dual inline infrared focal plane readout circuit | |
CN103686006B (en) | A kind of global formula exposure cmos image sensor based on compression sensing | |
KR20180114049A (en) | Machine vision systems that form one-dimensional digital representations of low information content scenes | |
Schneider | New camera chip captures only what it needs | |
Zhang et al. | Compressive acquisition CMOS image sensor: from the algorithm to hardware implementation | |
Yue et al. | Data compression for image sensor arrays using a 15-bit two-step Sigma–Delta ADC | |
CN105245798A (en) | CCD video compression measurement imaging system and control method based on block compressed sensing | |
CN102595067A (en) | Analog-and-digital mixed accumulating time-delay integrating type complementary metal-oxide semiconductor image sensor | |
US9007252B1 (en) | Analog to digital conversion method and related analog to digital converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140730 |
|
WD01 | Invention patent application deemed withdrawn after publication |