CN103941261A - 相位敏感式定点测冰系统 - Google Patents

相位敏感式定点测冰系统 Download PDF

Info

Publication number
CN103941261A
CN103941261A CN201410153034.4A CN201410153034A CN103941261A CN 103941261 A CN103941261 A CN 103941261A CN 201410153034 A CN201410153034 A CN 201410153034A CN 103941261 A CN103941261 A CN 103941261A
Authority
CN
China
Prior art keywords
ice
fixed point
thickness
phase sensitive
sensitive formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410153034.4A
Other languages
English (en)
Other versions
CN103941261B (zh
Inventor
郭井学
崔祥斌
孙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
POLAR RESEARCH INSTITUTE OF CHINA
Original Assignee
POLAR RESEARCH INSTITUTE OF CHINA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by POLAR RESEARCH INSTITUTE OF CHINA filed Critical POLAR RESEARCH INSTITUTE OF CHINA
Priority to CN201410153034.4A priority Critical patent/CN103941261B/zh
Publication of CN103941261A publication Critical patent/CN103941261A/zh
Application granted granted Critical
Publication of CN103941261B publication Critical patent/CN103941261B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

本发明提出了一种相位敏感式定点测冰系统,适用于极地冰盖或冰架的厚度及其变化的探测,包括:矢量网络分析仪,内置有信号发生器和接收机;发射天线,与所述信号发生器相连接,其中所述信号发生器经由所述发射天线向冰体内发射电磁波信号;接收天线,与所述接收机相连接,其中所述接收机经由所述接收天线接收来自所述冰体内界面的反射波信号,其中,所述矢量网络分析仪通过时频变换获取所述冰体的绝对厚度;根据在不同时间点采集的反射波信号的相位变化以冰间参考面为计算的基准获取所述冰体厚度的变化量。

Description

相位敏感式定点测冰系统
技术领域
本发明涉及一种应用于极地冰盖/冰架的厚度及厚度变化的探测系统,尤其涉及一种相位敏感式定点测冰系统。
背景技术
在极地科学研究领域中,冰盖与冰架一直是全球变化研究的热点。冰盖与冰架系统作为全球变化的关键地区,构成地球系统的一个重要冷源,是全球气候系统的驱动器,对气候变化有强烈的响应与反馈作用。冰盖与冰架底部融化是南极质量收支的一个重要组成部分,研究认为超过20%的冰量会从冰盖流走。由底部融化产生的融化水与不稳定状态对全球水团的演变同样具有重要作用。
然而,许多单独的针对底部融化的估算存在很大的不确定性,其累积误差可达约50%。由于很多用于估算底部融化的方法并不具有严格的可比性,所以减小其不确定性具有非常大的难度。通常冰川科学观测研究都是假设冰下的海水无论是热量还是盐度在观测时既不增加也不损失,也只能得到冰体沿线的净热量损失或者增加的淡水。常规的冰川学探测技术也需要空间平均并假设冰盖与冰架质量在一定时期内不发生变化。钻孔测量可直接提供单点上的底部融化率,通过已有钻孔观测结果揭示的融化率在时间上的变化表明上面讨论的假设是无效的。然而开展钻孔直接测量的难度与费用均是不可估量的,因此钻孔技术不可能在广泛的空间范围内应用,这也说明了采用钻孔探测次数少原因。
同时,极地冰盖与冰架的厚度巨大且内部结构复杂,也给探测研究带来了很大的不确定性。目前主要的技术手段是采用无线电回波探测测量底部冰床与大陆架或海水交界处反射回波的行程时间和能量,然后根据所用频率的无线电波在冰体中的传播速度,推算出冰体的厚度。其测量精确度通常都是在5米以上,这样的精度无法监测到短时间内因消融造成的冰体厚度的微量变化。而且冰盖与冰架厚度在短期内的变化量通常在1米以内,甚至达到几厘米,这样的精度是现有技术无法达到的。
因此,迫切需要引入一种新的测量系统,对冰盖与冰架厚度及其变化量进行精确监控。
发明内容
针对上述需求,本发明提出了一种适用于极地低温条件的能够在广阔的空间范围内快速探测冰盖与冰架厚度的测量系统,其能提供底部融化率的精确估算,具有较高的空间与时间分辨率。
具体地,本发明提出了一种相位敏感式定点测冰系统,适用于极地冰盖或冰架的厚度及其变化的探测,包括:
矢量网络分析仪,内置有信号发生器和接收机;
发射天线,与所述信号发生器相连接,其中所述信号发生器经由所述发射天线向冰体内发射电磁波信号;
接收天线,与所述接收机相连接,其中所述接收机经由所述接收天线接收来自所述冰体内的界面的反射波信号,其中,所述矢量网络分析仪通过时频变换获取所述冰体的绝对厚度或者根据在不同时间点采集的反射波信号的相位变化获取所述冰体的厚度变化量。
较佳地,在上述的相位敏感式定点测冰系统中,还包括:保温工作箱,内设有监测并调整所述保温工作箱内的环境温度的温度控制单元、由所述温度控制单元信号控制其开闭的风扇窗口以及与所述温度控制单元信号连接的温度传感器,其中所述矢量网络分析仪设置于所述保温工作箱内。
较佳地,在上述的相位敏感式定点测冰系统中,所述根据在不同时间点采集的反射波信号的相位变化获取所述冰体的厚度变化量进一步包括:根据从所述冰体的底部反射的电磁波的脉冲的相位历程来确定所述冰体的厚度在所述相位敏感式定点测冰系统所位于的固定点处的厚度变化量。
较佳地,在上述的相位敏感式定点测冰系统中,所述根据在不同时间点采集的反射波信号的相位变化获取所述冰体的厚度变化量的步骤可以进一步包括:在根据从所述冰体的底部反射的电磁波的脉冲的相位历程来确定所述冰体的厚度在所述相位敏感式定点测冰系统所位于的固定点处的厚度变化量之前,通过对所述不同时间点采集的时域波形进行相关性比对,找出冰体内的稳定界面作为对于这些时间点下进行的测量共同的冰体上参考界面,并记录该冰体上参考界面的时域位置。
较佳地,在上述的相位敏感式定点测冰系统中,还包括:功率放大器,同所述发射天线或所述接收天线相连接,所述功率放大器具有多档放大倍数。
较佳地,在上述的相位敏感式定点测冰系统中,所述功率放大器的设定范围为25至30dB。
较佳地,在上述的相位敏感式定点测冰系统中,所述相位敏感式定点测冰系统的冰体厚度的测量精度为毫米级,且冰体厚度的探测深度范围在50-1500米之间。
较佳地,在上述的相位敏感式定点测冰系统中,所述发射天线是喇叭天线,且所述接收天线是对数周期天线。
较佳地,在上述的相位敏感式定点测冰系统中,所述发射天线和所述接收天线之间的距离在5-6米的范围内。
较佳地,在上述的相位敏感式定点测冰系统中,所述功率放大器进一步用作所述保温工作箱的发热单元。
应当理解,本发明以上的一般性描述和以下的详细描述都是示例性和说明性的,并且旨在为如权利要求所述的本发明提供进一步的解释。
附图说明
包括附图是为提供对本发明进一步的理解,它们被收录并构成本申请的一部分,附图示出了本发明的实施例,并与本说明书一起起到解释本发明原理的作用。附图中:
图1示意性示出了根据本发明的相位敏感式定点测冰系统的结构。
图2是根据本发明的冰盖与冰架厚度变化测量的示意图。
附图标记说明:
100-相位敏感式定点测冰系统
101-矢量网络分析仪
102-功率放大器
103-温度控制单元
104-喇叭天线(发射天线)
105-对数周期天线(接收天线)
106-保温工作箱
107-温度传感器
108-温度传输信号线
109-稳相射频电缆
110-计算机
201-相位敏感式定点测冰系统
202-冰盖,位于大陆架之上冰川称为冰盖
203-冰架,位于大陆架之外,海洋表面之上的冰川称为冰架204-第一次测量向冰下发射的入射波
205-第一次测量接收到的反射波
206-第二次测量向冰下发射的入射波
207-第二次测量接收到的反射波
208-冰间参考面
209-第一次测量时冰底界面位置
210-第二次测量时冰底界面位置
211-大陆架
212-海水
具体实施方式
本发明是关于相位敏感型冰架/冰盖厚度变化测量的技术,即以矢量网络分析仪101为核心器件,连接功率放大器102与发射天线104或接收天线105探测冰架深部,利用时频变换获取冰架、冰盖绝对厚度,利用反射相位变化获知高精度冰架、冰盖厚度的变化量。
现在将详细参考附图描述本发明的实施例。现在将详细参考本发明的优选实施例,其示例在附图中示出。在任何可能的情况下,在所有附图中将使用相同的标记来表示相同或相似的部分。此外,尽管本发明中所使用的术语是从公知公用的术语中选择的,但是本发明说明书中所提及的一些术语可能是申请人按他或她的判断来选择的,其详细含义在本文的描述的相关部分中说明。此外,要求不仅仅通过所使用的实际术语,而是还要通过每个术语所蕴含的意义来理解本发明。
首先参考图1,图1示意性示出了根据本发明的相位敏感式定点测冰系统的结构。如图所示,本发明的相位敏感式定点测冰系统100主要包括:矢量网络分析仪101、发射天线104、接收天线105。
其中,矢量网络分析仪101内置有信号发生器和接收机。发射天线104与信号发生器相连接(例如优选经由稳相射频电缆109),以使信号发生器经由所述发射天线向冰体内发射电磁波信号。该发射天线104优选采用喇叭天线。接收天线105与接收机相连接(例如优选经由稳相射频电缆109),以使该接收机经由该接收天线接收来自该冰体内的界面的反射波信号。该接收天线105优选采用对数周期天线。
该矢量网络分析仪101通过时频变换获取该冰体的绝对厚度或者根据在不同时间点采集的反射波信号的相位变化获取该冰体的厚度变化量。
特别是,该根据在不同时间点采集的反射波信号的相位变化获取所述冰体的厚度变化量可以进一步包括:根据从该冰体的底部反射的电磁波的脉冲的相位历程来确定该冰体的厚度在该相位敏感式定点测冰系统所位于的固定点处的厚度变化量。且,在根据从该冰体的底部反射的电磁波的脉冲的相位历程来确定该冰体的厚度在该相位敏感式定点测冰系统所位于的固定点处的厚度变化量之前,还可以通过对该不同时间点采集的时域波形进行相关性比对,找出冰体内的稳定界面作为对于这些时间点下进行的测量共同的冰体上参考界面,并记录该冰体上参考界面的时域位置。
在图1所示的优选实施例中,相位敏感式定点测冰系统100可以进一步包括一保温工作箱106,用于防御极地低温的环境条件,使得该测冰系统处于恒定的工作温度条件下,具备了低温防御能力。该保温工作箱106内可以设有监测并调整该保温工作箱106内的环境温度的温度控制单元103、由该温度控制单元103信号控制其开闭的风扇窗口以及与该温度控制单元信号103连接(例如优选经由温度传输信号线108)的温度传感器107,其中该矢量网络分析仪设置于该保温工作箱内
此外,相位敏感式定点测冰系统100还可以包括:功率放大器102,其同该发射天线104或该接收天线105相连接,用以增强电磁波的能量,提高电磁波的穿透深度。较佳地,该功率放大器具有多档放大倍数。比如,该功率放大器的设定范围可以为25至30dB。该功率放大器102可以进一步用作保温工作箱的发热单元,以使整个相位敏感式定点测冰系统100具备恒温自动控制功能,例如,该系统可以利用功率放大器102的散发热量的工效,弥补外部低温环境,当温度传感器监测到超过设定工作温度时,通过温度控制单元开启所述的保温工作箱风扇窗口进行散热。
根据本发明的一个优选实施例,可以对矢量网络分析仪101输出的电磁波信号进行多频段调控,用以保证对冰厚不同情况下的测量精度,所设定的中心频率范围是300M~1500M。
本发明的相位敏感式定点测冰系统的冰体厚度的测量精度可以达到毫米级,且冰体厚度的探测深度范围在50-1500米之间,适用于南极冰盖、冰架绝大部分地区。
现在转到图2,图2是根据本发明的冰盖与冰架厚度变化测量的示意图。如图所示,将图1所示的相位敏感式定点测冰系统201置放于冰盖202或冰架203表面。在实施测量之前,可以先铲除表层松软积雪,以确保天线置于坚硬冰面之上并使天线发射方向垂直冰面向下,布设发射天线104和接收天线105位置。
根据本发明的另一面,还包含了对收发天线耦合问题的设计。收发天线耦合性能是影响测量系统动态范围的主要因素之一,由于收发天线距离很近,连接功率放大器后很容易使发射信号直接耦合到接收机,从而导致接收机饱和,无法测量真正的冰底反射信号。但是使用功率放大器又是必要的,从实际观测的结果中可以看出,不加功率放大器的系统在几百米的范围内就已经到达系统噪底,无法进行反射信号的识别测量。
本发明通过对比不同地点的测试结果,有效地分析出系统是否存在自耦合的效应。通过实验验证以喇叭天线与对数周期相搭配组合,通过合理地设计射频电缆的长度以确定收发天线达到合理的间距,结果表明两支天线没有相关性,避免了自耦合效应,因此可证明接入高增益功率放大器后,使用上述的天线和功率放大器配置可以在获得高增益的系统性能的同时,避免收发耦合效应。较佳地,发射天线和接收天线之间距离优选设为5-6米,这样在保证测量系统的探测范围和能力的前提下,可以避免天线之间的自耦合效应。
接着,在连接天线104和105之前,首先将二支稳相射频电缆109进行连接,通过计算机110的采集控制软件执行系统自校准功能,对整个测量系统进行初始设定,达到稳定归一化的状态。
开始测量时,先对图1所示的相位敏感式定点测冰系统100进行通电预热,同时可以充分利用该功率放大器102的散发热量给该保温工作箱106内加热。测量过程中,温度控制单元103通过温度传感器107实时监控保温工作箱106内的温度,当温度到超过设定工作温度时,通过该温度控制单元103自动开启该的保温工作箱106的风扇窗口进行散热,当温度低于设定的工作温度时,该温度控制单元103自动关闭保温工作箱106的风扇窗口,以继续保存功率放大器102散发的热能。如图1所示,测量过程能通过计算机110与保温工作箱106内的集成系统进行连接,以便对测量过程进行操作和存储相关数据。
在图2所示的实施例中,从冰面向下垂直发射一定能量和带宽的电磁波204,通过图1中的功率放大器102放大信号能量,然后测量各个冰层及冰体底部交界处反射回来的反射波205的幅度及相位等信息。通过分析反射回波205的幅度变化,可以获得一个或多个冰层反射面,选择其中一个冰层反射面作为冰体上参考界面208,然后计算参考平面和底部反射面209之间的时域间隔。相隔一段时间(例如1周-3周)之后再次在同样位置进行测量,重复性地从冰面向下发射与之前相同能量和带宽的电磁波206并接收反射回波207。分析反射回波207并选择与反射回波205相同的冰体上参考界面208,通过分析两者的相位差值计算转换为冰体厚度的变化量,获取冰底界面210的新位置。
如图2所示,所选择冰体上参考界面208是接近冰盖或冰架表面的一个显著的雷达反射层,内部反射来自于冰体的物理性质的不连续,表示为介质界面。它是由上参考层下的积雪压实产生,通常情况下选择冰表面以下几十米的一个呈现明显界面特征的内部层。
在最终的测量结果中,使用上述所选取的冰体上参考界面208作为相对固定位置,而不是冰盖或冰架的积雪表面,通过两次冰底界面(209和210)反射的时域位置到参考界面208相位之差进行计算,从而得出冰体厚度的变化量结果。
本领域的研究人员可以理解电磁波入射至冰体,经底层冰底界面反射回去,接收到的反射波,其幅度和相位均与入射波不同,变化的幅度决定于冰的介电常数、冰内界面介电常数的对比、冰体的厚度。在测量季节内厚度变化这一案例中,冰的介电常数、冰内界面上下介电常数的对比是不变的,而冰厚的变化对反射波影响是不确定的,因此“反射波相位变化”与“冰厚变化”具有直接的关系。严格来说,反射波相位变化指的是再次测量时反射波207与入射波206的相位差减去首次测量时反射波205与入射波204之间的相位差。通过图1所述相位敏感式定点测冰系统中的矢量网络分析仪101即可获得这两个相位的差。
设最后测得两个相位差相差x度,则测得的厚度变化△T为:
ΔT = λ · x / 360 2
其中λ表示为电磁波的波长。
本领域技术人员可以理解,本发明的矢量网络分析仪101能够同时记录反射波相对发射波的幅度和相位,因此把这所有频率的测量结果放在一起,就是既有强度又有相位的完整的频谱。此外,在本发明中,同样可以没测量冰底界面与冰表面之间总的冰厚,具体操作方法是通过电磁波探测冰底界面并记录反射回波的行程时间和能量,据所用频率的电磁波在冰体中的传播速度,推算出冰体的厚度。
综上所述,本发明可以在不考虑冰盖冰架任何非稳定态和短期波动行为的前提下,实现了冰盖或冰架在短周期内总厚度变化量的精确探测。本发明的相位敏感式定点测冰系统具有探测高效,适应低温环境等诸多优点。
本领域技术人员可显见,可对本发明的上述示例性实施例进行各种修改和变型而不偏离本发明的精神和范围。因此,旨在使本发明覆盖落在所附权利要求书及其等效技术方案范围内的对本发明的修改和变型。

Claims (10)

1.一种相位敏感式定点测冰系统,适用于极地冰盖或冰架的厚度及其变化的探测,包括:
矢量网络分析仪,内置有信号发生器和接收机;
发射天线,与所述信号发生器相连接,其中所述信号发生器经由所述发射天线向冰体内发射电磁波信号;
接收天线,与所述接收机相连接,其中所述接收机经由所述接收天线接收来自所述冰体内的界面的反射波信号,
其中,所述矢量网络分析仪通过时频变换获取所述冰体的绝对厚度或者根据在不同时间点采集的反射波信号的相位变化获取所述冰体厚度的变化量。
2.如权利要求1所述的相位敏感式定点测冰系统,其特征在于,还包括:保温工作箱,内设有监测并调整所述保温工作箱内的环境温度的温度控制单元、由所述温度控制单元信号控制其开闭的风扇窗口以及与所述温度控制单元信号连接的温度传感器,其中所述矢量网络分析仪设置于所述保温工作箱内。
3.如权利要求1所述的相位敏感式定点测冰系统,其特征在于,所述根据在不同时间点采集的反射波信号的相位变化获取所述冰体的厚度变化量进一步包括:根据从所述冰体的底部反射的电磁波的脉冲的相位历程来确定所述冰体的厚度在所述相位敏感式定点测冰系统所位于的固定点处的厚度变化量。
4.如权利要求1所述的相位敏感式定点测冰系统,其特征在于,所述根据在不同时间点采集的反射波信号的相位变化获取所述冰体的厚度变化量进一步包括:
在根据从所述冰体的底部反射的电磁波的脉冲的相位历程来确定所述冰体的厚度在所述相位敏感式定点测冰系统所位于的固定点处的厚度变化量之前,通过对所述不同时间点采集的时域波形进行相关性比对,找出冰体内的稳定界面作为对于这些时间点下进行的测量共同的冰体上参考界面,并记录该冰体上参考界面的时域位置。
5.如权利要求2所述的相位敏感式定点测冰系统,其特征在于,还包括:功率放大器,同所述发射天线或所述接收天线相连接,所述功率放大器具有多档放大倍数。
6.如权利要求5所述的相位敏感式定点测冰系统,其特征在于,所述功率放大器的设定范围为25至30dB。
7.如权利要求1所述的相位敏感式定点测冰系统,其特征在于,所述相位敏感式定点测冰系统的冰体厚度的测量精度为毫米级,且冰体厚度的探测深度范围在50-1500米之间。
8.如权利要求1所述的相位敏感式定点测冰系统,其特征在于,所述发射天线是喇叭天线,且所述接收天线是对数周期天线。
9.如权利要求8所述的相位敏感式定点测冰系统,其特征在于,所述发射天线和所述接收天线之间的距离在5-6米的范围内。
10.如权利要求5所述的相位敏感式定点测冰系统,其特征在于,所述功率放大器进一步用作所述保温工作箱的发热单元。
CN201410153034.4A 2014-04-16 2014-04-16 相位敏感式定点测冰系统 Expired - Fee Related CN103941261B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410153034.4A CN103941261B (zh) 2014-04-16 2014-04-16 相位敏感式定点测冰系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410153034.4A CN103941261B (zh) 2014-04-16 2014-04-16 相位敏感式定点测冰系统

Publications (2)

Publication Number Publication Date
CN103941261A true CN103941261A (zh) 2014-07-23
CN103941261B CN103941261B (zh) 2016-06-01

Family

ID=51189007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410153034.4A Expired - Fee Related CN103941261B (zh) 2014-04-16 2014-04-16 相位敏感式定点测冰系统

Country Status (1)

Country Link
CN (1) CN103941261B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708250A (zh) * 2018-12-29 2019-05-03 珠海格力电器股份有限公司 霜层检测方法、装置及家电电器
CN112569006A (zh) * 2020-12-11 2021-03-30 倪超 一种基于微波无接触式的术中实时皮瓣厚度监测系统及其测算方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158309A (ja) * 1987-12-16 1989-06-21 New Japan Radio Co Ltd 結氷厚さ遠隔測定装置
US5381694A (en) * 1992-09-29 1995-01-17 Dedicated Electronics Ice thickness measurement reflectometer
CN1806158A (zh) * 2003-06-13 2006-07-19 株式会社荏原制作所 测量设备
CN101243329A (zh) * 2005-08-17 2008-08-13 西门子公司 确定涡轮机至少一个叶片的热障涂层厚度的方法、实施该方法的相应热障涂层层厚测量装置及该方法和热障涂层厚度测量装置的应用
US20130238282A1 (en) * 2010-07-05 2013-09-12 Eduardo Figueroa-Karlström Device and method for measuring ice thickness
CN203489846U (zh) * 2013-10-21 2014-03-19 国家电网公司 一种输电线路覆冰监测系统
CN203824539U (zh) * 2014-04-16 2014-09-10 中国极地研究中心 用于冰盖或冰架厚度变化测量的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158309A (ja) * 1987-12-16 1989-06-21 New Japan Radio Co Ltd 結氷厚さ遠隔測定装置
US5381694A (en) * 1992-09-29 1995-01-17 Dedicated Electronics Ice thickness measurement reflectometer
CN1806158A (zh) * 2003-06-13 2006-07-19 株式会社荏原制作所 测量设备
CN101243329A (zh) * 2005-08-17 2008-08-13 西门子公司 确定涡轮机至少一个叶片的热障涂层厚度的方法、实施该方法的相应热障涂层层厚测量装置及该方法和热障涂层厚度测量装置的应用
US20130238282A1 (en) * 2010-07-05 2013-09-12 Eduardo Figueroa-Karlström Device and method for measuring ice thickness
CN203489846U (zh) * 2013-10-21 2014-03-19 国家电网公司 一种输电线路覆冰监测系统
CN203824539U (zh) * 2014-04-16 2014-09-10 中国极地研究中心 用于冰盖或冰架厚度变化测量的装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
孙华东等: "矢量网络分析仪基本测试原理及其在地震电缆测试中的应用", 《物探装备》 *
郭井学等: "南极普里兹湾海冰厚度的电磁感应探测方法研究", 《地球物理学报》 *
郭井学等: "电磁感应技术在南极海冰厚度探测中的应用", 《吉林大学学报(地球科学版)》 *
郭井学等: "电磁感应技术在波罗的海海冰厚度探测中的应用研究", 《极地研究》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708250A (zh) * 2018-12-29 2019-05-03 珠海格力电器股份有限公司 霜层检测方法、装置及家电电器
CN112569006A (zh) * 2020-12-11 2021-03-30 倪超 一种基于微波无接触式的术中实时皮瓣厚度监测系统及其测算方法

Also Published As

Publication number Publication date
CN103941261B (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
Liu et al. Measurement of soil water content using ground-penetrating radar: A review of current methods
Leng et al. An innovative method for measuring pavement dielectric constant using the extended CMP method with two air-coupled GPR systems
CN106018439B (zh) 微波遥感土壤水分监测系统及其监测方法
CN102353515B (zh) 一种浅海非线性内波声学监测方法及系统
CN104183155A (zh) 一种停车场车位探测装置及探测方法
CN103278814B (zh) 一种单发双收月球表面探地雷达测定月壤介电常数的方法
CN104101651B (zh) 一种基于哈尔小波的晶粒尺寸无损评价方法
CN104407340A (zh) 拖曳线列阵阵形标定装置及方法
Ødegård et al. Comparison of radio-echo sounding (30–1000 MHz) and high-resolution borehole-temperature measurements at Finsterwalderbreen, southern Spitsbergen, Svalbard
CN104267440A (zh) 一种用于探地雷达的共中心点cmp探测方法
CN203824539U (zh) 用于冰盖或冰架厚度变化测量的装置
CN105319548A (zh) 一种基于双回波包络的超声波飞行时间测量方法
CN106382898A (zh) 一种寒区隧洞衬砌外覆冰层厚度的测量方法及系统
Uddin An overview of GPR applications for evaluation of pavement thickness and cracking
Zou et al. Study of wavelet entropy for airport pavement inspection using a multistatic ground-penetrating radar system
CN103760426A (zh) 一种基于矢量的复杂电磁环境度量系统及度量方法
CN103941261B (zh) 相位敏感式定点测冰系统
AU2021105440A4 (en) Instrument and method for monitoring the soil moisture change by using GPS ground reflection signal
Cui et al. Ice radar investigation at Dome A, East Antarctica: Ice thickness and subglacial topography
JP2017110983A (ja) 雪質測定装置及び雪質測定方法
Wilson Characterization and interpretation of polythermal structure in two subarctic glaciers
CN110049435A (zh) 基于压缩感知rss指纹库及超声波的井下定位方法
CN103790099B (zh) 采用声效与探地雷达检测路面病害的控制电路及具有该控制电路的检测装置
CN101907583B (zh) 利用gnss-r信号监测土壤水分变化的装置与方法
Qu et al. Measuring the sound speed in deep-sea first sediment layer using a high-frequency submersible sub-bottom profiler: Method and sea trial application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160601

CF01 Termination of patent right due to non-payment of annual fee