CN103937459B - 以co2为主要组元新型动力循环混合工质及其系统和方法 - Google Patents

以co2为主要组元新型动力循环混合工质及其系统和方法 Download PDF

Info

Publication number
CN103937459B
CN103937459B CN201410138136.9A CN201410138136A CN103937459B CN 103937459 B CN103937459 B CN 103937459B CN 201410138136 A CN201410138136 A CN 201410138136A CN 103937459 B CN103937459 B CN 103937459B
Authority
CN
China
Prior art keywords
working fluid
mixed
working medium
butane
mixed working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410138136.9A
Other languages
English (en)
Other versions
CN103937459A (zh
Inventor
潘利生
魏小林
李博
史维秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Mechanics of CAS
Original Assignee
Institute of Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Mechanics of CAS filed Critical Institute of Mechanics of CAS
Priority to CN201410138136.9A priority Critical patent/CN103937459B/zh
Publication of CN103937459A publication Critical patent/CN103937459A/zh
Application granted granted Critical
Publication of CN103937459B publication Critical patent/CN103937459B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及动力机械技术领域,公开了一种以CO2为主要组元新型动力循环混合工质及其系统和方法,混合工质由CO2与丙烷、环丙烷、丙炔、丁烷、异丁烷、顺丁烯、反丁烯和环戊烷中的一种以一定比例物理混合而成。本发明提出的混合工质以CO2为主要组元,以丙烷、环丙烷、丙炔、丁烷、异丁烷、顺丁烯、反丁烯和环戊烷中的一种为第二组元,从而即可使混合工质能够被常规冷却水冷凝,也能保证工质具有较低的可燃性。混合工质与热源流体换热时具有更好的温度匹配,循环具有更高的效率。

Description

以CO2为主要组元新型动力循环混合工质及其系统和方法
技术领域
本发明涉及动力机械技术领域,特别涉及一种以CO2为主要组元新型动力循环混合工质。
背景技术
低品位热能广泛存在,主要包括低温地热能、太阳热能和工业余热废热能等。低品位热能储量巨大,若能高效利用将产生巨大经济和社会效益。工业领域的余热总量巨大,冶金、化工、煤炭等行业的余热总资源占其燃料消耗的17%-67%,可回收利用的余热资源约为余热总资源的60%。
中高温热能可采用水作为工质的传统朗肯循环进行回收,低于350℃的热能采用传统朗肯循环时余热回收效率大幅降低,低于250℃的热能采用传统朗肯循环时系统甚至不能工作,造成目前低温热能大量浪费,回收利用的潜力非常大。
采用低沸点工质的朗肯循环是低品位热能高效利用的有效方法,目前采用的低沸点工质主要是氟利昂类和烷烃类工质。氟利昂类工质一般具有较好的稳定性和安全性,但氟利昂类工质普遍对环境不友好,处于分阶段淘汰过程当中,且价格昂贵;烷烃类主要包括直链式烃类和芳香族烃类,如丁烷、异丁烷、戊烷、甲苯等,它们具有较好的热力学属性,但是可燃,运行安全性较差。
CO2属于自然工质,具有良好的环境性能,ODP为0,GWP为1,自身无毒,不可燃,热稳定性强,价格低廉。但由于CO2临界温度为31℃,以CO2作为动力循环工质时,其不能被常规冷却水冷凝。
发明内容
本发明要解决的技术问题是提出较好的动力循环工质,在保证系统运行稳定和安全的前提下,降低动力循环工质成本。
本发明提出一种以CO2为主要组元新型动力循环混合工质,包括:CO2/丙烷混合工质、CO2/环丙烷混合工质、CO2/丙炔混合工质、CO2/丁烷混合工质、CO2/异丁烷混合工质、CO2/顺丁烯混合工质、CO2/反丁烯混合工质和CO2/环戊烷混合工质。
优选地,CO2/丙烷混合工质中丙烷质量百分数在20%-60%;CO2/环丙烷混合工质中环丙烷质量百分数在1%-30%;CO2/丙炔混合工质中丙炔质量百分数在1%-30%;CO2/丁烷混合工质中丁烷质量百分数在1%-30%;CO2/异丁烷混合工质中异丁烷质量百分数在1%-30%;CO2/顺丁烯混合工质中顺丁烯质量百分数在1%-30%;CO2/反丁烯混合工质中反丁烯质量百分数在1%-30%;CO2/环戊烷混合工质中环戊烷质量百分数在1%-30%。
另一方面,本发明还同时提供一种动力循环系统,该系统中的循环工质为上述混合工质。
再一方面,本发明还同时提供一种动力循环方法,该方法中采用上述混合工质作为循环工质。
本发明涉及的混合工质具有比CO2更高的临界温度和更低的临界压力,与采用纯CO2作为工质相比,混合工质循环中,工质能够被30℃左右的常规冷却水冷凝,且循环压力更低,有助于降低系统成本;由于主要组元CO2的存在,混合工质的可燃性也低压第二组元可燃性;同时混合物工质具有很好的环境友好性。
附图说明
图1为本发明的混合工质所使用的循环系统结构示意图;
图2为本发明的混合工质所采用的循环流程示意图;
图3为本发明的一个实施例中将CO2与丙烷按50:50的质量百分比混合所得混合工质的性能曲线示意图。
具体实施方式
下面通过实施例结合附图对本发明作进一步的描述。
本发明涉及的新型动力循环混合工质应用于低品位热能驱动的动力循环系统中,如图1所示,工质循环系统包括加热器1、膨胀机(或汽轮机)2、冷却器3、工质泵4。循环工作原理如图2所示,工质在加热器中被热源流体加热,然后高温高压工质进入膨胀机(或汽轮机)膨胀并对外输出轴功,低温低压的气态工质进入冷却器与低温热源流体(冷却水)进行换热冷却并冷凝为液态,低温低压液态工质经过工质泵增压达到设计压力,进入加热器与热源流体换热重新达到高温高压状态,从而完成一个循环。
本发明旨在提供一种更易被处理且循环性能更高的循环工质,为此提供了一种以CO2为主要组元新型动力循环混合工质。本发明涉及的混合工质在加热器中吸热和在冷凝器中放热时,混合工质与热源流体具有比纯质更好的温度匹配,循环具有更高的低品位热能利用效率。具体地,本发明的混合工质包括以下实施方式:
实施例A1:系统充灌工质时将丙烷和CO2按50:50的质量百分比进行物理混合。
实施例B1:系统充灌工质时将环丙烷和CO2按10:90的质量百分比进行物理混合。
实施例B2:系统充灌工质时将环丙烷和CO2按20:80的质量百分比进行物理混合。
实施例B3:系统充灌工质时将环丙烷和CO2按30:70的质量百分比进行物理混合。
实施例C1:系统充灌工质时将丙炔和CO2按10:90的质量百分比进行物理混合。
实施例C2:系统充灌工质时将丙炔和CO2按20:80的质量百分比进行物理混合。
实施例C3:系统充灌工质时将丙炔和CO2按30:70的质量百分比进行物理混合。
实施例D1:系统充灌工质时将丁烷和CO2按10:90的质量百分比进行物理混合。
实施例D2:系统充灌工质时将丁烷和CO2按20:80的质量百分比进行物理混合。
实施例D3:系统充灌工质时将丁烷和CO2按30:70的质量百分比进行物理混合。
实施例E1:系统充灌工质时将异丁烷和CO2按10:90的质量百分比进行物理混合。
实施例E2:系统充灌工质时将异丁烷和CO2按20:80的质量百分比进行物理混合。
实施例E3:系统充灌工质时将异丁烷和CO2按30:70的质量百分比进行物理混合。
实施例F1:系统充灌工质时将顺丁烯和CO2按10:90的质量百分比进行物理混合。
实施例F2:系统充灌工质时将顺丁烯和CO2按20:80的质量百分比进行物理混合。
实施例F3:系统充灌工质时将顺丁烯和CO2按30:70的质量百分比进行物理混合。
实施例G1:系统充灌工质时将反丁烯和CO2按10:90的质量百分比进行物理混合。
实施例G2:系统充灌工质时将反丁烯和CO2按20:80的质量百分比进行物理混合。
实施例G3:系统充灌工质时将反丁烯和CO2按30:70的质量百分比进行物理混合。
实施例H1:系统充灌工质时将环戊烷和CO2按10:90的质量百分比进行物理混合。
实施例H2:系统充灌工质时将环戊烷和CO2按20:80的质量百分比进行物理混合。
实施例H3:系统充灌工质时将环戊烷和CO2按30:70的质量百分比进行物理混合。
下表具体显示了各实施例中混合工质的临界参数,可以看出,通过各实施例中以适当的比例混合CO2及相应工质,可以实现对工质所需临界温度和临界压力的有效调节。
表1.临界参数比较
进一步地,针对200℃,液态型热源(比热为2.3kJ/(kg·K),密度为0.790kg/m3),热源流体质量流量为10kg/s,汽轮机(或膨胀机)和工质泵效率均为0.75,加热器传热窄点温差为10℃,冷凝器传热窄点温差为5℃,汽轮机(或膨胀机)进口温度为180℃,冷凝温度为35℃,得到部分实施例循环性能如表2所示。
表2.循环性能对比
通过上述实施例及其实验数据可知,本发明利用CO2与有机物质的适当混合,得到了临界参数可控的混合工质。本发明涉及的混合工质具有比CO2更高的临界温度和更低的临界压力,与采用纯CO2作为工质相比,混合工质循环中,工质能够被30℃左右的常规冷却水冷凝,且循环压力更低,有助于降低系统成本;由于主要组元CO2的存在,混合工质的可燃性也低压第二组元可燃性;同时混合物工质具有很好的环境友好性。

Claims (3)

1.一种以CO2为主要组元新型动力循环混合工质,其特征在于,所述混合工质为CO2/环戊烷混合工质,其中环戊烷质量百分数在1%-30%。
2.一种动力循环系统,其特征在于,所述系统中的循环工质为权利要求1所述的混合工质。
3.一种动力循环方法,其特征在于,所述方法中采用权利要求1所述的混合工质作为循环工质。
CN201410138136.9A 2014-01-29 2014-04-08 以co2为主要组元新型动力循环混合工质及其系统和方法 Active CN103937459B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410138136.9A CN103937459B (zh) 2014-01-29 2014-04-08 以co2为主要组元新型动力循环混合工质及其系统和方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410042763 2014-01-29
CN2014100427632 2014-01-29
CN201410042763.2 2014-01-29
CN201410138136.9A CN103937459B (zh) 2014-01-29 2014-04-08 以co2为主要组元新型动力循环混合工质及其系统和方法

Publications (2)

Publication Number Publication Date
CN103937459A CN103937459A (zh) 2014-07-23
CN103937459B true CN103937459B (zh) 2017-03-15

Family

ID=51185342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410138136.9A Active CN103937459B (zh) 2014-01-29 2014-04-08 以co2为主要组元新型动力循环混合工质及其系统和方法

Country Status (1)

Country Link
CN (1) CN103937459B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105062426A (zh) * 2015-07-17 2015-11-18 天津大学 适用于内燃机高温排气余热回收的有机朗肯循环混合工质
DK3781644T3 (da) 2017-09-12 2021-09-06 Milano Politecnico Co2-baserede blandinger som arbejdsmedium i termodynamiske cykler
CN109140812A (zh) * 2018-07-19 2019-01-04 西安交通大学 一种co2混合工质及co2混合工质热泵系统
CN110105922B (zh) * 2019-05-14 2022-09-02 北京建筑大学 跨临界循环c3h8/co2混合工质及其系统和方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1491608A1 (en) * 2003-06-26 2004-12-29 Matsushita Electric Industrial Co., Ltd. Refrigerant mixture and refrigeration cycle apparatus using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617040A (ja) * 1992-02-12 1994-01-25 Kuraiotetsuku Kk 冷凍機用冷媒
CN101012367A (zh) * 2007-01-31 2007-08-08 天津大学 制冷系统低温环路的制冷剂
CN101173163A (zh) * 2007-10-31 2008-05-07 湖南大学 基于二氧化碳的非氟系制冷剂

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1491608A1 (en) * 2003-06-26 2004-12-29 Matsushita Electric Industrial Co., Ltd. Refrigerant mixture and refrigeration cycle apparatus using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Determination of the optimum heat rejection pressure in transcritical cycles working with R744/R290 mixture;X.P. Zhang等;《Applied Thermal Engineering》;20130213;第54卷;第176-184页 *
Evaluation of carbon dioxide blends with isopentane and propane as working fluids for organic Rankine cycles;Pardeep Garg等;《Applied Thermal Engineering》;20121222;第52卷;第439-448页 *

Also Published As

Publication number Publication date
CN103937459A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
Nguyen et al. Power generation from residual industrial heat
CA2652243C (en) A method and system for generating power from a heat source
CN105443176B (zh) 用于产生电能的方法以及工作介质的用途
CN103937459B (zh) 以co2为主要组元新型动力循环混合工质及其系统和方法
CN102797525A (zh) 采用非共沸混合工质变组分的低温朗肯循环系统
KR101619393B1 (ko) 복합 발전 시스템
CN102003827B (zh) 吸收式冷功联供循环系统和吸收式冷功联供方法
CN103306764A (zh) 一种带两相膨胀机的Kalina循环系统
CN102518491B (zh) 一种利用二氧化碳作为循环工质的热力循环系统
CN106593553A (zh) 一种回收液化天然气冷能的多级膨胀发电系统
JP2018536979A (ja) 燃料電池を使用する加圧及び加熱された流体の生成
Cammarata et al. Thermodynamic analysis of ORC for energy production from geothermal resources
US20210207499A1 (en) Organic rankine cycle system with supercritical double-expansion and two-stage heat recovery
CN104762065A (zh) 有机朗肯循环混合工质及其制备方法
CN102127397A (zh) 用于螺杆膨胀机的有机工质朗肯循环系统的混合工质
CN202220630U (zh) 石化行业中使用的低温余热回收设备
CN102305113A (zh) 一种石化行业中使用的低温余热回收设备
CN103937458A (zh) 有机朗肯循环混合工质
CN102536365A (zh) 利用重力增压的有机工质热力发电循环系统
CN105713576A (zh) 柴油机余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和五氟乙烷及余热回收方法
Park et al. Regenerative OTEC systems using condenser effluents discharged from three nuclear power plants in South Korea
Wang et al. Working fluids selection for flashing organic rankine regeneration cycle driven by low‐medium heat source
Zeyghami et al. Effect of different binary working fluids on performance of combined flash binary cycle
CN115750004A (zh) 余压余热回收发电系统和余压余热回收方法
CN104031611B (zh) 一种含HFC-227ea的有机朗肯循环系统混合工质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant