CN103942842A - Embedded type meandering river sand modeling method - Google Patents

Embedded type meandering river sand modeling method Download PDF

Info

Publication number
CN103942842A
CN103942842A CN201410101739.1A CN201410101739A CN103942842A CN 103942842 A CN103942842 A CN 103942842A CN 201410101739 A CN201410101739 A CN 201410101739A CN 103942842 A CN103942842 A CN 103942842A
Authority
CN
China
Prior art keywords
model
lateral accretion
accretion interbed
interbed
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410101739.1A
Other languages
Chinese (zh)
Inventor
朱伟
宋小川
王元庆
张景义
何宇航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daqing Oilfield Co Ltd
China Petroleum and Natural Gas Co Ltd
Original Assignee
Daqing Oilfield Co Ltd
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daqing Oilfield Co Ltd, China Petroleum and Natural Gas Co Ltd filed Critical Daqing Oilfield Co Ltd
Priority to CN201410101739.1A priority Critical patent/CN103942842A/en
Publication of CN103942842A publication Critical patent/CN103942842A/en
Pending legal-status Critical Current

Links

Abstract

The invention relates to an embedded type meandering river sand modeling method. The method mainly solves the problems that an existing modeling method is low in working efficiency, poor in grid model quality and inaccurate in lateral accretion interbed construction and a plurality of multi-layer point bars can not be built in the prior art. The method is characterized by including the following steps that firstly, data resource processing is carried out; secondly, intra-layer modeling is achieved; thirdly, a plane mathematic descriptive model and a longitudinal mathematic descriptive model are abstracted through precise labeling of point bar plane and lateral accretion interbed longitudinal construction features, and precise modeling of a lateral accretion interbed plane space object is achieved through the combination of two two-dimensional models; fourthly, overall model embedding is achieved through the sleeving connection and grid tracking algorithm. By means of the method, modeling efficiency and precision are improved, and the overall quality of a grid model is guaranteed.

Description

Embedded meandering river Sandbody modling method
Technical field
The present invention relates to a kind of Geological Modeling of oil-field development technical field, especially oneplant embedded meandering river Sandbody modling method.
Background technology
From the inner remaining oil research technology result of meandering river molding sand body, in ultra-high water cut stage meandering river molding sand body, still there is a large amount of remaining oils, owing to being subject to abandoned channel, local variation, lateral accretion interbed blocks and develop the combined influence of system, remaining oil is present in oil reservoir inside with multi-form, different scales, and the difficulty of deeply taping the latent power continues to increase.In order further to improve Development Response of Oilfield, a large amount of deep research work aspect fine geology, have been carried out, aspect the research of meandering stream deposit sand body endo conformation, making significant progress, the fairly perfect identification of some dam body and endo conformation analytical technology have been formed, the important characterising parameters such as point bar body plane form, longitudinal configuration, distribution frequency and bottom connection situation have been obtained, for fine geology modeling in meandering river layer provides necessary material base.
Modeling digital-to-analogue use in conjunction technology had both comprised specific geologic agent, can reflect again the impact of the composite factors such as well pattern and exploitation system, it is the most effective technological means of Fuel Oil Remaining fractional analysis in ultra-high water cut stage layer, in meandering stream deposit Sandbody modling and digital-to-analogue application, carried out in recent years a large amount of exploration application, from the situation of investigation, also there is very large deficiency and limitation in existing modeling method.Aspect lateral accretion interbed modeling, mainly containing three kinds of methods: the one, hand drawing method, the method is according to the understanding of the configuration feature on longitudinal to point bar form, distribution range and lateral accretion interbed in survey region in fine geology research process, with interactive mode, on grid model, demarcate layer by layer one by one grid, inefficiency and the very difficult precision that guarantees description; The 2nd, tomography method of equal effects, the method is the form participation modeling with tomography key element by lateral accretion interbed, because lateral accretion interbed all has low inclination angle conventionally, can make model local structure that serious distortion occurs in modeling process, has a strong impact on mesh quality; The 3rd, along lateral accretion interbed modeling, the method is to set up grid model along lateral accretion interbed face, from modeling effect, can accurately represent the spatial shape feature that side is amassed body, but there is in actual applications obvious inadaptability: be that this method is not deferred to actual geology layering on the one hand, and cannot realize the classifying rationally of grid in multilayer situation, even on the other hand in same layer, if there are the some dam bodys of a plurality of different tendencies, along the method for lateral accretion interbed layering, also cannot realize the description of a dam body.
Summary of the invention
The invention reside in the problem of " inefficiency, grid model are of poor quality, lateral accretion interbed configuration out of true and cannot set up multilayer multiple spot dam " that overcome that the existing modeling method that exists in background technology exists, and provide oneplant embedded meandering river Sandbody modling method.This embedded meandering river Sandbody modling method, by the demarcation of meandering river point bar body endo conformation, the longitudinal mathematical model description of plane, interlayer tracking socket and embedded integration method, realized fine geology modeling in meandering river sand body layer, when improving modeling efficiency and precision, guarantee the total quality of grid model, strengthened the adaptability of technology application.
The present invention solves its problem and can reach by following technical solution: this embedded meandering river Sandbody modling method, comprises following steps:
1), data information
(1) object block well location coordinate data data;
(2) fine sedimentary facies base map data of description, wants precise marking to go out distributed areas and the morphological feature of a dam body on base map;
(3) lateral accretion interbed configuration is described achievement;
(4) target area fine grid blocks and property distribution model;
(5) supporting lateral accretion interbed modeling and model integration software;
2), modeling implementation procedure in layer
(1) base map coordinates correction:
Using Detailed Geologic Research Results base map as demarcating source, and the well location coordinate information of usining in survey region is as reference point, realizes the Concordance of coordinate system by rotation, scaling and the coordinate transform of plane base map; Described well location coordinate information get three points or more than;
(2) point bar body plane form is demarcated:
Utilize line group scaling method to describe some dam body projection morphological feature, according to a complexity for dam body projection form, adopt one or more line groups to demarcate, in each line group, comprise two and describe line, represent respectively the form of lateral accretion interbed face start-stop projection line, the lateral accretion interbed projection line between line group can utilize interpolation method to obtain according to interlayer density parameter;
(3) lateral accretion interbed tendency is demarcated:
Application normal scaling method is realized the description of lateral accretion interbed tendency feature, according to a situation of change for dam body different parts interlayer tendency, at corresponding site, feature normal is set, and accurately describes the tendency feature of some dam body regional area;
(4) set up the longitudinal template of lateral accretion interbed:
According to putting dam body endo conformation feature in survey region, set up the longitudinal form template of lateral accretion interbed, the complexity that can change according to the local feature of lateral accretion interbed in region in application, carries out longitudinal morphological feature classification, and sets up on this basis many cover description templates;
(5) create lateral accretion interbed space curved surface:
On the basis of coordinates correction and parameter calibration, binding site dam body plane and longitudinally mathematics description model create lateral accretion interbed space curved surface;
(6) grid model loads:
Import existing target area grid and property distribution model;
(7) model integration and output:
In conjunction with grid property model and interlayer surface model, adopt socket mesh tracing method, utilize spatial object intersection algorithm to differentiate lateral accretion interbed curved surface and model meshes overlapping relation, if crossing, setting this grid is interlayer description unit, and set corresponding discriminant value for all crossing grids, the integration of implementation model, and generate lateral accretion interbed curved surface mark achievement or grid property correction result.
The present invention compares and can have following beneficial effect with above-mentioned background technology: this embedded meandering river Sandbody modling method, solved because lateral accretion interbed sample information point is few, and cannot utilize conventional interpolation method to set up the technical barrier of space curved surface; Can improve to a great extent precision and the efficiency of modeling in meandering river sand body layer; The Accurate Model that can adapt to multilayer, multiple spot dam body and different tendency lateral accretion interbed configuration characteristics; Utilize embed model integration method, can guarantee the quality of original mesh model, improve the convergence type of numerical simulation.
accompanying drawing explanation:
Accompanying drawing 1 is the property distribution model of grand celebration block in the embodiment of the present invention;
Accompanying drawing 2 is that in the embodiment of the present invention, grand celebration block base map is proofreaied and correct and lateral accretion interbed parameter arranges figure;
Accompanying drawing 3 is that in the embodiment of the present invention, longitudinal morphological parameters of grand celebration block arranges figure;
Accompanying drawing 4 is lateral accretion interbed space curved surface figure of grand celebration block in the embodiment of the present invention;
Accompanying drawing 5 is that in the embodiment of the present invention, grand celebration block is followed the trail of the model result figure after socket;
Accompanying drawing 6 is analog result figure of grand celebration block in the embodiment of the present invention.
embodiment:
Below in conjunction with specific embodiment, the invention will be further described:
Embedded meandering river Sandbody modling method, grand celebration block major reservoir is poly-drive after follow-up water drive block application, this block has adopted embedded meandering river Sandbody modling method, concrete steps are as follows:
1, in conjunction with the geologic feature of this block, set up property distribution model, this process can adopt existing modeling software to realize, and does not contain the lateral accretion interbed descriptor of meandering river sand body inside in model, the carrier (seeing accompanying drawing 1) that this model embeds as lateral accretion interbed;
2, obtain target area fine geology research base map, utilize at least 3 mouthfuls of well coordinates (A, B, C) in region to proofread and correct base map coordinate, make base map coordinate consistent with actual geology coordinate; Calibration point dam body outline line on base map, the difference scope of control lateral accretion interbed, the simultaneously morphological feature of definite lateral accretion interbed curved surface; Along lateral accretion interbed outline line, tendency normal is set, represents the tendency feature (seeing accompanying drawing 2) of lateral accretion interbed;
3, the longitudinal morphological parameters model of lateral accretion interbed (seeing accompanying drawing 3) is set, describes longitudinal form of single lateral accretion interbed; Arrange, adjust lateral accretion interbed spacing in point bar body region; Lateral accretion interbed bottom is set and degrades parameter;
4, according to some dam body contour feature, tendency, plane and longitudinal morphological parameters calculation level dam body inner side of above-mentioned setting, amass mezzanine space curved surface (seeing accompanying drawing 4);
5, utilize property distribution model in the first step and the lateral accretion interbed curved surface in the 4th step, adopt the crossing grid cell of the crossing tracing algorithm differentiation lateral accretion interbed face of grid and attribute model, and set to intersecting grid the grid eigenwert that represents lateral accretion interbed, realize the integration (seeing accompanying drawing 5) of lateral accretion interbed and attribute model, generate lateral accretion interbed curved surface mark achievement or grid property correction result.This model has comprised lateral accretion interbed model information, can form data-interface with numerical simulation software, realizes the modeling effort of lateral accretion interbed model, (seeing accompanying drawing 6).
This embedded meandering river Sandbody modling method grand celebration block major reservoir is poly-drive after follow-up water drive block application, can obtain 7,451 ten thousand yuan of economic benefits, there is good economic benefit.
At the national maturing field sand body of meandering stream deposit type that all distributing in a large number, and be all faced with the technical barrier of finding local remaining oil and deeply taping the latent power.This embedded meandering river Sandbody modling method, application meandering stream deposit Sandbody modling and digital-to-analogue application technology, being the effective technology means that ultra-high water cut stage is found local remaining oil enriched area, is also a kind of inevitable technology trends, has broad application prospects and popularization and application space.

Claims (4)

1. an embedded meandering river Sandbody modling method, is characterized in that: comprise following steps:
1) data information:
(1) object block well location coordinate data data;
(2) fine sedimentary facies base map data of description, wants precise marking to go out distributed areas and the morphological feature of a dam body on base map;
(3) lateral accretion interbed configuration is described achievement;
(4) target area fine grid blocks and property distribution model;
(5) supporting lateral accretion interbed modeling and model integration software;
2) modeling implementation procedure in layer:
(1) base map coordinates correction: using Detailed Geologic Research Results base map as demarcating source, and the well location coordinate information of usining in survey region is as reference point, realizes the Concordance of coordinate system by rotation, scaling and the coordinate transform of plane base map; Described well location coordinate information get three points or more than;
(2) point bar body plane form is demarcated: utilize line group scaling method to describe some dam body projection morphological feature, according to a complexity for dam body projection form, adopt one or more line groups to demarcate, in each line group, comprise two and describe line, represent respectively the form of lateral accretion interbed face start-stop projection line, the lateral accretion interbed projection line between line group can utilize interpolation method to obtain according to interlayer density parameter;
(3) lateral accretion interbed tendency is demarcated: application normal scaling method is realized the description of lateral accretion interbed tendency feature, according to a situation of change for dam body different parts interlayer tendency, at corresponding site, feature normal is set, accurately describes the tendency feature of some dam body regional area;
(4) set up the longitudinal template of lateral accretion interbed: according to putting dam body endo conformation feature in survey region, set up the longitudinal form template of lateral accretion interbed, the complexity that can change according to the local feature of lateral accretion interbed in region in application, carry out longitudinal morphological feature classification, and set up on this basis many cover description templates;
(5) create lateral accretion interbed space curved surface: on the basis of coordinates correction and parameter calibration, binding site dam body plane and longitudinally mathematics description model create lateral accretion interbed space curved surface;
(6) grid model loads: import existing target area grid and property distribution model;
(7) model integration and output: in conjunction with grid property model and interlayer surface model, adopt socket mesh tracing method, utilize spatial object intersection algorithm to differentiate lateral accretion interbed curved surface and model meshes overlapping relation, if crossing, setting this grid is interlayer description unit, and set corresponding discriminant value for all crossing grids, the integration of implementation model, and generate lateral accretion interbed curved surface mark achievement or grid property correction result.
2. embedded meandering river Sandbody modling method according to claim 1, it is characterized in that: described object block well location coordinate data data, can be the coordinate data of all wells in block, also can select not on same straight line and can control the part key well in whole region.
3. embedded meandering river Sandbody modling method according to claim 1, is characterized in that: described lateral accretion interbed configuration is described achievement and comprised longitudinal configuration pattern, inclination angle, tendency, distribution density and bottom communication information.
4. embedded meandering river Sandbody modling method according to claim 1, it is characterized in that: described target area fine grid blocks and property distribution model are to be realized by ripe fine geology modeling software the carrier that in application, this model embeds as lateral accretion interbed spatial model.
CN201410101739.1A 2014-03-19 2014-03-19 Embedded type meandering river sand modeling method Pending CN103942842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410101739.1A CN103942842A (en) 2014-03-19 2014-03-19 Embedded type meandering river sand modeling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410101739.1A CN103942842A (en) 2014-03-19 2014-03-19 Embedded type meandering river sand modeling method

Publications (1)

Publication Number Publication Date
CN103942842A true CN103942842A (en) 2014-07-23

Family

ID=51190492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410101739.1A Pending CN103942842A (en) 2014-03-19 2014-03-19 Embedded type meandering river sand modeling method

Country Status (1)

Country Link
CN (1) CN103942842A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104453877A (en) * 2014-11-05 2015-03-25 长江大学 Underground deep-buried meander point dam sand body historical reconstruction method
CN104533402A (en) * 2014-11-25 2015-04-22 长江大学 Multi-phase superimposed combined braided channel sand phase determining method
CN104574513A (en) * 2014-12-31 2015-04-29 长江大学 Representation method for accurately depicting three-dimensional distribution of interlayers based on geometrical morphology
CN108957549A (en) * 2018-06-26 2018-12-07 中国石油天然气股份有限公司 A kind of heterogeneous DAMAGE OF TIGHT SAND GAS RESERVOIRS Geological Modeling of braided stream deposit
CN109025981A (en) * 2018-06-22 2018-12-18 中国石油天然气股份有限公司 Accumulate correlation of sand bodies method and system in meandering stream side
WO2019127879A1 (en) * 2017-12-29 2019-07-04 中国石油大学(华东) Method for quantitatively characterizing geometric parameter relationships of river channel sand bodies of different river types
CN110019594A (en) * 2017-09-27 2019-07-16 中国石油化工股份有限公司 A kind of geologic datebase method for building up based on numerical simulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030233217A1 (en) * 2002-06-14 2003-12-18 Schlumberger Technology Corporation Method and program storage device for generating grids representing the architecture of fluvial reservoirs
CN103226847A (en) * 2013-04-01 2013-07-31 中国石油天然气股份有限公司 Meandering river point bar 3D data generating method and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030233217A1 (en) * 2002-06-14 2003-12-18 Schlumberger Technology Corporation Method and program storage device for generating grids representing the architecture of fluvial reservoirs
CN103226847A (en) * 2013-04-01 2013-07-31 中国石油天然气股份有限公司 Meandering river point bar 3D data generating method and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
兰丽凤等: "曲流河砂体三维构型地质建模及应用", 《西南石油大学学报(自然科学版)》 *
范峥等: "曲流河点坝内部构型的嵌入式建模方法研究", 《中国石油大学学报( 自然科学版)》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104453877A (en) * 2014-11-05 2015-03-25 长江大学 Underground deep-buried meander point dam sand body historical reconstruction method
CN104453877B (en) * 2014-11-05 2018-05-15 长江大学 A kind of buried point bar of meandering sand body history method for reconstructing in underground
CN104533402A (en) * 2014-11-25 2015-04-22 长江大学 Multi-phase superimposed combined braided channel sand phase determining method
CN104533402B (en) * 2014-11-25 2017-11-14 长江大学 A kind of more phases are stacked compound braided channel sand body and determine method by stages
CN104574513A (en) * 2014-12-31 2015-04-29 长江大学 Representation method for accurately depicting three-dimensional distribution of interlayers based on geometrical morphology
CN104574513B (en) * 2014-12-31 2018-05-15 长江大学 The accurate characterizing method for portraying interlayer distributed in three dimensions based on geometric shape
CN110019594A (en) * 2017-09-27 2019-07-16 中国石油化工股份有限公司 A kind of geologic datebase method for building up based on numerical simulation
CN110019594B (en) * 2017-09-27 2023-04-04 中国石油化工股份有限公司 Geological knowledge base building method based on numerical simulation
WO2019127879A1 (en) * 2017-12-29 2019-07-04 中国石油大学(华东) Method for quantitatively characterizing geometric parameter relationships of river channel sand bodies of different river types
CN109025981A (en) * 2018-06-22 2018-12-18 中国石油天然气股份有限公司 Accumulate correlation of sand bodies method and system in meandering stream side
CN108957549A (en) * 2018-06-26 2018-12-07 中国石油天然气股份有限公司 A kind of heterogeneous DAMAGE OF TIGHT SAND GAS RESERVOIRS Geological Modeling of braided stream deposit

Similar Documents

Publication Publication Date Title
CN103942842A (en) Embedded type meandering river sand modeling method
CN104616350B (en) Fracture hole type carbonate reservoir three-dimensional physical model method for building up
CN104574511B (en) A kind of quick progressive three-dimensional geological modeling method
CN102289991B (en) Visual-variable-based automatic classification and configuration method of map lettering
CN105184864A (en) Site stratum three-dimensional geological structure model generation method for natural foundation replacement quantities calculation
CN109003330B (en) Three-dimensional stratum modeling method based on bedrock boundary constraint
CN103454686A (en) Reservoir prediction method and system based on small-scale sedimentary facies of stratal slice
CN102609982B (en) Topology discovery method of space geological data based on unstructured mode
CN103699751A (en) Sand body reservoir architecture modeling method and system based on space vectors
CN103366633A (en) Water conservation map data model-based flood risk map drawing method and system thereof
CN103077548A (en) Method for establishing solution vug reservoir body distribution model of fractured-vuggy carbonate rock reservoir
Turk et al. Hydrogeological characterization of groundwater storage and drainage in an alpine karst aquifer (the Kanin massif, Julian Alps)
CN102194252A (en) Geological-stratum-structure-based method for generating triangular lattice grids
CN104635262A (en) Automatic forward and reverse fault isoline generating method based on enhanced rectangular grid
CN112394404A (en) Progressive reservoir fine characterization method
CN104809266A (en) Spline based accurate predicating method for face coal seam occurrence condition
CN104574513A (en) Representation method for accurately depicting three-dimensional distribution of interlayers based on geometrical morphology
CN107766978A (en) The intelligent optimization method of skewed pattern
CN114549774A (en) Three-dimensional stratum modeling method based on drilling data
CN110019594B (en) Geological knowledge base building method based on numerical simulation
CN105205311B (en) A kind of complex number algorithm that stratigraphic section is drawn
Daafi et al. Geology and mine planning of phosphate deposits: Benguerir deposit Gantour basin–Morocco
CN104504756A (en) Dynamic updating method of ore deposit three dimension geology model
CN110428497A (en) Braided stream training image generation method
CN105654525A (en) Two-dimensional model construction method for reflecting real rock core connectivity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140723

RJ01 Rejection of invention patent application after publication