CN103956638A - 一种可调谐窄线宽单频线偏振激光器 - Google Patents

一种可调谐窄线宽单频线偏振激光器 Download PDF

Info

Publication number
CN103956638A
CN103956638A CN201410023920.5A CN201410023920A CN103956638A CN 103956638 A CN103956638 A CN 103956638A CN 201410023920 A CN201410023920 A CN 201410023920A CN 103956638 A CN103956638 A CN 103956638A
Authority
CN
China
Prior art keywords
polarization
laser
optical
tunable
superstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410023920.5A
Other languages
English (en)
Other versions
CN103956638B (zh
Inventor
徐善辉
杨昌盛
杨中民
冯洲明
张勤远
姜中宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201410023920.5A priority Critical patent/CN103956638B/zh
Publication of CN103956638A publication Critical patent/CN103956638A/zh
Priority to PCT/CN2014/092987 priority patent/WO2015106606A1/zh
Priority to US15/035,605 priority patent/US9787050B2/en
Application granted granted Critical
Publication of CN103956638B publication Critical patent/CN103956638B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1055Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06712Polarising fibre; Polariser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094042Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a fibre laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1028Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1062Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a controlled passive interferometer, e.g. a Fabry-Perot etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0401Arrangements for thermal management of optical elements being part of laser resonator, e.g. windows, mirrors, lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08027Longitudinal modes by a filter, e.g. a Fabry-Perot filter is used for wavelength setting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/175Solid materials amorphous, e.g. glass phosphate glass

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明提供了一种可调谐窄线宽单频线偏振激光器,该激光器包括热沉及封装在热沉上的泵浦源、第一准直透镜、激光后腔镜、热光可调滤波器、第二准直透镜、稀土离子高掺杂多组分玻璃光纤、超结构保偏光纤光栅、保偏光隔离器、保偏光纤和热电制冷器。本发明采用短直单频谐振腔结构,利用多组分玻璃光纤的高掺杂和高增益特征,再利用热光可调滤波器与超结构保偏光纤光栅的选频作用与波长调谐功能,结合精密温度调节技术,通过实时调节其反射波长与透射波长的分布,致使改变其谱峰重叠位置,从而实现宽调谐范围、线宽极窄、高消光比、高输出功率的连续可调谐式单频线偏振激光的稳定输出。

Description

一种可调谐窄线宽单频线偏振激光器
技术领域
本发明涉及到光纤遥感、相干光谱合束、引力波探测、激光雷达以及非线性频率转换等领域所用到的激光器光源,尤其是一种可调谐式、窄线宽、线偏振运转的单频激光器。
 
背景技术
窄线宽单频光纤激光器是激光器发展的一个重要分支,它具有极窄线宽、低噪声、优异的相干特性。尤其是其光谱线宽极其狭窄(可达10-8nm),比现有最好的窄线宽DFB激光器的线宽要窄2个数量级,比目前光通信网络中DWDM信号光源的线宽还要窄5~6个数量级。在相干光谱合束、激光雷达、非线性频率转换等应用领域有着巨大的潜在价值,显得十分重要。而这些领域一般要求激光器的光谱线宽极窄、线偏振运转和可调谐(多信道或多波长工作),这些参数决定和影响了应用场合的分辨率、转换效率、成本等诸多指标。因此,迫切需要发展一种简单可靠的可调谐窄线宽单频线偏振激光器。
目前研究报道的可调谐单频激光器,一般是使用稀土离子掺杂石英光纤或者稀土离子掺杂固态晶体作为单频激光的工作介质,在光路中插入可靠性低的块体光学调制晶体(电光晶体、热光晶体或F-P标准具等)用于维持单频运转或者调节激光频率,但都存在掺杂稀土离子的浓度无法进一步提高、谐振腔腔长较长、容易跳模、可靠性较差等一系列问题,一般最大只能直接输出几十mW量级的可调单频激光,而且最大难点是线宽较难做到10kHz以下,噪声较大。
使用稀土离子高掺杂多组分玻璃光纤作为激光的增益介质,结合短直单频激光谐振腔,可以有效实现输出功率大于100mW、线宽小于2kHz的单频激光输出。与此相关的研究工作有:C. Spiegelberg等人采用2cm长的铒镱共掺磷酸盐玻璃光纤,实现了输出功率大于200mW、线宽小于2kHz、波长为1.5μm的单频光纤激光输出报道[J. Lightwave Technol., 2004, 22: 57]。 Z. Feng等人采用0.8cm长的掺镱磷酸盐玻璃光纤,实现了输出功率大于200mW、线宽小于2kHz、消光比大于30dB、波长为1.06μm的线偏振单频光纤激光输出报道[Appl. Phys. Express, 2013, 6:052701]。此外,2004年,美国亚历山大大学和NP光子公司申请了高功率窄线宽单频激光系统专利[公开号:US 2004/0240508 A1],采用微片式激光谐振腔结构,但是其所要求的单频激光器并未具有线偏振输出、波长可调谐的特征。2011年,美国IPG公司申请了高功率窄线宽光纤激光器专利[公开号:US 7903696 B2],采用2个超短单频谐振腔输出低功率窄线宽单频激光信号,分别经过普通掺铒光纤放大器和高功率双包层光纤放大器进行激光功率放大,但是其所要求的光纤激光器也并未具有线偏振输出、波长可调谐的特征。
发明内容
本发明目的在于克服现有技术存在的上述不足,提供一种可调谐式的窄线宽单频线偏振激光器,可以连续与选择性的调谐激光的输出波长,使其能够覆盖较宽的波长可调谐范围。本发明采用短直单频谐振腔结构,利用多组分玻璃光纤的高掺杂和高增益特征,再利用热光可调滤波器与超结构保偏光纤光栅的选频作用与波长调谐功能,结合精密温度调节技术(热电制冷器TEC),最终在泵浦源提供泵浦(抽运)能量的前提下,可以有效地实现可宽范围调谐、kHz量级线宽、高消光比的单频线偏振激光的稳定输出。
本发明的目的通过如下技术方案实现。
一种可调谐窄线宽单频线偏振激光器,其包括热沉及封装在热沉上的泵浦源、第一准直透镜、激光后腔镜、热光可调滤波器、第二准直透镜、稀土离子高掺杂多组分玻璃光纤、超结构保偏光纤光栅、保偏光隔离器、保偏光纤和热电制冷器TEC;所述泵浦源、第一准直透镜、激光后腔镜、热光可调滤波器、第二准直透镜、稀土离子高掺杂多组分玻璃光纤、超结构保偏光纤光栅、保偏光隔离器、保偏光纤顺次排布,泵浦源、热光可调滤波器、超结构保偏光纤光栅均各自安装在一个热电制冷器TEC上。 
进一步地,所述泵浦源的输出端经第一准直透镜与激光后腔镜耦合连接,激光后腔镜与热光可调滤波器耦合连接,热光可调滤波器与第二准直透镜耦合连接,第二准直透镜与稀土离子高掺杂多组分玻璃光纤的输入端耦合连接,稀土离子高掺杂多组分玻璃光纤的输出端与超结构保偏光纤光栅的输入端耦合连接,超结构保偏光纤光栅的输出端与与保偏光隔离器的输入端耦合连接,保偏光隔离器的输出端与保偏光纤的尾纤耦合连接。 
进一步地,所述激光后腔镜的镜片端面镀有薄膜层,薄膜膜层对激光信号波长高反,反射率要求大于80%;对泵浦光波长高透,透射率要求大于80%。
进一步地,所述热光可调滤波器为F-P型薄膜可调滤波器,利用该滤波器中介质薄膜材料的热光特性和高折射率特性,采用热电制冷器TEC进行精密温度控制,使得该滤波器中多层介质薄膜材料的折射率发生变化,实现对透射波长的可调谐。
进一步地,所述稀土离子高掺杂多组分玻璃光纤的纤芯成分为磷酸盐玻璃组分,其组成为:65P2O5-10Al2O3-20BaO-3La2O3-2Nd2O3;其基质材料包括但不限于磷酸盐玻璃、硅酸盐玻璃、锗酸盐玻璃等多组分玻璃。
进一步地,所述稀土离子高掺杂多组分玻璃光纤的纤芯均匀掺杂高浓度稀土发光离子,稀土发光离子的掺杂浓度要求大于1×1020ions/cm3;所述稀土发光离子包括镧系离子、碱土金属离子、过渡金属离子中的一种或几种的组合。
进一步地,所述稀土离子高掺杂多组分玻璃光纤的纤芯形状为圆形,纤芯直径为3~50μm,包层形状为圆形、D形、六边形或八边形,其中圆形包层的直径或非圆形包层的边到边距离为80~900μm。
进一步地,所述稀土离子高掺杂多组分玻璃光纤的一端镀有多层增透膜,增透膜对激光信号波长高透,透射率大于90%,用于抑制光纤端面反射。
进一步地,所述超结构保偏光纤光栅对激光信号波长有选择性梳状反射即部分透射,中心波长反射率为20%~80%,具有反射峰均匀性好、窄带宽的特点,作为激光输出的耦合元器件。
进一步地,所述泵浦源为边发射结构或其它封装形式的半导体激光器;所述泵浦源(1)输出模式是单模或多模,输出参数为泵浦波长800~1200nm,输出泵浦功率大于50mW;所述泵浦源的泵浦方式是前向泵浦,即泵浦源发出的泵浦光直接从准直透镜耦合进入光路。
进一步地,所述热光可调滤波器与超结构保偏光纤光栅均由独立的热电制冷器TEC进行精密温度控制,构成激光器波长/频率调谐功能部分;通过精密温度调节致使光纤光栅、滤波器的折射率相应改变,进而使得超结构保偏光纤光栅的栅区反射光谱与热光可调滤波器的透射光谱耦合重叠位置连续地发生变化,以获得不同波长处的最大反馈增益进行激光选频,即实现可宽范围、连续地调谐单频线偏振激光器的输出波长。
上述超结构保偏光纤光栅是利用光纤材料的光敏性在保偏光纤上面刻写栅区,是由多段具有相同参数的保偏光纤光栅以相同的间距级联而成,对激光信号波长有选择性梳状反射(即部分透射),中心波长反射率要求20~80%。超结构保偏光纤光栅由独立的TEC芯片进行精密温度控制,使其折射率发生变化,通过调谐反射光栅区的光谱与热光可调滤波器的透射光谱耦合重叠,来实现单频激光单一波长的选频、反馈与激射输出。
上述光器件和光纤之间连接方式是通过空间直接准直耦合,或者研磨抛光其相应光纤端面进行机械对接耦合,或者采用熔接机熔融连接耦合。
上述单频线偏振激光输出后,分别经过保偏光隔离器、保偏光纤输出,其中保偏光隔离器用于保障光路的正常反馈和抑制端面不良光反射,提高激光输出功率的稳定性。
上述光路和元器件固定封装在一金属热沉上,有效进行热耗散,避免激光器工作时的热量累积问题,保障其输出功率、激光工作波长的稳定性与可靠性。
与现有技术相比,本发明的技术效果和优点包括:本发明结构简单,易于实现。其将稀土离子高掺杂多组分玻璃光纤(厘米量级)作为激光的增益介质,采用短直线形谐振腔结构。其中主要由热光可调滤波器、多组分玻璃光纤、超结构保偏光纤光栅一起构成单频线偏振激光的谐振腔。首先,泵浦源对激光谐振腔进行抽运,多组分玻璃光纤纤芯中的稀土发光离子发生粒子数反转,产生受激辐射信号光;其次,通过精密温度控制模块——热电制冷器(TEC芯片)对热光可调滤波器进行温度调节,可以控制和调谐所滤波生成的梳状透射峰分布(改变透射波长);同样对超结构保偏光纤光栅进行温度调节,改变反射光栅区的梳状反射峰波长分布,可以选择性的使其最大反射峰与热光可调滤波器的最大透射峰在某一波长位置重叠,形成最大激光反馈增益,这样在前后腔镜的有效反馈作用下,信号光多次来回振荡反馈并得到多次放大。由于激光谐振腔的腔长只有厘米量级,腔内的相邻纵模间隔可达GHz,当热光可调滤波器和超结构保偏光纤光栅重叠波长的光谱窄至一定程度,使工作介质的增益曲线范围内只存在一个纵模的频率,即可实现稳定的单频线偏振激光输出。继续增加泵浦光功率,激光线宽将进一步缩窄,最后可以实现kHz量级的窄线宽单频线偏振激光的稳定输出。在上述的调谐过程中,通过热电制冷器精密温控调节改变温度分布,可以连续改变超结构保偏光纤光栅的梳状最大反射谱峰分布和改变热光可调滤波器的梳状最大透射谱峰分布,使两者的波长分布在另外某一波长位置再进行重叠,获得不同波长处的最大反馈效果,即可以实时、持续与选择性的变化单频线偏振激光的输出波长,最终实现可宽范围调谐、kHz量级线宽、高消光比的调谐式单频线偏振激光的稳定输出。
 
附图说明  
图1为本发明中超结构保偏光纤光栅的典型梳状反射谱示意图。
图2为本发明实施例中可调谐窄线宽单频线偏振激光器的原理示意图,其中激光后腔镜使用镜片镀膜方式,激光前腔镜使用超结构保偏光纤光栅,泵浦方式是前向泵浦。
图3为本发明实施例中TEC温控方式与封装示意图。
图中:1—泵浦源,2—第一热电制冷器TEC,3—第一准直透镜,4—激光后腔镜,5—热光可调滤波器,6—第二热电制冷器TEC,7—第二准直透镜,8—铒镱共掺磷酸盐玻璃光纤,9—超结构保偏光纤光栅,10—第三热电制冷器TEC,11—保偏光隔离器,12—保偏光纤,13—热沉。
 
具体实施方式
下面结合具体的实施例及附图,对本发明作进一步的说明阐释,但不限于该实施方式。
如图1所示,为本发明中超结构保偏光纤光栅的典型梳状反射谱峰示意图。其反射峰之间间隔窄、分布均匀、具有高的反射率等特点。
如图2所示,本实例的可调谐窄线宽单频线偏振激光器中,泵浦源1、第一准直透镜3、激光后腔镜4、热光可调滤波器5、第二准直透镜7、稀土离子高掺杂多组分玻璃光纤8、超结构保偏光纤光栅9、保偏光隔离器11、保偏光纤12从左至右排布,泵浦源1、热光可调滤波器5、超结构保偏光纤光栅9均各自安装在一个热电制冷器TEC上。 上述整体光路和所有的光器件固定封装在一金属材质的热沉之中,以便散热。
本发明中的单频激光谐振腔由后腔镜、热光可调滤波器、准直透镜与超结构保偏光纤光栅一起构成,其中超结构保偏光纤光栅起到前腔镜的作用。使用泵浦源对单频激光谐振腔进行泵浦抽运,由于泵浦源输出的泵浦激光呈发散状,需要通过准直透镜对光束进行准直,再与后腔镜低损耗耦合连接。 
本实例的热光可调滤波器是一种F-P型薄膜滤波器,根据所需的梳状透射峰波长分布,可以设计其薄膜的层数和光学厚度参数。热光可调滤波器5由独立的第二热电制冷器TEC6进行精密温度控制,通过温度控制调节导致热光效应,使得其多层介质薄膜材料的折射率发生改变,从而达到对梳状透射波长的可调谐。
稀土离子高掺杂多组分玻璃光纤作为激光的增益介质,一般使用长度为0.5~50cm,在该范围内具体长度可根据激光输出功率大小、线宽大小的要求进行相应选择。多组分玻璃光纤的纤芯为高掺杂浓度的稀土发光离子(镧系离子、碱土金属离子、过渡金属离子中的一种或几种的组合情况),其中稀土发光离子的掺杂浓度要求大于1×1020ions/cm3。其纤芯形状为圆形,纤芯直径一般为3~50μm;包层形状为圆形、D形、六边形、八边形等,包层直径或边到边距离一般为80~900μm。多组分玻璃光纤的一端镀上多层增透膜,所述薄膜膜层对激光信号波长高透,透射率大于90%,用于抑制光纤端面的光反射。
本实例中,泵浦源1输出波长为980nm,泵浦功率为750mW;其中热光可调滤波器5通过精密温度调节,其热光效应可以调谐其梳状最大透射峰分布;激光后腔镜4的镜片端面镀上薄膜,薄膜膜层对激光信号波长反射率为99%;对泵浦光波长透射率99%。激光增益工作由铒镱共掺磷酸盐玻璃光纤8与超结构保偏光纤光栅9一起完成。当透射光经过准直透镜7之后准直耦合进入铒镱共掺磷酸盐玻璃光纤8,铒镱共掺磷酸盐玻璃光纤8的一端端面镀有多层增透膜。铒镱共掺磷酸盐玻璃光纤8的另一端与超结构保偏光纤光栅9熔融连接,超结构保偏光纤光栅9通过第三热电制冷器TEC10进行精密温度调节可以调谐其梳状最大反射峰分布,使其与热光可调滤波器5的最大透射峰在某一波长位置处产生重叠,形成激光波长反馈,最终激光经过保偏光隔离器11与保偏光纤12的尾纤稳定输出。
其中铒镱共掺磷酸盐玻璃光纤8作为激光的增益介质,本例使用长度为1.5cm。其纤芯主要成分为磷酸盐玻璃组分(组成:65P2O5-10Al2O3-20BaO-3La2O3-2Nd2O3)。其纤芯均匀掺杂高浓度的稀土发光离子铒和镱,其掺杂浓度分别为2.5×1020ions/cm3、5.0×1020ions/cm3,其纤芯直径为6μm和包层直径为125μm,形状均为圆形。铒镱共掺磷酸盐玻璃光纤8一端端面镀上多层增透膜,薄膜膜层对激光信号波长透射率为99.9%;其中超结构保偏光纤光栅9的中心反射波长位于激光增益介质的增益谱内,其反射率为70%。
其中泵浦方式采用前向泵浦,泵浦源1注入泵浦光到铒镱共掺磷酸盐玻璃光纤8的纤芯中,使其稀土发光离子发生粒子数反转,产生受激辐射的激光信号,信号光沿光路两端传输,一方面,光从铒镱共掺磷酸盐玻璃光纤8的左端出射经过准直透镜7,再经热光可调滤波器5透射滤波形成梳状透射峰波长分布,然后由激光后腔镜片4将光沿相同的路径返回,并准直耦合进入铒镱共掺磷酸盐玻璃光纤8的纤芯,形成光学反馈。另一方面,光从铒镱共掺磷酸盐玻璃光纤8的右端出射经过超结构保偏光纤光栅9反射回来,呈现梳状反射峰波长分布,使其与热光可调滤波器的透射光谱耦合重叠产生相干相长,不断产生光学反馈作用。在调谐过程中,分别通过精密温控调节,可以连续改变超结构保偏光纤光栅的反射峰波长分布和改变热光可调滤波器的透射峰波长分布,使梳状最大反射峰与最大透射峰在另外某一波长位置进行重叠,即可以使波长重叠位置连续发生变化,获得不同波长处的最大反馈与激光激射,即实时与连续的变化激光的输出波长。再通过精确控制超结构保偏光纤光栅的反射谱、中心波长等光学参数,当热光可调滤波器和超结构光纤光栅重叠波长的光谱窄至一定程度,并将整个激光谐振腔腔长控制在一定长度以下,从而可以保证激光腔内只存在一个单纵模工作,且无跳模及模式竞争现象出现。当激光在反馈作用下,多次来回振荡并得到多次放大,在激光功率饱和前,随着泵浦功率的不断增强,单频激光线宽就会不断变窄,最终实现激光线宽小于10kHz、消光比大于25dB、输出功率大于100mW的可调谐窄线宽单频线偏振激光输出。泵浦源由独立的第一热电制冷器TEC 2进行温控,保障其输出波长与泵浦功率的稳定性。
如图3所示,为本发明实施例中TEC温控方式与封装示意图。将泵浦源1置于第一热电制冷器TEC2上面进行精密温度控制,保障泵浦激光器的工作中心波长与输出功率的稳定性。热光可调滤波器5置于第二热电制冷器TEC6上面,可以精密调节控制其温度。超结构保偏光纤光栅9置于第三热电制冷器TEC10上面,也可以精密调节控制其温度。上述所有光路和光器件固定封装在一金属热沉13上面,有效进行热耗散,保障单频线偏振激光输出功率、输出波长的工作稳定性与可靠性。

Claims (10)

1.一种可调谐窄线宽单频线偏振激光器,其特征在于包括热沉(13)及封装在热沉(13)上的泵浦源(1)、第一准直透镜(3)、激光后腔镜(4)、热光可调滤波器(5)、第二准直透镜(7)、稀土离子高掺杂多组分玻璃光纤(8)、超结构保偏光纤光栅(9)、保偏光隔离器(11)、保偏光纤(12)和热电制冷器TEC;所述泵浦源(1)、第一准直透镜(3)、激光后腔镜(4)、热光可调滤波器(5)、第二准直透镜(7)、稀土离子高掺杂多组分玻璃光纤(8)、超结构保偏光纤光栅(9)、保偏光隔离器(11)、保偏光纤(12)顺次排布,泵浦源(1)、热光可调滤波器(5)、超结构保偏光纤光栅(9)均各自安装在一个热电制冷器TEC上。
2.根据权利要求1所述的一种可调谐窄线宽单频线偏振激光器,其特征在于所述泵浦源的输出端经第一准直透镜与激光后腔镜耦合连接,激光后腔镜与热光可调滤波器耦合连接,热光可调滤波器与第二准直透镜耦合连接,第二准直透镜与稀土离子高掺杂多组分玻璃光纤的输入端耦合连接,稀土离子高掺杂多组分玻璃光纤的输出端与超结构保偏光纤光栅的输入端耦合连接,超结构保偏光纤光栅的输出端与与保偏光隔离器的输入端耦合连接,保偏光隔离器的输出端与保偏光纤的尾纤耦合连接。
3.如权利要求1所述的可调谐窄线宽单频线偏振激光器,其特征在于所述激光后腔镜(4)的镜片端面镀有薄膜层,薄膜膜层对激光信号波长高反,反射率要求大于80%;对泵浦光波长高透,透射率要求大于80%。
4.如权利要求1所述的可调谐窄线宽单频线偏振激光器,其特征在于所述热光可调滤波器(5)为F-P型薄膜可调滤波器,利用该滤波器中介质薄膜材料的热光特性和高折射率特性,采用热电制冷器TEC进行精密温度控制,使得该滤波器中多层介质薄膜材料的折射率发生变化,实现对透射波长的可调谐。
5.如权利要求1所述的可调谐窄线宽单频线偏振激光器,其特征在于所述稀土离子高掺杂多组分玻璃光纤(8)的纤芯成分为磷酸盐玻璃组分,其组成为:65P2O5-10Al2O3-20BaO-3La2O3-2Nd2O3;所述稀土离子高掺杂多组分玻璃光纤(8)的纤芯均匀掺杂高浓度稀土发光离子,稀土发光离子的掺杂浓度要求大于1×1020ions/cm3;所述稀土发光离子包括镧系离子、碱土金属离子、过渡金属离子中的一种或几种的组合。
6.如权利要求1所述的可调谐窄线宽单频线偏振激光器,其特征在于所述稀土离子高掺杂多组分玻璃光纤(8)的纤芯形状为圆形,纤芯直径为3~50μm,包层形状为圆形、D形、六边形或八边形,其中圆形包层的直径或非圆形包层的边到边距离为80~900μm。
7.如权利要求1所述的可调谐窄线宽单频线偏振激光器,其特征在于所述稀土离子高掺杂多组分玻璃光纤(8)的一端镀有多层增透膜,增透膜对激光信号波长高透,透射率大于90%,用于抑制光纤端面反射。
8.如权利要求1所述的可调谐窄线宽单频线偏振激光器,其特征在于所述超结构保偏光纤光栅(9)对激光信号波长有选择性梳状反射即部分透射,中心波长反射率为20%~80%,具有反射峰均匀性好、窄带宽的特点,作为激光输出的耦合元器件。
9.如权利要求1所述的可调谐窄线宽单频线偏振激光器,其特征在于所述泵浦源(1)为边发射结构或其它封装形式的半导体激光器;所述泵浦源(1)输出模式是单模或多模,输出参数为泵浦波长800~1200nm,输出泵浦功率大于50mW;所述泵浦源的泵浦方式是前向泵浦,即泵浦源(1)发出的泵浦光直接从准直透镜(3)耦合进入光路。
10.如权利要求1所述的可调谐窄线宽单频线偏振激光器,其特征在于所述热光可调滤波器(5)与超结构保偏光纤光栅(9)均由独立的热电制冷器TEC进行精密温度控制,构成激光器波长/频率调谐功能部分;通过精密温度调节致使光纤光栅、滤波器的折射率相应改变,进而使得超结构保偏光纤光栅(9)的栅区反射光谱与热光可调滤波器(5)的透射光谱耦合重叠位置连续地发生变化,以获得不同波长处的最大反馈增益进行激光选频,即实现可宽范围、连续地调谐单频线偏振激光器的输出波长。
CN201410023920.5A 2014-01-17 2014-01-17 一种可调谐窄线宽单频线偏振激光器 Active CN103956638B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410023920.5A CN103956638B (zh) 2014-01-17 2014-01-17 一种可调谐窄线宽单频线偏振激光器
PCT/CN2014/092987 WO2015106606A1 (zh) 2014-01-17 2014-12-04 一种可调谐窄线宽单频线偏振激光器
US15/035,605 US9787050B2 (en) 2014-01-17 2014-12-04 Tunable narrow-linewidth single-frequency linear-polarization laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410023920.5A CN103956638B (zh) 2014-01-17 2014-01-17 一种可调谐窄线宽单频线偏振激光器

Publications (2)

Publication Number Publication Date
CN103956638A true CN103956638A (zh) 2014-07-30
CN103956638B CN103956638B (zh) 2016-01-06

Family

ID=51333886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410023920.5A Active CN103956638B (zh) 2014-01-17 2014-01-17 一种可调谐窄线宽单频线偏振激光器

Country Status (3)

Country Link
US (1) US9787050B2 (zh)
CN (1) CN103956638B (zh)
WO (1) WO2015106606A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015106606A1 (zh) * 2014-01-17 2015-07-23 华南理工大学 一种可调谐窄线宽单频线偏振激光器
CN105118541A (zh) * 2015-07-21 2015-12-02 大连理工大学 线偏振平面光波对处于硫族化物衬底上方微粒的可调谐捕获和筛选的方法
CN105932529A (zh) * 2016-05-20 2016-09-07 苏州领创激光科技有限公司 具有自适应调整激光功率的激光器
CN103986051B (zh) * 2014-05-29 2016-09-21 中国科学院上海光学精密机械研究所 窄线宽激光大范围频率快速调谐的装置
CN107994450A (zh) * 2017-12-22 2018-05-04 北京工业大学 一种全光纤结构波长可调谐的激光器
CN110542444A (zh) * 2019-09-30 2019-12-06 深圳市简测智能技术有限公司 一种光纤光栅解调系统
CN110567917A (zh) * 2019-09-12 2019-12-13 哈尔滨工业大学 一种光纤分布式水体盐溶液浓度传感器
CN112086851A (zh) * 2020-08-17 2020-12-15 江苏永鼎光纤科技有限公司 一种内包层掺碱金属的三包层石英光纤
CN112271538A (zh) * 2020-10-12 2021-01-26 北京卓镭激光技术有限公司 一种激光器及其脉冲宽度调制方法
CN113410753A (zh) * 2021-06-10 2021-09-17 深圳市大族光通科技有限公司 可调激光器调节电路及调节系统
CN116683292A (zh) * 2023-08-03 2023-09-01 山东大学 一种基于薄膜滤波器的半导体激光光谱合束装置及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104352B (zh) * 2017-06-28 2023-09-08 中国工程物理研究院激光聚变研究中心 光纤激光器及光学系统
US11095094B1 (en) * 2018-09-27 2021-08-17 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Compact wavelength-swept single longitudinal mode laser for optical frequency domain reflectometry
CN109193324B (zh) * 2018-11-19 2024-03-01 深圳技术大学(筹) 一种光纤激光器
CN111509534A (zh) * 2019-01-31 2020-08-07 深圳大学 窄线宽单频激光光源
CN109787076B (zh) * 2019-03-12 2024-04-19 中国工程物理研究院激光聚变研究中心 热致波导结构激光器及激光放大器
CN113161856B (zh) * 2021-04-27 2024-04-02 成都市谐振光电有限公司 基于双角锥谐振腔的1.6μm注入锁定固体激光器及发生方法
CN114498267A (zh) * 2022-01-27 2022-05-13 厦门大学 多波长高重频输出的锥形光纤及其制造方法和锁模激光器
CN115415673B (zh) * 2022-09-15 2023-11-14 浙江金洲激光科技有限公司 一种千瓦级大功率激光清洗设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425039A (en) * 1994-02-24 1995-06-13 Micron Optics, Inc. Single-frequency fiber Fabry-Perot micro lasers
US20030152115A1 (en) * 2002-01-24 2003-08-14 Np Photonics, Inc., A Corporation Of Delaware Rare-earth doped phosphate-glass single-mode fiber lasers
CN101420099A (zh) * 2008-11-28 2009-04-29 华南理工大学 激光波长为1.7~2.1μm的锗酸盐玻璃光纤激光器
CN101447637A (zh) * 2008-12-31 2009-06-03 华南理工大学 一种低噪声窄线宽高功率的单纵模光纤激光器
CN102306897A (zh) * 2011-08-22 2012-01-04 华南理工大学 一种超窄线宽低噪声高功率单频光纤激光器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050053101A1 (en) 2003-09-09 2005-03-10 Jian Liu Mode selection for single frequency fiber laser
US7903696B2 (en) 2008-12-31 2011-03-08 Ipg Photonics Corporation High-power narrowed-linewidth fiber laser system
JP2012209510A (ja) 2011-03-30 2012-10-25 Totoku Electric Co Ltd 光ファイバレーザ光源
CN202183551U (zh) 2011-09-05 2012-04-04 苏州图森激光有限公司 单纵模窄线宽光纤激光器
CN103457142B (zh) 2013-07-22 2016-09-07 中国科学技术大学 一种横模-波长相关可调全光纤激光器
CN103956638B (zh) 2014-01-17 2016-01-06 华南理工大学 一种可调谐窄线宽单频线偏振激光器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425039A (en) * 1994-02-24 1995-06-13 Micron Optics, Inc. Single-frequency fiber Fabry-Perot micro lasers
US20030152115A1 (en) * 2002-01-24 2003-08-14 Np Photonics, Inc., A Corporation Of Delaware Rare-earth doped phosphate-glass single-mode fiber lasers
CN101420099A (zh) * 2008-11-28 2009-04-29 华南理工大学 激光波长为1.7~2.1μm的锗酸盐玻璃光纤激光器
CN101447637A (zh) * 2008-12-31 2009-06-03 华南理工大学 一种低噪声窄线宽高功率的单纵模光纤激光器
CN102306897A (zh) * 2011-08-22 2012-01-04 华南理工大学 一种超窄线宽低噪声高功率单频光纤激光器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙磊: "光纤光栅的制作及应用研究", 《中国优秀硕士学位论文全文数据库信息科技辑》, 28 February 2007 (2007-02-28) *
田东: "基于热光效应的可调Fabry-Perot薄膜滤波器关键技术的研究", 《中国优秀硕士学位论文全文数据库信息科技辑》, 30 April 2009 (2009-04-30) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015106606A1 (zh) * 2014-01-17 2015-07-23 华南理工大学 一种可调谐窄线宽单频线偏振激光器
US9787050B2 (en) 2014-01-17 2017-10-10 South China University Of Technology Tunable narrow-linewidth single-frequency linear-polarization laser device
CN103986051B (zh) * 2014-05-29 2016-09-21 中国科学院上海光学精密机械研究所 窄线宽激光大范围频率快速调谐的装置
CN105118541A (zh) * 2015-07-21 2015-12-02 大连理工大学 线偏振平面光波对处于硫族化物衬底上方微粒的可调谐捕获和筛选的方法
CN105118541B (zh) * 2015-07-21 2017-04-12 大连理工大学 线偏振平面光波对处于硫族化物衬底上方微粒的可调谐捕获和筛选的方法
CN105932529A (zh) * 2016-05-20 2016-09-07 苏州领创激光科技有限公司 具有自适应调整激光功率的激光器
CN107994450A (zh) * 2017-12-22 2018-05-04 北京工业大学 一种全光纤结构波长可调谐的激光器
CN110567917A (zh) * 2019-09-12 2019-12-13 哈尔滨工业大学 一种光纤分布式水体盐溶液浓度传感器
CN110542444A (zh) * 2019-09-30 2019-12-06 深圳市简测智能技术有限公司 一种光纤光栅解调系统
CN112086851A (zh) * 2020-08-17 2020-12-15 江苏永鼎光纤科技有限公司 一种内包层掺碱金属的三包层石英光纤
CN112271538A (zh) * 2020-10-12 2021-01-26 北京卓镭激光技术有限公司 一种激光器及其脉冲宽度调制方法
CN113410753A (zh) * 2021-06-10 2021-09-17 深圳市大族光通科技有限公司 可调激光器调节电路及调节系统
CN116683292A (zh) * 2023-08-03 2023-09-01 山东大学 一种基于薄膜滤波器的半导体激光光谱合束装置及方法
CN116683292B (zh) * 2023-08-03 2023-11-24 山东大学 一种基于薄膜滤波器的半导体激光光谱合束装置及方法

Also Published As

Publication number Publication date
US20160261085A1 (en) 2016-09-08
WO2015106606A1 (zh) 2015-07-23
CN103956638B (zh) 2016-01-06
US9787050B2 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
CN103956638B (zh) 一种可调谐窄线宽单频线偏振激光器
CN103825167B (zh) 一种连续可调谐单频光纤激光器
CN103022864B (zh) 一种可调谐窄线宽阵列单频光纤激光器
CN202183551U (zh) 单纵模窄线宽光纤激光器
WO2020155696A1 (zh) 一种多波长单频调q光纤激光器
CN104466636A (zh) 一种单频调q脉冲光纤激光器
CN103337778A (zh) 频率调制单频光纤激光器
CN105428975A (zh) 高功率飞秒光纤激光器
CN103825166B (zh) 一种高精度宽可调谐单频光纤激光器
CN105514773A (zh) 一种双波长光纤激光器及其工作方法
CN205248608U (zh) 高功率飞秒光纤激光器
CN104466635A (zh) 一种高频率稳定性单频光纤激光器
El-Damak et al. Dual-wavelength, linearly polarized all-fiber laser with high extinction ratio
CN107465068A (zh) 一种基于波长相关偏振分离的可调谐多波长光纤激光器
CN105140764B (zh) 一种可调谐宽带ase光源
CN104092095A (zh) 一种高稳定超窄线宽单频光纤激光器
CN203871645U (zh) 一种低噪声保偏单频光纤激光器
CN104092086A (zh) 一种超窄线宽单频调q脉冲光纤激光器
CN204290019U (zh) 一种可调谐窄线宽单频线偏振激光器
US20120113994A1 (en) Low noise raman laser device, raman laser system and associated method
CN204067842U (zh) 一种连续可调谐单频光纤激光器
CN203288929U (zh) 频率调制单频光纤激光器
CN105356216A (zh) 一种全光纤窄线宽单频绿光激光器
CN103825180B (zh) 一种低噪声保偏单频光纤激光器
CN203871644U (zh) 一种高精度宽可调谐单频光纤激光器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant