CN103936296A - Film designing method capable of eliminating reflection color of double-film-structured coated glass with non-steep interfaces - Google Patents

Film designing method capable of eliminating reflection color of double-film-structured coated glass with non-steep interfaces Download PDF

Info

Publication number
CN103936296A
CN103936296A CN 201410088711 CN201410088711A CN103936296A CN 103936296 A CN103936296 A CN 103936296A CN 201410088711 CN201410088711 CN 201410088711 CN 201410088711 A CN201410088711 A CN 201410088711A CN 103936296 A CN103936296 A CN 103936296A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
film
method
coated
glass
steep
Prior art date
Application number
CN 201410088711
Other languages
Chinese (zh)
Inventor
刘涌
程波
王慷慨
韩高荣
宋晨路
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention relates to a film designing method capable of eliminating the reflection color of double-film-structured coated glass with non-steep interfaces, which belongs to the field of production and designing of coated glass. The method comprises the following concrete steps: directed at the double-film-structured coated glass with non-steep film interfaces, establishing an optical model of a five-film structure by using a Bruggeman effective medium approximate model to process the non-steep interfaces; constructing a mathematical relationship between the optical parameters of films of the five-film structure and color saturation of the reflection color of the coated glass so as to obtain a mathematical model; and on the premise that optical parameters of one film are determined, solving an optimization problem by using a two-step method composed of the simulated annealing method and the Newton iterative method so as to eventually give film parameters matching with ideal color saturation. Compared with other models which do not take diffusion into consideration and have a steep double-film structure, the method provided by the invention better accords with practical situations and has important guiding significance to designing and production of coated glass.

Description

一种消除具有非陡峭界面双层膜结构镀膜玻璃反射色的膜层设计方法 For eliminating abrupt interfaces having non-bilayer membrane structure film coated glass reflected color design method

技术领域 FIELD

[0001] 本发明涉及一种镀膜玻璃的膜层设计方法,尤其涉及消除具有非陡峭界面双层膜结构镀膜玻璃反射色的膜层设计方法。 [0001] The present invention relates to a design method of a film coated glass, particularly to a film having a design method of eliminating abrupt interfaces bilayer membrane structure coated glass reflected color.

背景技术 Background technique

[0002] 镀膜玻璃是通过在玻璃表面涂镀一层或多层金属、金属氧化物或其他无机材料,以改变玻璃的光学性能,满足某些特定要求。 [0002] The coated glass is coated by one or more layers of metal, metal oxide, or other inorganic material on the glass surface, to change the optical properties of the glass, to meet specific requirements. 作为窗玻璃应用的镀膜玻璃,由于功能性的要求,往往具有两层或两层以上的薄膜结构,同时还要满足美观要求。 As the coated glass glazing applications, since functional requirements often a two-layer film having two or more layers or structures, but also to meet aesthetic requirements. 一般情况下,这需要镀膜玻璃的反射色为无色或稳定可控的某种色彩。 In general, this requires reflection coated glass is colorless or color of a certain color stable and controllable. 而光线经过双层膜或多层膜结构时,由于薄膜的干涉作用会呈现颜色。 While the light passes through the two-layer film or a multilayer film structure, due to the interference effect of the film will show a color. 对于双层膜结构的镀膜玻璃,传统工艺为消除颜色,先确定某一层薄膜的光学参数,再对另一层膜尝试不同的厚度匹配或微调膜层的折射率,逐步试探出合适的匹配膜层。 For coated glass bilayer membrane structure, the traditional process for the elimination of color, determine the optical parameters of a thin film, and then another film of different thicknesses attempt to fine-tune the refractive index matching film layer or gradually matching of a suitable probe film. 试探过程繁琐,周期漫长,成本高,效率低下。 Exploratory process cumbersome, long cycle, high cost, low efficiency. ZL200610053954.4提出针对双层膜结构镀膜玻璃消除反射色的设计方法,但该专利不考虑镀膜过程中膜层界面、膜层与衬底之间由于扩散作用形成的非陡峭界面,仅能满足某些低温工艺获得的具有清晰界面的镀膜玻璃的设计要求,而对具有非陡峭膜层界面结构的镀膜玻璃与实际情况相差较大。 ZL200610053954.4 design method for eliminating reflected color double membrane structure coated glass, but the patent does not consider the non-abrupt interface between the interface layer coating process, the substrate layer is formed by diffusion, only meet a clear coated glass having a low temperature process to obtain these interface design requirements, and the actual situation of the coated glass having a non-abrupt interface layer structure quite different.

发明内容 SUMMARY

[0003] 本发明的目的是提供一种消除具有非陡峭界面双层膜结构镀膜玻璃反射色的膜层设计方法,以简化双层膜结构镀膜玻璃生产中为消除反射色而进行的试探性实验。 [0003] The object of the present invention is to provide a method designed to eliminate film layer having a non-abrupt interfaces bilayer membrane structure coated glass reflected color to simplify the experiment exploratory double membrane structure coated glass production for eliminating the reflection color is performed .

[0004] 本发明的消除具有非陡峭界面双层膜结构镀膜玻璃反射色的膜层设计方法,其步骤如下: Design of film [0004] Elimination of the present invention having a non-abrupt interfaces bilayer membrane structure coated glass reflected color, the following steps:

[0005] 针对非陡峭界面双层膜结构镀膜玻璃建立五层膜结构模型,由基板6向上依次记为第一非陡峭界面膜层1、第一镀膜层2、第二非陡峭界面膜层3、第二镀膜层4和第三非陡峭界面膜层5,设第一镀膜层2的折射率n2和消光系数k2已经确定,厚度记为h2,第二镀膜层4为待消除的镀膜玻璃反射色的目标膜层,其折射率、消光系数和厚度分别记为n4、k4和h4,基板6的折射率116确定,第一、第二和第三非陡峭界面膜层的厚度已知,依次记为hp h3和h5,第一非陆峭界面膜层的折射率Ii1和消光系数Ic1确定,利用Bruggeman (布鲁格曼)有效介质近似模型将第二非陡峭界面膜层的折射率表达为n3=f (n2、k2、n4、k4),消光系数表达为k3=f (n2、k2、n4、k4),将第三非陆峭界面膜层的折射率表达为n5=f (n4、k4、ns^、ks气),消光系数表达为k5=f (n4、k4、nsn、ksn),nsn、ksn分别表示空气的折射率和消光 [0005] The five-layer film structure model for the establishment of a non-abrupt interfaces bilayer membrane structure coated glass substrate from 6 up sequentially referred to as a first non-abrupt interface layer 1, a first plated layer 2, the second non-abrupt interface layer 3 the second coating layer 4 and the third non-abrupt interface layer 5, a first coating layer disposed refractive index n2 and the extinction coefficient k2 2 have been identified, referred to as a thickness h2, the plated layer 4 as the second reflective coated glass to be eliminated target color film, refractive index, extinction coefficient and thickness denoted n4, the refractive index k4 and H4, the substrate 6 is determined 116, the first, second, and third non-abrupt interface layer thickness is known, sequentially referred to as H3 and H5 HP, Ii1 refractive index and extinction coefficient of the first interface layer of the non-steep land Ic1 determined, using the Bruggeman (Bruggeman) effective medium approximation model of the refractive index of the second non-abrupt interface layer is expressed as n3 = f (n2, k2, n4, k4), is expressed as an extinction coefficient k3 = f (n2, k2, n4, k4), the refractive index of the third layer of non-terrestrial interface steep expressed n5 = f (n4, k4, ns ^, ks gas), is expressed as extinction coefficient k5 = f (n4, k4, nsn, ksn), nsn, ksn represent the refractive index and extinction air 数,并且将112、1^2、114、1^4、116展开为入射光波长λ的函数。 Number, and 112,1 4,116 ^ ^ 2,114,1 expansion function of wavelength of incident light λ. 利用矩阵法建立五层膜反射率与薄膜光 Establishing five-layer film using a thin-film light reflectance matrix

学参数的参数关系,Rl hl,h2, h3, h5,nl,kl,n2, k2 Parameters relations parameters, Rl hl, h2, h3, h5, nl, kl, n2, k2

(h2,h4, n4,k4,λ ),其中R是镀膜玻璃的反射率,利用CIE矩阵以及LW均匀色空间的规定和R (H2, h4, n4, k4, λ), where R is the reflectivity of the coated glass, using a predetermined matrix, and LW CIE uniform color space and R

hl,h2,h3,h5,nl,kl,n2,k2 ^2, h4,Π4, k4,λ ),获得镀膜玻 hl, h2, h3, h5, nl, kl, n2, k2 ^ 2, h4, Π4, k4, λ), the glass coating is obtained

璃反射色色饱和度的参数式S Color saturation of a reflective glass parametric S

hl,h2, h3, h5,nl,kl,n2,k2 hl, h2, h3, h5, nl, kl, n2, k2

(h2, h4, n4, k4, λ ),由此建立消除反射色的数学模型,如式(I)所示, (H2, h4, n4, k4, λ), thereby eliminating a mathematical model reflecting color, such as formula (I), the

[0006] min (SI hl,h2,h3,h5,nl,kl,n2, k2 ^2, h4, Π4, k4) ) (I) [0006] min (SI hl, h2, h3, h5, nl, kl, n2, k2 ^ 2, h4, Π4, k4)) (I)

[0007] h2, h4, n4, k4 e D [0007] h2, h4, n4, k4 e D

[0008] 其中D表示参数定义域,求解式(1),获得使3为最小值的一组参数112,114,114,1^4,就是消除具有非陡峭界面双层膜结构镀膜玻璃反射色的目标膜层的参数。 [0008] where D represents the parameter domain, solving Formula (1), so that 3 is obtained as a minimum set of parameters 112,114,114,1 ^ 4, is to eliminate the reflection color having a non-abrupt interfaces bilayer membrane structure coated glass the target parameters of the film.

[0009] 求解式(I),可以采用传统的迭代方法。 [0009] Solution of formula (I), the conventional iterative method can be employed. 由于薄膜光学计算涉及大量的非线性元,为了快速准确的求解式(I),以采用模拟退火法和牛顿迭代法相结合的两步法来求解为好,具体步骤如下: Since thin film optical element of high nonlinearity calculated in order to quickly and accurately solve the formula (the I), in a two-step method and the simulated annealing method Combination of Newton iteration to solve as well, the following steps:

[0010] I)使用模拟退火法求解公式(I),获得一组参数h2,h4, n4和k4的值; [0010] I) using the simulated annealing method to solve the formula (I), to obtain a set of parameters h2 h4, n4 and values, k4 of;

[0011] 2)以步骤I)获得的1!2,1!4,114和1^作为牛顿迭代法的计算初值,再次求解式(I); !! [0011] 2) In step I) obtained in 1 and 2, 4,114 ^ 1 is calculated as the initial value of Newton iteration method, solving Formula (I) again;

[0012] 3)重复步骤1)、2)M次,M=l,2,…正整数,在获得的M个结果中,获取使S值为最小的一组参数h2, h4, n4和k4。 [0012] 3) repeating steps 1), 2) M times, M = l, 2, ... positive integer, the M results obtained, obtaining the minimum value of S is a set of parameters h2, h4, n4, and k4 .

[0013] 本发明使用计算方法寻找理论最优的目标膜层参数,用以指导实践生产,计算结果可靠,能够缩短依靠具体实验寻找消除镀膜玻璃反射色的目标膜层参数的工程周期。 [0013] The present invention uses a calculation method to find the optimal parameters of the target film theory, to guide the production practice, reliable results, it is possible to shorten the construction period rely on specific experimental Looking eliminate reflected color coated glass layer target parameters. 利用该方法获得的结果指导生产实践具有明显的经济价值。 The results obtained using the method of direct production practices have significant economic value.

附图说明 BRIEF DESCRIPTION

[0014] 图1是具有非陡峭界面双层膜镀膜玻璃结构示意图; [0014] Figure 1 is a schematic structure of the non-coated glass abrupt interfaces bilayer membrane;

[0015] 图2是已确定的膜层折射率的曲线; [0015] FIG. 2 is a graph of the refractive index of the film that has been determined;

[0016] 图3是已确定的膜层消光系数的曲线; [0016] FIG. 3 is a graph of the extinction coefficient of the film have been determined;

具体实施方式 detailed description

[0017] 下面结合附图和实例对本发明做进一步详细说明。 [0017] The present invention will be described in further detail in conjunction with the accompanying drawings and examples.

[0018] 参照图1,双层膜结构镀膜玻璃具有第一镀膜层2和第二镀膜层4,考虑界面之间的扩散情况,建立五层膜结构模型,第一镀膜层2和白玻衬底6之间为第一非陆峭界面膜层 [0018] Referring to FIG. 1, two-layer film structure having a first coating layer coated glass 2 and the second coating layer 4, consider the case where the interface between the diffusion, establishment of five-layer film structure model, the first plated layer and the clear glass substrate 2 a first interface layer between the non-steep bottom land 6

1、第一镀膜层2和第二镀膜层4之间为第二非陡峭界面膜层3、第二镀膜层4和空气之间为第三非陡峭界面膜层5,则由基板6向上依次记为第一非陡峭界面膜层1、第一镀膜层2、第二非陡峭界面膜层3、第二镀膜层4和第三非陡峭界面膜层5,图中1、R分别表示入射光和反射光。 1, 2 between the first and the second plated layer 4 as the second film layer non-abrupt interface layer 3, a third non-abrupt interfaces between the layer 5 and the second air-plated layer 4, the substrate 6 by sequentially upward referred to as a first non-abrupt interface layer, a first plated layer 2, the second non-abrupt interface layer 3, the second coating layer 4 and the third non-abrupt interface layer 5, FIG. 1, R respectively represent the incident light and reflected light.

[0019] 设第一镀膜层2的折射率n2和消光系数k2已经确定,厚度记为h2,第二镀膜层4为待消除的镀膜玻璃反射色的目标膜层,其折射率、消光系数和厚度分别记为n4、k4和h4,基板6的折射率116确定,第一、第二和第三非陡峭界面膜层的厚度已知,依次记为和h5,第一非陡峭界面膜层的折射率Ii1和消光系数Ic1确定,为简化计算,在本实例中设第二镀膜层4的折射率n4和消光系数k4已确定,根据实际工艺工况已确定膜层的折射率和消光系数曲线分别如图3所示,厚度如表1所示。 [0019] refractive index n2 and the extinction coefficient k2 disposed a first plated layer 2 has been determined, referred to as a thickness h2, the second plated layer 4 is to be eliminated coated glass reflected color target layer, refractive index, and extinction coefficient are denoted as a thickness n4, k4 refractive index and H4, the substrate 6 is determined 116, the first, second, and third thickness film layer non-abrupt interfaces are known, and H5 are sequentially referred to as the first film layer non-abrupt interfaces Ii1 Ic1 determined refractive index and extinction coefficient, to simplify the calculation, it is assumed in the present example the refractive index and extinction coefficient k4 n4 second plated layer 4 has been determined, the determined refractive index and extinction coefficient curve in accordance with the actual process layer conditions thickness as shown in table 13, respectively, as shown in FIG. 第一镀膜层2和第二镀膜层4的厚度为需要设计的能够消除此具有非陡峭界面双层膜结构镀膜玻璃反射色的薄膜匹配参数,分别记为h2和h4。 Film thickness of the first layer 2 and the second coating layer 4 is designed to eliminate this requires a film having a non-abrupt interfaces matching parameters bilayer membrane structure coated glass reflected color, denoted as h2 and h4.

[0020] 表1膜层厚度数据 [0020] The film thickness data of Table 1

[0021] [0021]

Figure CN103936296AD00051

[0022] 第二非陡峭界面膜层和第三非陡峭界面膜层的折射率以及消光系数采用Bruggeman有效介质近似模型计算,计算模型如下: [0022] The refractive index and extinction coefficient of the second layer and the third non-abrupt interface layer using non-abrupt interfaces Bruggeman effective medium approximation model calculation, calculation model as follows:

[0023] [0023]

Figure CN103936296AD00052

[0024] 在计算第二非陡峭界面膜层的折射率和消光系数时,式(2)中f代表第一镀膜层在第二非陡峭界面膜层中的体积百分比,Spe2分别代表第一镀膜层2和第二镀膜层4的介电常数,〈ε >代表第二非陡峭界面膜层的介电常数。 [0024] In calculating the refractive index and extinction coefficient of the second film layer non-abrupt interfaces, the formula (2) where f represents the percentage by volume of the first plated layer in the second film layer of a non-abrupt interfaces, the SPE2 representing a first coating dielectric constant layer 2 and the second coating layer 4, <ε> represents a second dielectric constant film layer non-abrupt interfaces. 在计算第三非陡峭界面膜层的折射率和消光系数时,式(2)中f代表第二镀膜层在第三非陡峭界面膜层中的体积百分比,ε 1、ε 2分别代表第二镀膜层4和空气的介电常数,〈ε >代表第三非陡峭界面膜层的介电常数。 When the refractive index and extinction coefficient calculating a third film layer non-abrupt interfaces, the formula (2) represents the percentage of the volume of the second plated layer f in the third layer in the non-abrupt interfaces, ε 1, ε 2 represent the second plated layer 4 and the dielectric constant of air, <ε> represents the third dielectric constant film layer non-abrupt interfaces.

[0025] 在本实例中,第二镀膜层4和空气间的第三非陡峭界面膜层以及第一镀膜层2和第二镀膜层4间的第二非陡峭界面膜层的折射率和消光系数,利用介电常数与折射率以及消光系数的转换关系均可表示出,其中f均取0.5。 [0025] In the present example, the third non-abrupt interfaces between the second layer and the plated layer 4 and the air layer 2 and the first coating layer a second coating of a second layer 4 of non-abrupt interfaces between the refractive index and extinction coefficient, refractive index and the dielectric constant using the conversion relation of the extinction coefficient can be expressed, where f 0.5 were taken.

[0026] 入射到多层薄膜表面的光线,其反射率可用如下公式计算: [0026] The light incident surface of the multilayer film, the reflectance thereof can be used the following formula:

[0027] [0027]

Figure CN103936296AD00053

[0028] 其中,P膜层特征矩阵如下: [0028] wherein, P matrix layer characterized as follows:

Figure CN103936296AD00054

[0030]反射率:R= |r I2 (5) [0030] reflectance: R = | r I2 (5)

[0031]其中反射系数 [0031] wherein the reflection coefficient

Figure CN103936296AD00055

[0032] 式中,膜系导纳公式Y=C/B,%是入射介质的导纳,Hs是基板的折射率。 [0032] In the formula, membrane-based equation admittance Y = C / B,% is the admittance of the incident medium, the refractive index of the substrate Hs. 由薄膜反射色针对光线垂直入射条件,则 For normal incidence of the light reflection film, then

[0033] δ p = (2 / λ ) ηpdp (7) [0033] δ p = (2 / λ) ηpdp (7)

[0034] 式中,np为介质的折射率,dp为P介质膜层的物理厚度,λ为波长。 [0034] In the formula, np is the refractive index of the medium, dp is the physical thickness of the dielectric film layer P, λ is the wavelength.

[0035] 根据国际标准照明委员会,即CIE规定,反射光谱R(X)的三刺激值为, [0035] According to the International Commission on Illumination standard, i.e. a predetermined CIE, reflectance spectrum R (X) tristimulus values,

[0036] X=SR(X)Mcie1x [0036] X = SR (X) Mcie1x

[0037] Y = ZR(A)MCIE|y (8) [0037] Y = ZR (A) MCIE | y (8)

[0038] Z = ZR(A )Mcie,z [0038] Z = ZR (A) Mcie, z

[0039] 其中ΜαΕ为CIE色度矩阵。 [0039] wherein ΜαΕ CIE chromaticity matrix. ΙΛΛ/均匀色空间规定的坐标a*和b*为: Predetermined ΙΛΛ / uniform color space coordinates of a * and b *:

[0040] [0040]

Figure CN103936296AD00056

[0041]其中,[0042] [0041] wherein, [0042]

Figure CN103936296AD00061

[0045] 式中X。 [0045] In the formula X. 、Ytl和Ztl是白光谱的三刺激值。 , Ytl Ztl and white spectrum are tristimulus values. 则色饱和度 The color saturation

Figure CN103936296AD00062

. 将公式(2-12)代入式(I), The equation (2-12) are substituted into the formula (I),

[0046] min (SI hl,h2,h3,h5,nl,kl,n2, k2 ^2, h4, Π4, k4) ) (I) [0046] min (SI hl, h2, h3, h5, nl, kl, n2, k2 ^ 2, h4, Π4, k4)) (I)

[0047] h2, h4, n4, k4 e D [0047] h2, h4, n4, k4 e D

[0048] 就得到完整的优化问题的数学形式,其中待定常数为第一镀膜层2和第二镀膜层4的厚度h2和h4。 [0048] is obtained in the form of a complete mathematical optimization problem, which is a constant to be determined and a first plated layer thickness h2 h4 2 and the second coating layer 4.

[0049] 模拟退火法中,待定参数的初值任意选取,如取h2 = 100,h4 = 50。 [0049] The simulated annealing method, the parameters to be determined arbitrarily selected initial value, such as taking h2 = 100, h4 = 50. 以随机抽样产生待定参数值的扰动,在较弱收敛条件下进行全局优化计算,如连续100次随机抽样没有获得更优待定参数值则结束计算。 Generating at random disturbance determined parameter values, global optimization convergence calculation under mild conditions, such as 100 times more benefits not obtained randomly given parameter value calculation is ended. 将模拟退火法获得的待定参数值作为初值,使用牛顿迭代法针对式(I)的曲线拟和问题进行局部优化计算,获得更优的待定参数值。 The determined parameter values ​​obtained as the initial value of the simulated annealing method, Newton iteration method for curve fitting problems of formula (I), local optimization is calculated to obtain better parameter values ​​to be determined. 重复上述计算过程可得如下结论:当第二镀膜层4厚度为105~150nm,第一镀膜层2厚度为25~40nm或者第二镀膜层4厚度为265~310nm,第一镀膜层2厚度为10~40nm时,镀膜玻璃表面均能呈现较为理想的色饱和度,实现玻璃表面的消色。 Repeating the above calculation process can be obtained the following conclusion: when the second coating layer 4 having a thickness of 105 ~ 150nm, a first plated layer 2 having a thickness of 25 ~ 40nm layer thickness or the second coating 4 of 265 ~ 310nm, as the thickness of the first plated layer 2 when 10 ~ 40nm, the surface of the coated glass can exhibit preferable color saturation, to achieve achromatic glass surface.

[0050] 色散关系和模拟退火法的收敛条件、独立计算次数可以根据目标薄膜的特征选取,以达到最优的计算效果。 [0050] Dispersion and convergence conditions of the simulated annealing method, according to the number of independent calculation characteristics of the target film is selected to achieve optimal results is calculated. 实例中第一镀膜层2和第二镀膜层4的顺序不影响方法的使用,即事先确定光学参数的第一镀膜层2和第二镀膜层4都能够应用本发明所述方法找到消除多层薄膜表面色的最佳匹配厚度。 Examples of the order of the first plated layer 2 and the second plated layer 4 does not affect the method of use, i.e., a first pre-determined optical parameters of the plated layer 2 and the second coating layer 4 are applicable to the method of the present invention is to eliminate the multilayer Found the thickness of the best matching color film surface.

Claims (2)

  1. 1.一种消除具有非陡峭界面双层膜结构镀膜玻璃反射色的膜层设计方法,其步骤如下: 针对非陡峭界面双层膜结构镀膜玻璃建立五层膜结构模型,由基板6向上依次记为第一非陡峭界面膜层1、第一镀膜层2、第二非陡峭界面膜层3、第二镀膜层4和第三非陡峭界面膜层5,设第一镀膜层2的折射率n2和消光系数k2已经确定,厚度记为h2,第二镀膜层4为待消除的镀膜玻璃反射色的目标膜层,其折射率、消光系数和厚度分别记为n4、k4和h4,基板6的折射率116确定,第一、第二和第三非陡峭界面膜层的厚度已知,依次记为和h5,第一非陆峭界面膜层的折射率Ii1和消光系数Ic1确定,利用Bruggeman有效介质近似模型将第二非陡峭界面膜层的折射率表达为n3=f (n2、k2、n4、k4),消光系数表达为k3=f (n2、k2、n4、k4),将第三非陆峭界面膜层的折射率表达为n5=f (n4、k4、nsn、ksn),消光系数表 A method for eliminating the design layer having a non-abrupt interfaces bilayer membrane structure coated glass reflected color, comprises the following steps: establishing a five-layer film structure model for non-abrupt interfaces double membrane structure coated glass substrate in this order from the upward note 6 a first non-abrupt interface layer 1, a first plated layer 2, the second non-abrupt interface layer 3, the second coating layer 4 and the third non-abrupt interface layer 5, a first plated layer 2 provided the refractive index of n2 and the extinction coefficient k2 has been determined, referred to as a thickness h2, the second plated layer 4 is to be eliminated coated glass reflected color target layer, refractive index, extinction coefficient and thickness denoted n4, k4 and H4, the substrate 6 116 determines the refractive index, the first, second, and third thickness film layer non-abrupt interfaces are known, and referred to sequentially H5, Ii1 refractive index and extinction coefficient of the first interface layer of the non-steep land Ic1 determined using the Bruggeman effective the refractive index of the second medium approximation model non-abrupt interfaces film layer expressed as n3 = f (n2, k2, n4, k4), is expressed as an extinction coefficient k3 = f (n2, k2, n4, k4), the third non- Lu interface steep refractive index film layer expressed as n5 = f (n4, k4, nsn, ksn), the extinction coefficient table 为k5=f (~、!^!^,、!^。,!^,、!^,分别表示空气的折射率和消光系数^且将]!;^!^!^k4、n6展开为入射光波长λ的函数。利用矩阵法建立五层膜反射率与薄膜光学参数的参数^ I hi, h2, h3, h5, nl, kl, n2, k2 (h2,h4, n4, k4,λ ),其中R是镀膜玻璃的反射率,利用CIE矩阵以及L*a*b*均匀色空间的规定和RI hl,AklMM (h2, h4, n4, k4,λ ),获得镀膜玻璃反射色色饱和度的参数式SlhlMh3MnU1Mk2Qi2, h4, n4, k4, λ),由此建立消除反射色的数学模型,如式(I)所示, min (SI hl,h2,h3,h5,nl,kl,n2,k2 ^2, h4, Π4, k4) ) ( I ) h2, h4, n4, k4 e D 其中D表示参数定义域,求解式(I),获得使S为最小值的一组参数h2,h4, n4, k4,就是消除具有非陡峭界面双层膜结构镀膜玻璃反射色的目标膜层的参数。 !!!.!! To k5 = f (~, ^ ^ ,, ^, ^ ,, ^, represent a refractive index and extinction coefficient and the air ^];!!! ^ ^ ^ K4, n6 expand the incident function of light wavelength [lambda] established parameters five-layer film and film optical reflectance parameter using the matrix method ^ I hi, h2, h3, h5, nl, kl, n2, k2 (h2, h4, n4, k4, λ), wherein R is the reflectivity of the coated glass using the CIE matrix, and L * a * b * a predetermined uniform color space and RI hl, AklMM (h2, h4, n4, k4, λ), obtain parameters color saturation of a coated glass reflector formula SlhlMh3MnU1Mk2Qi2, h4, n4, k4, λ), thereby establishing a mathematical model of eliminating reflected color, such as formula (I),, min (SI hl, h2, h3, h5, nl, kl, n2, k2 ^ 2 , h4, Π4, k4)) (I) h2, h4, n4, k4 e D wherein D represents the parameter domain, solving formula (the I), the minimum value of S to obtain a set of parameters h2, h4, n4, k4 , is to eliminate the parameters of the target film layer having a non-abrupt interfaces bilayer membrane structure coated glass reflected color.
  2. 2.根据权利I所述的消除具有非陡峭界面双层膜结构镀膜玻璃反射色的膜层设计方法,其特征是求解式(I)采用模拟退火法和牛顿迭代法相结合的两步法求解,具体步骤如下: 1)使用模拟退火法求解公式(I),获得一组参数h2,h4, n4和k4的值; 2)以步骤I)获得的112,1!4,114和1^4作为牛顿迭代法的计算初值,再次求解式(I); 3)重复步骤1)、2)M次,M=l,2,…正整数,在获得的M个结果中,获取使S值为最小的一组参数h2, h4, n4和k4。 2. The film of claim I according to the design method to eliminate non-abrupt interfaces having a bilayer membrane structure coated glass reflected color, characterized in that the solving of formula (I) using the simulated annealing method and the Combination of Newton iteration for solving two-step process, specific steps are as follows: Solution 1) using the simulated annealing formula (I), to obtain a set of parameters h2, h4, n4, and the value of k4; 2) in step I) obtained 112,1 4,114 and 1 ^ 4 as! Initial value calculation Newton iteration method of solving the formula (I) again; 3) repeating steps 1), 2) M times, M = l, 2, ... positive integer, the results obtained in the M, the acquisition value of S a minimum set of parameters h2, h4, n4 and k4.
CN 201410088711 2014-03-12 2014-03-12 Film designing method capable of eliminating reflection color of double-film-structured coated glass with non-steep interfaces CN103936296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410088711 CN103936296A (en) 2014-03-12 2014-03-12 Film designing method capable of eliminating reflection color of double-film-structured coated glass with non-steep interfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410088711 CN103936296A (en) 2014-03-12 2014-03-12 Film designing method capable of eliminating reflection color of double-film-structured coated glass with non-steep interfaces

Publications (1)

Publication Number Publication Date
CN103936296A true true CN103936296A (en) 2014-07-23

Family

ID=51184219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410088711 CN103936296A (en) 2014-03-12 2014-03-12 Film designing method capable of eliminating reflection color of double-film-structured coated glass with non-steep interfaces

Country Status (1)

Country Link
CN (1) CN103936296A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456487A2 (en) * 1990-05-10 1991-11-13 The Boc Group, Inc. Interference filters
EP0526966A1 (en) * 1991-06-24 1993-02-10 Ford Motor Company Limited Anti-iridescent intermediate layer for transparent glazing article
CN1807322A (en) * 2006-02-08 2006-07-26 中国科学院广州能源研究所 Double-layer film structure filming glass without light pollution
CN1945376A (en) * 2006-10-25 2007-04-11 浙江大学 Film layer design method for clearing double layer film structure coated film glass reflection color

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456487A2 (en) * 1990-05-10 1991-11-13 The Boc Group, Inc. Interference filters
EP0526966A1 (en) * 1991-06-24 1993-02-10 Ford Motor Company Limited Anti-iridescent intermediate layer for transparent glazing article
CN1807322A (en) * 2006-02-08 2006-07-26 中国科学院广州能源研究所 Double-layer film structure filming glass without light pollution
CN1945376A (en) * 2006-10-25 2007-04-11 浙江大学 Film layer design method for clearing double layer film structure coated film glass reflection color

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
程波等: "具有非陡峭膜层界面的SnO2:F节能镀膜玻璃色饱和度的数值模拟研究", 《2013全国玻璃科学技术年会论文集》, 15 May 2013 (2013-05-15), pages 130 - 134 *

Similar Documents

Publication Publication Date Title
Gaillot et al. Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition
Deinega et al. Minimizing light reflection from dielectric textured surfaces
Söderström et al. UV‐nano‐imprint lithography technique for the replication of back reflectors for n‐i‐p thin film silicon solar cells
Wang et al. Sol–gel derived durable antireflective coating for solar glass
Xue et al. Scalable, full-colour and controllable chromotropic plasmonic printing
CN203259680U (en) Color filter and display device
Dunbar et al. Light-trapping plasmonic nanovoid arrays
CN102257426A (en) Substrate, and display panel provided with substrate
Liu et al. Broadband and omnidirectional, nearly zero reflective photovoltaic glass
Michelotti et al. Probing losses of dielectric multilayers by means of Bloch surface waves
Jeon et al. 3D hierarchical architectures prepared by single exposure through a highly durable colloidal phase mask
Dewan et al. Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis
CN103991255A (en) Blue-light-prevention screen protective membrane and preparation method thereof
CN201343500Y (en) High transmission conductive glass for touch screen
Ishikura et al. Broadband rugate filters based on porous silicon
CN101515044A (en) Optimal design method of subwavelength metal polarization beam splitting grating
Moulin et al. Study of detached back reflector designs for thin‐film silicon solar cells
CN104110650A (en) Light guide plate, manufacturing method thereof and backlight module
CN201956359U (en) Antireflective passive film of crystalline silicon solar cell
Ou et al. Simultaneously Enhancing Color Spatial Uniformity and Operational Stability with Deterministic Quasi‐periodic Nanocone Arrays for Tandem Organic Light‐Emitting Diodes
CN101955324A (en) Low emissivity coated glass
CN103196867A (en) Local plasma resonance refraction index sensor and manufacturing method thereof
CN102314040A (en) Wide spectrum metal dielectric film grating and optimization method thereof
CN102819058A (en) Making method of multi-channel integrated optical filter
CN203149521U (en) Conductive glass substrate

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)