CN103943958A - 一种面向等离子体耦合阻抗快速变化的共轭天线结构 - Google Patents

一种面向等离子体耦合阻抗快速变化的共轭天线结构 Download PDF

Info

Publication number
CN103943958A
CN103943958A CN201410146637.1A CN201410146637A CN103943958A CN 103943958 A CN103943958 A CN 103943958A CN 201410146637 A CN201410146637 A CN 201410146637A CN 103943958 A CN103943958 A CN 103943958A
Authority
CN
China
Prior art keywords
antenna
antenna structure
capacitance
plasma coupling
current band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410146637.1A
Other languages
English (en)
Other versions
CN103943958B (zh
Inventor
袁帅
赵燕平
秦成明
陈根
程艳
张新军
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Zhongke Ion Medical Technology Equipment Co Ltd
Original Assignee
Institute of Plasma Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Plasma Physics of CAS filed Critical Institute of Plasma Physics of CAS
Priority to CN201410146637.1A priority Critical patent/CN103943958B/zh
Publication of CN103943958A publication Critical patent/CN103943958A/zh
Application granted granted Critical
Publication of CN103943958B publication Critical patent/CN103943958B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Details Of Aerials (AREA)

Abstract

本发明公开了一种面向等离子体耦合阻抗快速变化的共轭天线结构,包括有箱体,箱体上固定有法拉第屏蔽,箱体与法拉第屏蔽之间装有天线电流带,天线电流带包括有极向二条电流带、环向二条电流带,极向二条电流带的馈入端分别连接一个匹配电容,极向二条电流带的另一端接地,所述的匹配电容采用可调真空电容,两个匹配电容通过一个T形板与一根真空传输线连接,T形板的中心点处的阻抗虚部为零;极向二条电流带由同一根真空传输线分别通过匹配电容馈入射频功率,形成共轭结构;箱体两侧分别设有保护限制器。本发明使得整个系统处于完美的匹配状态。

Description

一种面向等离子体耦合阻抗快速变化的共轭天线结构
技术领域
本发明涉及离子回旋波加热系统射频功率耦合领域,具体是一种面向等离子体耦合阻抗快速变化的共轭天线结构。
 
背景技术
离子回旋共振加热系统中高频发射机的输出阻抗为50欧姆,其传输线的特性阻抗也是50欧姆,而天线的输入阻抗是未知的,它随等离子体和放电参数的变化而变化。通常情况下放电期间天线阻抗的实部在0.5~10欧姆范围内变化。与传输线的特性阻抗相比,这显然是失配的。为了实现传输线阻抗与天线阻抗之间的匹配,我们有必要在天线与高频发射机之间引入一个可调的匹配装置。这样就可以使得发射机的输出功率通过天线辐射更加有效地耦合到等离子体中去。理论和实验研究均表明,天线端口附近的等离子体密度及其梯度是影响离子回旋天线耦合阻抗的决定性因素。在ELMs爆发期间,粒子的损失直接改变边界的密度剖面分布,相应地,改变天线的耦合阻抗。在离子回旋实验中发现,天线的耦合阻抗与ELMs 的尺度有很强的相关性。ELMs的尺度越大,耦合阻抗的变化越大。在L-H 模转换和在爆发ELMs 期间,天线耦合阻抗的快速变化会使得发射机的阻抗匹配状态不断发生变化,难以维持一种匹配状态,此时会导致发射机保护而关断输出功率。目前,离子回旋加热系统上使用的是三枝节液态调配器,它的特点是在同轴线的内外导体之间充入一些具有低介电常数的液体(硅油),充分利用电磁波在空气和硅油这两种不同媒质中传播速度的不同,来改变支节的特性阻抗,从而使传输线阻抗和天线负载阻抗达到匹配。它与常规短路枝节调配器相比,具有很大的优越性。虽然它解决了常规短路支节调配器容易打火的问题,但其调配的反应时间相对于ELM的变化和L-H模转换来说还是远远不够的。而且,现有的超导托卡马克及未来的反应堆要实现其先进、稳态的物理目标,则要求离子回旋系统必须能够连续稳态运行,所以必须发展一种新的调配方式来应对在耦合阻抗快变化的条件下离子回旋系统的匹配问题。
发明内容
本发明目的在于提供一种面向等离子体耦合阻抗快速变化的共轭天线结构,保证能够应对天线耦合阻抗的快速变化而使发射机始终维持在阻抗匹配状态从而有效地降低了射频鞘引起的杂质通量。
所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。改善边界局域模下快波耦合的天线结构所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。所述的匹配电容,对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的天线输入阻抗实部与传输线的特性阻抗实部相等,而其虚部值置于零。在这样的理想情况下,整个系统便处于“完美”的匹配状态。
本发明采用的技术方案如下:
一种面向等离子体耦合阻抗快速变化的共轭天线结构,其特征在于:包括有箱体、法拉第屏蔽以及天线电流带,法拉第屏蔽固定在箱体上,天线电流带安装在箱体与法拉第屏蔽之间,天线电流带为2x2的结构,即天线电流带包括有极向和环向各二条电流带,极向二条电流带的馈入端分别连接一个匹配电容,极向二条电流带另一端接地,所述的匹配电容采用可调真空电容;所述的两个匹配电容通过T形板与真空传输线连接,极向二条电流带由同一根真空传输线分别通过匹配电容馈入射频功率,形成共轭结构;所述的箱体两侧分别装有保护限制器。
所述的面向等离子体耦合阻抗快速变化的共轭天线结构,其特征在于:所述的匹配电容在T形板的中心点的阻抗虚部为零。
所述的面向等离子体耦合阻抗快速变化的共轭天线结构,其特征在于:所述的法拉第屏蔽包括有竖直隔板和横隔板,将极向电流带和环向电流带隔离,用于降低电流带间在极向和环向之间的互耦。
所述的面向等离子体耦合阻抗快速变化的共轭天线结构,其特征在于:所述的法拉第屏蔽、天线电流带、箱体、保护限制器的基板材料均为316L无磁不锈钢。
所述的面向等离子体耦合阻抗快速变化的共轭天线结构,其特征在于:所述的保护限制器的基板上安装有石墨瓦。
本发明的优点是:
本发明对于给定的天线特性阻抗,通过调节与天线为一整体的真空电容,使得在天线的馈入点位置的真空电容在T形板的中心点的阻抗虚部为零,在这样的理想情况下,整个系统便处于“完美”的匹配状态。
附图说明
图1为本发明的原理图。
图2为本发明的正面视图。
图3为本发明的剖面视图。
具体实施方式
如图1-3所示,一种面向等离子体耦合阻抗快速变化的共轭天线结构,包括有箱体4,箱体4上固定有法拉第屏蔽5,箱体4与法拉第屏蔽5之间设有天线电流带3,天线电流带3包括有极向二条电流带、环向二条电流带,极向二条电流带的馈入端分别连接一个匹配电容2,极向二条电流带的的另一端接地,匹配电容2采用可调真空电容,可调真空电容对于给定的天线特性阻抗,通过调节该真空电容,使得在天线的馈入点位置的天线输入阻抗实部与真空传输线的特性阻抗实部相等,而其虚部值置于零;两个匹配电容2通过一个T形板与一根真空传输线1连接,极向二条电流带由同一根真空传输线1分别通过匹配电容2馈入射频功率,形成共轭结构;箱体4两侧分别设有保护限制器6。
T形板的中心点处的阻抗虚部为零。
法拉第屏蔽5包括有竖直隔板和横隔板,将极向电流带和环向电流带隔离,用于降低电流带间在极向和环向之间的互耦。
法拉第屏蔽5、天线电流带3、箱体4、保护限制器6的基板材料均为316L无磁不锈钢。保护限制器6的基板上安装有石墨瓦。

Claims (5)

1.一种面向等离子体耦合阻抗快速变化的共轭天线结构,其特征在于:包括有箱体、法拉第屏蔽以及天线电流带,法拉第屏蔽固定在箱体上,天线电流带安装在箱体与法拉第屏蔽之间,天线电流带为2x2的结构,即天线电流带包括有极向和环向各二条电流带,极向二条电流带的馈入端分别连接一个匹配电容,极向二条电流带另一端接地,所述的匹配电容采用可调真空电容;所述的两个匹配电容通过T形板与真空传输线连接,极向二条电流带由同一根真空传输线分别通过匹配电容馈入射频功率,形成共轭结构;所述的箱体两侧分别装有保护限制器。
2.根据权利要求1所述的面向等离子体耦合阻抗快速变化的共轭天线结构,其特征在于:所述的匹配电容在T形板的中心点处的阻抗虚部为零。
3.根据权利要求1所述的面向等离子体耦合阻抗快速变化的共轭天线结构,其特征在于:所述的法拉第屏蔽包括有竖直隔板和横隔板,将极向电流带和环向电流带隔离。
4.根据权利要求1所述的面向等离子体耦合阻抗快速变化的共轭天线结构,其特征在于:所述的法拉第屏蔽、天线电流带、箱体、保护限制器的基板材料均为316L无磁不锈钢。
5.根据权利要求1所述的面向等离子体耦合阻抗快速变化的共轭天线结构,其特征在于:所述的保护限制器的基板上安装有石墨瓦。
CN201410146637.1A 2014-04-11 2014-04-11 一种面向等离子体耦合阻抗快速变化的共轭天线结构 Active CN103943958B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410146637.1A CN103943958B (zh) 2014-04-11 2014-04-11 一种面向等离子体耦合阻抗快速变化的共轭天线结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410146637.1A CN103943958B (zh) 2014-04-11 2014-04-11 一种面向等离子体耦合阻抗快速变化的共轭天线结构

Publications (2)

Publication Number Publication Date
CN103943958A true CN103943958A (zh) 2014-07-23
CN103943958B CN103943958B (zh) 2017-01-11

Family

ID=51191517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410146637.1A Active CN103943958B (zh) 2014-04-11 2014-04-11 一种面向等离子体耦合阻抗快速变化的共轭天线结构

Country Status (1)

Country Link
CN (1) CN103943958B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373619A (zh) * 2016-08-31 2017-02-01 中国科学院等离子体物理研究所 一种天线保护限制器结构
CN107612572A (zh) * 2017-09-08 2018-01-19 上海斐讯数据通信技术有限公司 一种射频匹配模块、用于移动终端的射频系统
CN107706524A (zh) * 2017-09-01 2018-02-16 中国科学院合肥物质科学研究院 高耐受等离子体变化的离子回旋加热长天线
CN108601190A (zh) * 2017-12-20 2018-09-28 中国科学院合肥物质科学研究院 高耦合低杂质的双环型离子回旋天线
CN110278649A (zh) * 2019-05-23 2019-09-24 中国科学院合肥物质科学研究院 低射频鞘、高灵活性多元阵射频波加热天线
CN113411943A (zh) * 2021-05-17 2021-09-17 中国科学院合肥物质科学研究院 一种降低加热天线射频鞘的电流补偿装置
CN113612006A (zh) * 2021-07-28 2021-11-05 中国科学院合肥物质科学研究院 一种分布式t型行波离子回旋天线结构
CN116133224A (zh) * 2023-04-13 2023-05-16 安徽曦融兆波科技有限公司 一种用于激发高功率螺旋波等离子体的共振型天线装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973495A (en) * 1995-04-28 1999-10-26 Mansfield; Peter Method and apparatus for eliminating mutual inductance effects in resonant coil assemblies
CN102904019A (zh) * 2011-07-29 2013-01-30 波音公司 用于相控阵列的宽带链接环天线元件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973495A (en) * 1995-04-28 1999-10-26 Mansfield; Peter Method and apparatus for eliminating mutual inductance effects in resonant coil assemblies
CN102904019A (zh) * 2011-07-29 2013-01-30 波音公司 用于相控阵列的宽带链接环天线元件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PH. CHAPPUIS等: "The ITER-like ICRF Antenna for JET", 《THE 23RD SOFT CONFERENCE》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373619A (zh) * 2016-08-31 2017-02-01 中国科学院等离子体物理研究所 一种天线保护限制器结构
CN107706524A (zh) * 2017-09-01 2018-02-16 中国科学院合肥物质科学研究院 高耐受等离子体变化的离子回旋加热长天线
CN107612572A (zh) * 2017-09-08 2018-01-19 上海斐讯数据通信技术有限公司 一种射频匹配模块、用于移动终端的射频系统
CN108601190A (zh) * 2017-12-20 2018-09-28 中国科学院合肥物质科学研究院 高耦合低杂质的双环型离子回旋天线
CN110278649A (zh) * 2019-05-23 2019-09-24 中国科学院合肥物质科学研究院 低射频鞘、高灵活性多元阵射频波加热天线
CN110278649B (zh) * 2019-05-23 2021-05-11 中国科学院合肥物质科学研究院 低射频鞘、高灵活性多元阵射频波加热天线
CN113411943A (zh) * 2021-05-17 2021-09-17 中国科学院合肥物质科学研究院 一种降低加热天线射频鞘的电流补偿装置
CN113612006A (zh) * 2021-07-28 2021-11-05 中国科学院合肥物质科学研究院 一种分布式t型行波离子回旋天线结构
CN116133224A (zh) * 2023-04-13 2023-05-16 安徽曦融兆波科技有限公司 一种用于激发高功率螺旋波等离子体的共振型天线装置

Also Published As

Publication number Publication date
CN103943958B (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
CN103943958A (zh) 一种面向等离子体耦合阻抗快速变化的共轭天线结构
US9979067B2 (en) N-way, ridged waveguide, radial power combiner/divider
CN205081230U (zh) 天线系统及其移动终端
CN110829023B (zh) 天线模组及终端
CN105187343B (zh) 一种同时同频全双工系统中的降低自干扰的方法和装置
Piltyay et al. Parametric optimization of waveguide polarizer by equivalent network and FEM models
CN103996899A (zh) 基于互补分裂谐振环的十字缝隙贴片天线
Hillairet et al. Ion cyclotron resonance heating systems upgrade toward high power and CW operations in WEST
CN109361045A (zh) 一种小型化宽带大功率耦合器
CN206364181U (zh) 具有双频宽带功能的圆极化天线
Wen et al. Design of a compact 3dB Ka-band directional coupler
Sennouni et al. Improved circularly polarized rectenna design for microwave power transmission at 2.45 GHz
US20190238165A1 (en) Antenna feed in a wireless communication network node
Taguchi et al. Mutual coupling characteristics of two unbalanced fed ultra low profile inverted L antennas closely faced each other
Sharma et al. A compact CPW fed modified circular patch antenna with stub for UWB applications
US8957822B2 (en) Operation of an antenna on a second, higher frequency
CN205028993U (zh) 无方向性宽带不等分耦合器
CN110061354A (zh) 一种mimo天线系统
US2724090A (en) Electron discharge device output coupler
Choi et al. The Design of a Sliding Rectangular Waveguide Array Antenna for Beam Steering
Nithya et al. Design and fabrication of microstrip MIMO antenna for 5G smart phones
Cam et al. An array of antipodal Vivaldi antenna with genetic optimization
CN219267867U (zh) 一种隔离器
Panda et al. Perturbed triangular patch antenna with DGS for K band application
CN210296591U (zh) 一种大功率短波宽带天线平衡不平衡变换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170612

Address after: 230088 innovation building, room 860, Wangjiang West Road, hi tech Zone, Anhui, Hefei, 816

Patentee after: Hefei Zhongke ion medical technology equipment Co., Ltd.

Address before: 230031 Shushan Lake Road, Shushan District, Anhui, China, No. 350, No.

Patentee before: Inst. of Plasma Physics, Chinese Academy of Sciences

TR01 Transfer of patent right