CN103940714A - 一种仿人工雾霾监测系统与方法 - Google Patents

一种仿人工雾霾监测系统与方法 Download PDF

Info

Publication number
CN103940714A
CN103940714A CN201410202090.2A CN201410202090A CN103940714A CN 103940714 A CN103940714 A CN 103940714A CN 201410202090 A CN201410202090 A CN 201410202090A CN 103940714 A CN103940714 A CN 103940714A
Authority
CN
China
Prior art keywords
haze
target image
manual imitation
monitoring system
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410202090.2A
Other languages
English (en)
Other versions
CN103940714B (zh
Inventor
赵俭辉
黄嘉康
叶威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201410202090.2A priority Critical patent/CN103940714B/zh
Publication of CN103940714A publication Critical patent/CN103940714A/zh
Application granted granted Critical
Publication of CN103940714B publication Critical patent/CN103940714B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种仿人工雾霾监测系统与方法,包括透气不透光的前端箱体和后台计算机,前端箱体内设目标物、恒定光源、图像采集设备和数据传输单元,目标物为红黑相间的棋盘格阵列图片,恒定光源置于前端箱体内侧顶部;图像采集设备与目标物相对设置,图像采集设备通过数据传输单元向后台计算机传输数据。后台计算机计算目标图像的颜色特征、形状特征和纹理特征,获得各特征相对于无雾霾时目标图像对应特征的变化率,根据各特征变化率获得雾霾指数,基于雾霾指数通过映射函数获得雾霾浓度。本发明从一个新角度实现了雾霾监测,成本低,易部署,能实现整个区域的全面雾霾监测,从而为空气污染防治提供更加丰富的信息。

Description

一种仿人工雾霾监测系统与方法
技术领域
本发明属于空气污染防治与雾霾测量技术领域,尤其涉及一种仿人工雾霾监测系统与方法。
背景技术
传统的雾霾判别通过人工观测,并结合相对湿度等气象要素进行分析。目前已有基于气象站的空气污染监测系统,站内配备水分测试仪、烟尘浊度仪、黑碳监测仪、气溶胶监测仪、能见度监测仪、有机碳监测仪、元素碳监测仪、挥发性有机化合物监测仪、紫外辐射计、大气稳定度监测仪等仪器,可较好地实现针对PM2.5、PM10、黑碳、臭氧、二氧化硫、氮氧化物、一氧化碳、硫酸盐、硝酸盐、铵盐、挥发性有机化合物、颗粒物粒径分布、颗粒物化学成分、浑浊度、能见度、气溶胶厚度、大气稳定度及其它气象参数等的指标监测,并根据造成空气污染的主要物质成分进行雾霾分析。上述设备大多通过物理、化学方法实现监测,如PM2.5监测仪,或通过摩擦静电技术测量颗粒携带的电荷变化从而记录粉尘的存在;或通过光散射技术利用气流中的颗粒反射出来的闪光频率及持续时间来测量颗粒的含量;或通过光吸收技术测量入射光强与出射光强,并基于朗伯比尔定律计算得到粉尘浓度;或通过采样器以恒速抽取定量体积空气,使空气中的PM2.5颗粒被截留在已知质量的滤膜上,再根据采样前后滤膜的质量差和采样体积,计算出PM2.5的浓度。
与人工观测雾霾相比,上述现有仪器采用了非视觉的间接测量方式。同时,因为仪器本身价格较高,只能通过分布稀疏的气象站点对整个区域进行点状的有限测量。这些零散分布的监测站点虽然可以对空气中气态污染物和颗粒物进行定点的浓度监测,但远不能全面反映大气污染的实际情况,更无法做到对污染源、污染物扩散等的定位、跟踪与分析,无法满足对空气污染形成机制、演变和输送过程等研究的需求。因此,寻找新的成本较低且容易部署的雾霾测量方法,已经成为空气污染防治的迫切需要。
相比之下,基于数字图像处理与分析的雾霾测量是一种借助颜色、形状、纹理等视觉特征的直接测量方式,非常类似于人眼观测和人对雾霾的真实感受,在原理上与人工观测最接近,因此是一种新的仿人工雾霾监测方式。数字相机、摄像机等普通成像设备的广泛应用使得视觉测量的实现非常方便,从而使得针对整个区域的网状的全面雾霾测量成为可能,为污染治理提供更加丰富的信息。基于数字图像的仿人工雾霾监测方法从一个新的角度实现对雾霾的测量,截止目前,本领域还没有这方面的研究出现。
发明内容
针对上述存在的技术问题,本发明的目的是提供一种基于数字图像处理与分析的仿人工雾霾监测系统与方法,以实现在较低成本条件下,通过易于部署的普通成像设备,借助数字图像处理与分析技术实现雾霾测量,为空气污染防治提供更加全面的信息。
为达到上述目的,本发明提供了一种仿人工雾霾监测系统,包括透气不透光的前端箱体和后台计算机,前端箱体内设目标物、恒定光源、图像采集设备和数据传输单元,目标物为红黑相间的棋盘格阵列图片,恒定光源置于前端箱体内侧顶部;图像采集设备与目标物相对设置,用来拍摄目标物;图像采集设备通过数据传输单元向后台计算机传输数据。
作为优选,前端箱体两端设有双拐角进气口,拐角间内侧贴附吸光材料。
上述恒定光源为呈矩阵的组合光源阵列。
本发明还提供了一种仿人工雾霾监测方法,该方法采用上述仿人工雾霾监测系统实现,后台计算机对目标图像做如下处理,所述的目标图像为图像采集设备拍摄的目标物的图像:
(1)获取目标图像的颜色特征、形状特征和纹理特征;
(2)获取目标图像的各特征相对于无雾霾时目标图像对应特征的变化率,这里将“各特征相对于无雾霾时目标图像对应特征的变化率”简称为“各特征变化率”;
(3)以目标图像各特征变化率的平均值为雾霾指数,基于雾霾指数获得雾霾浓度。
上述目标图像的颜色特征包括目标图像中所有像素的色彩饱和度均值和蓝色分量均值。
上述目标图像的形状特征包括目标图像的特征点个数比与边缘点个数比,其中,特征点个数比为目标图像特征点数占目标图像所有像素数的比例,边缘点个数比为目标图像边缘点数占目标图像所有像素数的比例。
上述目标图像的纹理特征包括目标图像的灰度共生矩阵参数与小波变换子带系数。
所述的目标图像的灰度共生矩阵参数包括灰度共生矩阵的能量参数、熵参数、对比度参数和逆差距参数。
所述的小波变换子带系数采用如下方法获得:
对目标图像进行小波变换获得子带图像,分别计算各子带图像的均值系数与标准差系数,即小波变换子带系数。
上述步骤(3)中所述的基于雾霾指数获得雾霾浓度具体为:
采用雾霾指数到雾霾浓度的映射函数获得雾霾浓度,所述的雾霾指数到雾霾浓度的映射函数采用如下方法获得:采用权利要求1所述的仿人工雾霾监测系统获得不同雾霾浓度时的目标图像构建样本图像,分别获得样本图像对应的雾霾指数,即获得不同雾霾浓度对应的雾霾指数;采用数学拟合方法获得雾霾指数到雾霾浓度的映射函数。
与现有技术相比,本发明具有以下优点和积极效果:
(1)本发明是一种借助颜色、形状、纹理等视觉特征的雾霾直接测量方式,非常类似于人眼观测和人对雾霾的真实感受,在原理上与人工观测最接近。
(2)借助广泛应用的数字相机等普通成像设备,成本较低且方便实现,易于实现整个区域的全面雾霾监测。
(3)硬件构成简单,便于灵活选址安装,能够进行不同分辨率、不同方位的雾霾污染测量,为雾霾分析与治理提供更加丰富的信息。
(4)透气不透光的前端箱体、目标物、恒定光源的设计,提供了一个非常稳定的雾霾观测环境,可以24小时全天候连续监测雾霾。
(5)本发明输出雾霾测量结果的同时,还可以保存对应的目标图像数据,可供气象专业人员直观地检查与核对。
附图说明
图1是本发明仿人工雾霾监测系统中前端箱体的截面示意图;
图2是本发明仿人工雾霾监测系统中前端箱体的剖面示意图;
图3是本发明仿人工雾霾监测系统中目标物示意图;
图4是本发明仿人工雾霾监测方法的流程示意图。
具体实施方式
本发明仿人工雾霾监测系统包括前端箱体和后台计算机,基于前端箱体内数字相机采集恒定光源环境中目标物的图像(简称为“目标图像”),由数据传输单元通过网络将目标图像传输到后台计算机,通过计算目标图像的特征变化率,得到当前的雾霾测量结果。
为了便于理解,下面结合附图对本发明系统和方法分别进行详细描述。
本发明仿人工雾霾监测系统,包括下列硬件:
(1)前端箱体
见图1~2,前端箱体设计为透气不透光的长方体箱,通过双拐角进气口允许外界空气进入但阻止外界光线进入,拐角间内侧贴附黑绒以吸收外界光线;前端箱体内容纳目标物、恒定光源、数字相机和数据传输单元。
(2)目标物
见图3,目标物设计为红黑相间的棋盘格阵列图片,其中,红色图块用于测量色彩饱和度均值,黑色图块用于测量蓝色分量均值,角点与边缘像素用于测量包括特征点个数比与边缘像素点个数比的形状特征,规律性变化的棋盘格阵列用于测量包括灰度共生矩阵参数与小波变换子带系数的纹理特征。
(3)恒定光源
见图1~2,恒定光源设计为呈矩阵的组合光源阵列,置于前端箱体内侧顶部,为前端箱体内部空间提供恒定的均匀光照。
(4)数字相机
见图2,数字相机用于拍摄前端箱体内不同空气情况下的目标物,采集目标物的稳定、高质量的数字图像,数字相机与目标物相对设置。
(5)数据传输单元
见图2,数据传输单元用于通过有线或无线网络,将数字相机采集的目标图像传输给后台计算机。
(6)后台计算机
后台计算机用于接收目标图像,通过数字图像处理与分析计算目标图像特征,基于不同空气情况下的目标图像特征变化,获得雾霾测量结果。
本发明仿人工雾霾监测方法的算法由后台计算机执行,流程图见图4,包括步骤:
(1)获取目标图像的颜色特征:
对目标图像中的所有像素,计算其色彩饱和度(即HSV颜色空间中的S分量)的均值RCS和蓝色分量(即RGB颜色空间中的B分量)的均值RCB
(2)获取目标图像的形状特征:
采用现有的SIFT算法提取目标图像中所有特征点,计算SIFT特征点数占目标图像所有像素数的比例RSS;采用现有的Canny算法提取目标图像中所有边缘点,计算边缘点数占目标图像所有像素数的比例RSC
(3)获取目标图像的纹理特征:
采用现有的灰度共生矩阵算法统计获得目标图像的灰度共生矩阵,计算灰度共生矩阵的能量参数RTGasm
RT Gasm = Σ i = 1 k Σ j = 1 k ( G ( i , j ) ) 2 - - - ( 1 )
式(1)中,G(i,j)表示灰度共生矩阵的元素,i与j表示元素坐标,i的取值为1,2,…,k,j的取值为1,2,…,k,k表示灰度值的级数。
基于目标图像的灰度共生矩阵,计算灰度共生矩阵的熵参数RTGent
RT Gent = Σ i = 1 k Σ j = 1 k G ( i , j ) log G ( i , j ) - - - ( 2 )
基于目标图像的灰度共生矩阵,计算灰度共生矩阵的对比度参数RTGcon
RT Gcon = Σ i = 1 k d 2 ( Σ | i - j | G ( i , j ) ) - - - ( 3 )
式(3)中,差值d的取值为0,1,…,k-1。
基于目标图像的灰度共生矩阵,计算灰度共生矩阵的逆差距参数RTGidm
RT Gidm = Σ i = 1 k Σ j = 1 k G ( i , j ) / ( 1 + ( i - j ) 2 ) - - - ( 4 )
采用现有的小波变换算法对目标图像进行小波变换的3级分解,得到10个子带图像,计算第p个子带图像的均值系数RTWup
RT Wup = Σ x = 0 m - 1 Σ y = 0 n - 1 f ( x , y ) / ( m × n ) - - - ( 5 )
式(5)中,f(x,y)表示第p个子带图像的像素,x与y表示像素坐标,x的取值为0,1,…,m-1,y的取值为0,1,…,n-1,m与n表示像素的行数与列数,p的取值为1,2…10。
针对第p个子带图像,计算其标准差系数RTWσp
RT Wσp = Σ x = 0 m - 1 Σ y = 0 n - 1 ( f ( x , y ) - RT Wup ) 2 / ( m × n ) - - - ( 6 )
(4)获取上述各特征相对于无雾霾时目标图像对应特征的变化率,“各特征相对于无雾霾时目标图像对应特征的变化率”简称为“各特征变化率”
针对无雾霾时的目标图像,计算各图像特征:RC0S、RC0B、RS0S、RS0C、RT0Gasm、RT0Gent、RT0Gcon、RT0Gidm、RT0Wup、RT0Wσp
针对当前时刻t的目标图像,计算各图像特征:RCtS、RCtB、RStS、RStC、RTtGasm、RTtGent、RTtGcon、RTtGidm、RTtWup、RTtWσp
获得各图像特征相对于无雾霾时目标图像对应特征的变化率:
ΔRCS=|RCtS-RC0S|/|RC0S|       (7)
ΔRCB=|RCtB-RC0B|/|RC0B|        (8)
ΔRSS=|RStS-RS0S|/|RS0S|      (9)
ΔRSC=|RStC-RS0C|/|RS0C|       (10)
ΔRTGasm=|RTtGasm-RT0Gasm|/|RT0Gasm|      (11)
ΔRTGent=|RTtGent-RT0Gent|/|RT0Gent|       (12)
ΔRTGcon=|RTtGcon-RT0Gcon|/|RT0Gcon|       (13)
ΔRTGidm=|RTtGidm-RT0Gidm|/|RT0Gidm|      (14)
ΔRTWup=|RTtWup-RT0Wup|/|RT0Wup|       (15)
ΔRTWσp=|RTtWσp-RT0Wσp|/|RT0Wσp|        (16)
(5)综合各特征变化率获得雾霾指数ΔR
上述各特征变化率的平均值即为雾霾指数ΔR:
ΔR = ( ΔRC S + ΔRC B + ΔRS S + ΔRS C + ΔRT Gasm + ΔRT Gent + ΔRT Gcon + ΔRT Gidm + Σ p = 1 10 ( ΔRT Wup + ΔRT Wσp ) ) / 28 - - - ( 17 )
(6)基于雾霾指数ΔR获得雾霾测量结果
通过映射函数将雾霾指数ΔR转换为雾霾浓度RSD:
RSD=F(ΔR)           (18)
式(18)中,F()表示映射函数。
映射函数的获得方法为:
获得不同雾霾浓度时的目标图像构建样本图像,雾霾浓度根据气象观测数据获得,对样本图像分别执行上述步骤(1)~(5)获得各样本图像对应的雾霾指数,从而获得不同雾霾浓度对应的雾霾指数;采用数学拟合方法获得雾霾指数到雾霾浓度的映射函数。采用映射函数获得雾霾浓度监测结果。
当F()为线性映射函数且参数为500时,将雾霾指数转换为雾霾浓度的公式为:RSD=500*ΔR,若RSD∈[0,100],则表示为无雾霾;若RSD∈[101,200],则表示轻度雾霾;若RSD∈[201,300],则表示中度雾霾;若RSD∈[301,500],则表示重度雾霾;若RSD∈[501,+∞],则表示严重雾霾。
使用时,将前端箱体分布于待监测区域不同处,空气通过前端箱体的进气口进入箱体内,恒定光源提供恒定的均匀照明,数字相机连续拍摄目标图像,并通过数据传输单元将拍摄的目标图像传输至后台计算机,后台计算机对目标图像进行实时分析处理以获得雾霾监测结果。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (10)

1.一种仿人工雾霾监测系统,其特征在于,包括:
透气不透光的前端箱体和后台计算机,前端箱体内设目标物、恒定光源、图像采集设备和数据传输单元,目标物为红黑相间的棋盘格阵列图片,恒定光源置于前端箱体内侧顶部;图像采集设备与目标物相对设置,用来拍摄目标物;图像采集设备通过数据传输单元向后台计算机传输数据。
2.如权利要求1所述的仿人工雾霾监测系统,其特征在于:
所述的前端箱体两端设有双拐角进气口,拐角间内侧贴附吸光材料。
3.如权利要求1所述的仿人工雾霾监测系统,其特征在于:
所述的恒定光源为呈矩阵的组合光源阵列。
4.一种仿人工雾霾监测方法,其特征在于:
采用权利要求1所述的仿人工雾霾监测系统实现,所述的后台计算机对目标图像做如下处理,所述的目标图像为图像采集设备拍摄的目标物的图像:
(1)获取目标图像的颜色特征、形状特征和纹理特征;
(2)获取目标图像的各特征相对于无雾霾时目标图像对应特征的变化率,这里将“各特征相对于无雾霾时目标图像对应特征的变化率”简称为“各特征变化率”;
(3)以目标图像各特征变化率的平均值为雾霾指数,基于雾霾指数获得雾霾浓度。
5.如权利要求4所述的仿人工雾霾监测方法,其特征在于:
所述的目标图像的颜色特征包括目标图像中所有像素的色彩饱和度均值和蓝色分量均值。
6.如权利要求4所述的仿人工雾霾监测方法,其特征在于:
所述的目标图像的形状特征包括目标图像的特征点个数比与边缘点个数比,其中,特征点个数比为目标图像特征点数占目标图像所有像素数的比例,边缘点个数比为目标图像边缘点数占目标图像所有像素数的比例。
7.如权利要求4所述的仿人工雾霾监测方法,其特征在于:
所述的目标图像的纹理特征包括目标图像的灰度共生矩阵参数与小波变换子带系数。
8.如权利要求7所述的仿人工雾霾监测方法,其特征在于:
所述的目标图像的灰度共生矩阵参数包括灰度共生矩阵的能量参数、熵参数、对比度参数和逆差距参数。
9.如权利要求7所述的仿人工雾霾监测方法,其特征在于:
所述的小波变换子带系数采用如下方法获得:
对目标图像进行小波变换获得子带图像,分别计算各子带图像的均值系数与标准差系数,即小波变换子带系数。
10.如权利要求4所述的仿人工雾霾监测方法,其特征在于:
步骤(3)中所述的基于雾霾指数获得雾霾浓度具体为:
采用雾霾指数到雾霾浓度的映射函数获得雾霾浓度,所述的雾霾指数到雾霾浓度的映射函数采用如下方法获得:采用权利要求1所述的仿人工雾霾监测系统获得不同雾霾浓度时的目标图像构建样本图像,分别获得样本图像对应的雾霾指数,即获得不同雾霾浓度对应的雾霾指数;采用数学拟合方法获得雾霾指数到雾霾浓度的映射函数。
CN201410202090.2A 2014-05-13 2014-05-13 一种仿人工雾霾监测系统与方法 Expired - Fee Related CN103940714B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410202090.2A CN103940714B (zh) 2014-05-13 2014-05-13 一种仿人工雾霾监测系统与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410202090.2A CN103940714B (zh) 2014-05-13 2014-05-13 一种仿人工雾霾监测系统与方法

Publications (2)

Publication Number Publication Date
CN103940714A true CN103940714A (zh) 2014-07-23
CN103940714B CN103940714B (zh) 2017-02-15

Family

ID=51188477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410202090.2A Expired - Fee Related CN103940714B (zh) 2014-05-13 2014-05-13 一种仿人工雾霾监测系统与方法

Country Status (1)

Country Link
CN (1) CN103940714B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104301717A (zh) * 2014-10-23 2015-01-21 广州市光机电技术研究院 一种用于视频设备的透雾功能测试系统
CN104574431A (zh) * 2015-02-13 2015-04-29 河南五星科技有限公司 一种基于视频分析监测pm2.5的方法及装置
CN105388156A (zh) * 2015-05-22 2016-03-09 杨晓富 一种基于银亭的雾霾检测与语音提醒方法
CN105388095A (zh) * 2015-05-22 2016-03-09 杨晓富 一种基于银亭的雾霾检测与隔离方法
CN105403491A (zh) * 2015-05-22 2016-03-16 杨晓富 一种基于银亭的雾霾检测与调节方法
CN105403492A (zh) * 2015-05-22 2016-03-16 杨晓富 一种银亭雾霾监测与提醒方法
CN105445204A (zh) * 2015-12-07 2016-03-30 太原理工大学 一种基于镜头蓝色光波分析的空气质量等级判别方法
CN105527232A (zh) * 2015-12-07 2016-04-27 太原理工大学 一种空气质量等级判别系统及控制方法
CN104359812B (zh) * 2014-10-30 2016-11-23 陕西明路光电技术有限责任公司 一种基于调制传递函数的pm2.5监测方法
CN108572127A (zh) * 2018-04-17 2018-09-25 韩明 跨栏现场雾霾浓度逐级分析平台
CN108681990A (zh) * 2018-04-04 2018-10-19 高明合 一种实时雾霾预警方法及系统
CN109886920A (zh) * 2019-01-16 2019-06-14 安徽谛听信息科技有限公司 一种雾天分级方法、雾天分级系统
CN111781113A (zh) * 2020-07-08 2020-10-16 湖南九九智能环保股份有限公司 一种粉尘网格化定位方法及粉尘网格化监测方法
CN113340777A (zh) * 2021-05-31 2021-09-03 西安电子科技大学 一种监测电磁环境下雾霾演变的模拟系统
CN116776073A (zh) * 2023-08-14 2023-09-19 中科三清科技有限公司 一种污染物浓度的评估方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082038A (ja) * 2000-09-11 2002-03-22 Kanomax Japan Inc 花粉計測装置
CN1556412A (zh) * 2004-01-08 2004-12-22 江苏大学 基于电子视觉和嗅觉融合技术的农畜产品无损检测方法及其装置
JP2009053065A (ja) * 2007-08-28 2009-03-12 Sumitomo Mitsui Construction Co Ltd 粉塵撮影装置
CN101770644A (zh) * 2010-01-19 2010-07-07 浙江林学院 森林火灾远程视频监控烟火识别方法
CN102445409A (zh) * 2011-09-28 2012-05-09 中国农业大学 一种基于数字图像技术的粉尘浓度测量装置及方法
CN202939113U (zh) * 2012-07-27 2013-05-15 泰州市众泰自动化设备有限公司 一种环境监测系统
CN103218622A (zh) * 2013-04-22 2013-07-24 武汉大学 一种基于计算机视觉的雾霾监测方法
CN103558133A (zh) * 2013-11-11 2014-02-05 河南牧业经济学院 基于图像分析技术雾霾浓度监测的方法和系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082038A (ja) * 2000-09-11 2002-03-22 Kanomax Japan Inc 花粉計測装置
CN1556412A (zh) * 2004-01-08 2004-12-22 江苏大学 基于电子视觉和嗅觉融合技术的农畜产品无损检测方法及其装置
JP2009053065A (ja) * 2007-08-28 2009-03-12 Sumitomo Mitsui Construction Co Ltd 粉塵撮影装置
CN101770644A (zh) * 2010-01-19 2010-07-07 浙江林学院 森林火灾远程视频监控烟火识别方法
CN102445409A (zh) * 2011-09-28 2012-05-09 中国农业大学 一种基于数字图像技术的粉尘浓度测量装置及方法
CN202939113U (zh) * 2012-07-27 2013-05-15 泰州市众泰自动化设备有限公司 一种环境监测系统
CN103218622A (zh) * 2013-04-22 2013-07-24 武汉大学 一种基于计算机视觉的雾霾监测方法
CN103558133A (zh) * 2013-11-11 2014-02-05 河南牧业经济学院 基于图像分析技术雾霾浓度监测的方法和系统

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104301717A (zh) * 2014-10-23 2015-01-21 广州市光机电技术研究院 一种用于视频设备的透雾功能测试系统
CN104301717B (zh) * 2014-10-23 2017-04-26 广州市光机电技术研究院 一种用于视频设备的透雾功能测试系统
CN104359812B (zh) * 2014-10-30 2016-11-23 陕西明路光电技术有限责任公司 一种基于调制传递函数的pm2.5监测方法
CN104574431A (zh) * 2015-02-13 2015-04-29 河南五星科技有限公司 一种基于视频分析监测pm2.5的方法及装置
CN105403491A (zh) * 2015-05-22 2016-03-16 杨晓富 一种基于银亭的雾霾检测与调节方法
CN105403492A (zh) * 2015-05-22 2016-03-16 杨晓富 一种银亭雾霾监测与提醒方法
CN105388095A (zh) * 2015-05-22 2016-03-09 杨晓富 一种基于银亭的雾霾检测与隔离方法
CN105388156A (zh) * 2015-05-22 2016-03-09 杨晓富 一种基于银亭的雾霾检测与语音提醒方法
CN105445204A (zh) * 2015-12-07 2016-03-30 太原理工大学 一种基于镜头蓝色光波分析的空气质量等级判别方法
CN105527232A (zh) * 2015-12-07 2016-04-27 太原理工大学 一种空气质量等级判别系统及控制方法
CN108681990A (zh) * 2018-04-04 2018-10-19 高明合 一种实时雾霾预警方法及系统
CN108681990B (zh) * 2018-04-04 2022-05-24 高明合 一种实时雾霾预警方法及系统
CN108572127A (zh) * 2018-04-17 2018-09-25 韩明 跨栏现场雾霾浓度逐级分析平台
CN109886920A (zh) * 2019-01-16 2019-06-14 安徽谛听信息科技有限公司 一种雾天分级方法、雾天分级系统
CN111781113A (zh) * 2020-07-08 2020-10-16 湖南九九智能环保股份有限公司 一种粉尘网格化定位方法及粉尘网格化监测方法
CN111781113B (zh) * 2020-07-08 2021-03-09 湖南九九智能环保股份有限公司 一种粉尘网格化定位方法及粉尘网格化监测方法
CN113340777A (zh) * 2021-05-31 2021-09-03 西安电子科技大学 一种监测电磁环境下雾霾演变的模拟系统
CN116776073A (zh) * 2023-08-14 2023-09-19 中科三清科技有限公司 一种污染物浓度的评估方法和装置
CN116776073B (zh) * 2023-08-14 2023-11-21 中科三清科技有限公司 一种污染物浓度的评估方法和装置

Also Published As

Publication number Publication date
CN103940714B (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN103940714A (zh) 一种仿人工雾霾监测系统与方法
CN103218622B (zh) 一种基于计算机视觉的雾霾监测方法
Leblanc et al. Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests
Kathiravelu et al. Rain drop measurement techniques: A review
US20200103328A1 (en) Mobile microscopy system for air quality monitoring
Pekin et al. Measurement of crown cover and leaf area index using digital cover photography and its application to remote sensing
WO2011002272A1 (en) Air pollution measuring and warning system
Aptowicz et al. Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns
CN103617617A (zh) 基于功率谱描述的水下图像质量评价测量方法
Pan et al. Evaluation of atmospheric correction algorithms over lakes for high-resolution multispectral imagery: Implications of adjacency effect
CN106446312A (zh) 基于多源卫星多光谱遥感数据的过火面积估算方法及系统
Tang et al. A new visibility measurement system based on a black target and a comparative trial with visibility instruments
Abd-Elrahman et al. Design and development of a multi-purpose low-cost hyperspectral imaging system
Wierzbicki et al. A method for dehazing images obtained from low altitudes during high-pressure fronts
Wang et al. Multi-modal image feature fusion-based PM2. 5 concentration estimation
Pudasaini et al. Estimating PM2. 5 from photographs
Varjo et al. Image based visibility estimation during day and night
CN109030488B (zh) 藻类生物量检测方法及装置
Kim Estimation of visibility using a visual image
Cazzaniga et al. Spectral features of ocean colour radiometric products in the presence of cyanobacteria blooms in the Baltic Sea
CN102721671B (zh) 大气黑碳浓度数字摄像观测方法
KR20150055686A (ko) 광학 센싱을 이용한 플룸 혼탁도 측정 방법 및 플룸 혼탁도 측정 프로그램을 기록한 기록 매체
Herts et al. Cloud service ThingSpeak for monitoring the surface layer of the atmosphere polluted by particulate matters
Ma et al. Impact of environmental pollution on the retrieval of AOD products from Visible Infrared Imaging Radiometer Suite (VIIRS) over wuhan
Nelson et al. Utility of an inexpensive near-infrared camera to quantify beach surface moisture

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170215

Termination date: 20200513

CF01 Termination of patent right due to non-payment of annual fee