CN103927411B - 一种龙门式激光切割机床的设计方法 - Google Patents

一种龙门式激光切割机床的设计方法 Download PDF

Info

Publication number
CN103927411B
CN103927411B CN201410128588.9A CN201410128588A CN103927411B CN 103927411 B CN103927411 B CN 103927411B CN 201410128588 A CN201410128588 A CN 201410128588A CN 103927411 B CN103927411 B CN 103927411B
Authority
CN
China
Prior art keywords
machine
lathe
main components
model
laser cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410128588.9A
Other languages
English (en)
Other versions
CN103927411A (zh
Inventor
范国成
万虹
肖俊君
陈根余
陈燚
高云峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Han s Laser Technology Industry Group Co Ltd
Original Assignee
Han s Laser Technology Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Han s Laser Technology Industry Group Co Ltd filed Critical Han s Laser Technology Industry Group Co Ltd
Priority to CN201410128588.9A priority Critical patent/CN103927411B/zh
Publication of CN103927411A publication Critical patent/CN103927411A/zh
Application granted granted Critical
Publication of CN103927411B publication Critical patent/CN103927411B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Numerical Control (AREA)

Abstract

本发明公开一种龙门式激光切割机床的设计方法,该方法为:基于有限元分析软件建立当前机床各主要结构件的性能数据库;基于多体动力学软件建立机床机械模型,并根据多体动力学仿真结果得到所述机床中各个主要结构件的连接结合部对动态精度的影响以及各主要结构件的受力情况,且根据上述性能目标对各主要结构件进行模态匹配和动态精度分布;基于有限元分析软件对各主要结构件及其装配体进行优化;电气控制模型结合机床机械模型进行机电联合仿真,充分优化匹配机床机械模型和电气控制模型;对整机进行动态精度测试,微调控制参数,以实现整机性能最优化。不仅成本较低,而且提高了机床动态精度,实现高速和高精切割,机床性能达到国际先进水平。

Description

一种龙门式激光切割机床的设计方法
技术领域
本发明涉及机床设计领域,尤其涉及一种龙门式激光切割机床的设计方法。
背景技术
目前激光切割机正在向高速(v=120m/min、a=20m/s2)、高精度(定位精度±0.03mm)方向发展,普遍采用3轴(X/Y/Z)龙门式结构,高速运行下机床的振动冲击较大,动态精度很难保证。国内同行在进行激光切割机设计时,普遍参考国外设计方案,往往采用先制造,再根据问题进行改进的方法,未能在设计阶段充分考虑到机床的主要结构件以及电控系统对机床动态精度的影响。在遇到振动噪声大、动态精度差的情况时,往往不知道薄弱环节,进行故障排除时也只能一步步装拆进行分析,研发周期很长,成本高,而且往往很难快速找到问题的根源。
发明内容
本发明要解决的技术问题在于,针对现有技术激光加工机床普遍存在设计方法落后、设计产品动态精度、加工效率均落后于国际先进产家的现状的缺陷,提供一种龙门式激光切割机床的设计方法,该技术方案提高了机床的动态测试精度,实现了高速和高精切割,达到国际先进水平,同时缩短研发周期,降低研发成本。
本发明解决其技术问题所采用的技术方案是:提供一种龙门式激光切割机床的设计方法,所述机床包括多个主要结构件以及各个主要结构件的连接结合部,所述方法包括以下步骤:
步骤A:设定所述机床的性能目标,其中,该性能目标包括速度、加速度及动态精度;
步骤B:基于有限元分析软件对所述机床中各主要结构件进行静力学分析和模态分析,根据所述静力学分析和模态分析所得到的仿真结果建立所述各主要结构件的性能数据库;
步骤C:基于多体动力学软件建立机床机械模型,并根据多体动力学仿真结果得到所述机床中各个主要结构件的连接结合部对动态精度的影响以及各主要结构件的受力情况,且根据上述性能目标对各主要结构件进行模态匹配和动态精度分布;
步骤D:基于有限元分析软件对各主要结构件及其装配体进行优化;
步骤E:根据该性能目标建立电气控制模型,该电气控制模型与上述机床机械模型相结合进行机电联合仿真,对所述机床进行扫频分析和动态精度分析,并根据上述分析结果进行机械结构及机床控制参数优化,其中,该电气控制模型包括伺服电机、驱动器、上位机控制模型;
步骤F:对所述机床进行动态精度测试,根据测试结果微调控制参数,使所述机床的性能最优化。
在本发明所述的龙门式激光切割机床的设计方法中,所述机床包括床身、横梁、托板、切割头、X轴电机、Y轴电机、Z轴电机以及各个结构件的连接结合部。
在本发明所述的龙门式激光切割机床的设计方法中,该主要结构件包括床身、横梁和托板。
在本发明所述的龙门式激光切割机床的设计方法中,在步骤A中,速度为120m/min,加速度为20m/s2,动态精度为±0.02mm。
在本发明所述的龙门式激光切割机床的设计方法中,上述步骤B具体包括以下步骤:
B1.在有限元分析软件中构建横梁、床身以及托板的三维实体模型;
B2.基于有限元分析软件对横梁、床身以及托板进行静力学分析和模态分析;
B3.根据所述静力学分析和模态分析所得到的仿真结果建立上述横梁、床身以及托板的性能数据库,为后续优化提供数据参考。
在本发明所述的龙门式激光切割机床的设计方法中,上述步骤C具体包括以下步骤:
C1.基于多体动力学软件建立机床机械模型,并根据多体动力学仿真结果得到所述机床中各个主要结构件的连接结合部对动态精度的影响以及各主要结构件的受力情况,为所述机床中各个主要结构件的连接结合部的选型提供依据,确定最优连接结合部的参数,其中,该各个主要结构件的连接结合部包括导轨滑块和齿轮齿条;
C2.计算所述机床的主要工作频率,其中,所述主要工作频率包括齿轮齿条啮合频率和电机激励频率;
C3.根据动态精度、电机激励频率以及连接结合部的刚度要求,设计横梁、床身和托板,并分配横梁、床身和托板的模态值及静力学变形值。
在本发明所述的龙门式激光切割机床的设计方法中,上述步骤D具体包括以下步骤:
D1.在有限元分析软件中构建结构件及其装配体的三维实体模型;
D2.根据所分配的模态值及连接结合部的刚度要求,并基于有限元分析软件对横梁、托板、床身及其各自装配体避开电机激励频率,同时对横梁、托板和床身进行模态解耦。
在本发明所述的龙门式激光切割机床的设计方法中,上述步骤E具体包括以下步骤:
E1.根据该性能目标建立电气控制模型,该电气控制模型与上述机床机械模型相结合进行机电联合仿真;
E2.对所述机床进行扫频分析和动态精度分析,并根据上述分析结果进行机械结构及机床控制参数优化,使电气控制模型与机床机械模型达到最佳匹配,最大限度优化机床的动态精度。
在本发明所述的龙门式激光切割机床的设计方法中,上述步骤F具体包括以下步骤:
F1.基于海德汉动态精度测试仪设计实验工装,编制测试方案;
F2.测试不同工况下机床的动态精度,根据测试结果对控制参数进行微调,使所述机床的性能最优化。
实施本发明的技术方案,具体以下有益效果:采用有限元分析软件进行模态分析以及采用机电联合仿真进行精度匹配,在设计阶段充分考虑各个主要结构件对机床动态精度的影响,优化结构和控制参数,使机床动态精度满足设计要求;并在设计完成后对机床进行动态精度测试,根据测试结果对控制参数进行微调,使整机性能最优化,不仅成本较低,而且提高了机床动态精度,实现高速和高精切割,机床性能达到国际先进水平。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明龙门式激光切割机床的设计方法的流程图;
图2是本发明龙门式激光切割机床的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1是本发明龙门式激光切割机床的设计方法的流程图,如图1所示,在本实施例中,所述机床包括多个主要结构件以及各个主要结构件的连接结合部,所述方法包括以下步骤:
步骤A:设定所述机床的性能目标,其中,该性能目标包括速度、加速度及动态精度。
步骤B:基于有限元分析软件对所述机床中各主要结构件进行静力学分析和模态分析,根据所述静力学分析和模态分析所得到的仿真结果建立所述各主要结构件的性能数据库。
步骤C:基于多体动力学软件建立机床机械模型,并根据多体动力学仿真结果得到所述机床中各个主要结构件的连接结合部对动态精度的影响以及各主要结构件的受力情况,且根据上述性能目标对各主要结构件进行模态匹配和动态精度分布。
步骤D:基于有限元分析软件对各主要结构件及其装配体进行优化。
步骤E:根据该性能目标建立电气控制模型,该电气控制模型与上述机床机械模型相结合进行机电联合仿真,对所述机床进行扫频分析和动态精度分析,并根据上述分析结果进行机械结构及机床控制参数优化,其中,该电气控制模型包括伺服电机、驱动器、上位机控制模型。
步骤F:对所述机床进行动态精度测试,根据测试结果微调控制参数,使所述机床的性能最优化。
请结合参阅图2,图2是本发明所述龙门式激光切割机床的结构示意图,如图2所示,该机床包括床身1、横梁2、托板3、切割头4、X轴电机5、Y轴电机6、Z轴电机7以及各个结构件的连接结合部8。在本实施例中,该主要结构件包括横梁、床身和托板。
下面以上述主要结构件为例阐述龙门式激光切割机床的设计方法:
在步骤A中,参考国际先进激光切割机厂家的机床性能设定机床的性能目标,其中,速度为120m/min,加速度为20m/s2,动态精度为±0.02mm。
上述步骤B具体包括以下步骤:
B1.在有限元分析软件中构建横梁、床身以及托板的三维实体模型;
B2.基于有限元分析软件对横梁、床身以及托板进行静力学分析和模态分析;
B3.根据所述静力学分析和模态分析所得到的仿真结果建立上述横梁、床身以及托板的性能数据库,为后续优化提供数据参考。
上述步骤C具体包括以下步骤:
C1.基于多体动力学软件建立机床机械模型,并根据多体动力学仿真结果得到所述机床中各个主要结构件的连接结合部对动态精度的影响以及各主要结构件的受力情况,为所述机床中各个主要结构件的连接结合部的选型提供依据,确定最优连接结合部的参数,其中,该各个主要结构件的连接结合部包括导轨滑块和齿轮齿条;
C2.计算所述机床的主要工作频率,其中,所述主要工作频率包括齿轮齿条啮合频率和电机激励频率;
C3.根据动态精度、电机激励频率以及连接结合部的刚度要求,设计横梁、床身和托板,并分配横梁、床身和托板的模态值及静力学变形值。应当解释的是,一般采用“电机-横梁-托板-切割头”的逆过程进行分配,即先确定切割头的振动水平,然后分配到托板、横梁、床身等主要组成部分。
上述步骤D具体包括以下步骤:
D1.在有限元分析软件中构建结构件及其装配体的三维实体模型;主要包括:在有限元分析软件中建立结构件的三维实体模型,并将该三维实体模型转换导入有限元分析软件中。
D2.根据所分配的模态值及连接结合部的刚度要求,并基于有限元分析软件对横梁、托板、床身及其各自装配体避开电机激励频率,同时对横梁、托板和床身进行模态解耦,提高机械结构刚性,从而实现机床快速响应。步骤D2主要是为了确定横梁、床身和托板的详细特征,以横梁为核心,运用有限元分析软件对各主要结构件进行优化,充分考虑结构件本身以及结构件之间的性能匹配。
上述步骤E具体包括以下步骤:
E1.根据该性能目标建立电气控制模型,该电气控制模型与上述机床机械模型相结合进行机电联合仿真;
E2.对所述机床进行扫频分析和动态精度分析,并根据上述分析结果进行机械结构及机床控制参数优化,使电气控制模型与机床机械模型达到最佳匹配,最大限度优化机床的动态精度。
上述步骤F具体包括以下步骤:
F1.基于海德汉动态精度测试仪设计实验工装,编制测试方案;
F2.测试不同工况下机床的动态精度,根据测试结果对控制参数进行微调,使所述机床的性能最优化。
下面简单说明该龙门式激光切割机床的设计原理是:①基于有限元分析软件建立当前机床各主要结构件的性能数据库;②基于多体动力学软件建立机床机械模型,并根据多体动力学仿真结果得到所述机床中各个主要结构件的连接结合部对动态精度的影响以及各主要结构件的受力情况,且根据上述性能目标对各主要结构件进行模态匹配和动态精度分布;③基于有限元分析软件对各主要结构件及其装配体进行优化;④电气控制模型结合机床机械模型进行机电联合仿真,充分优化匹配机床机械模型和电气控制模型;⑤对整机进行动态精度测试,微调控制参数,以实现整机性能最优化。通过上述龙门式激光切割机床的设计方法,从而实现了机床振动小,响应速度快,切割质量和切割效率均明显提高,同时缩短研发周期,降低研发成本。
相较于现有技术,采用有限元分析软件进行模态分析以及采用机电联合仿真进行精度匹配,在设计阶段充分考虑各个主要结构件对机床动态精度的影响,优化结构和控制参数,使机床动态精度满足设计要求;并在设计完成后对机床进行动态精度测试,根据测试结果对控制参数进行微调,使整机性能最优化,不仅成本较低,而且提高了机床动态精度,实现高速和高精切割,机床性能达到国际先进水平。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (9)

1.一种龙门式激光切割机床的设计方法,其特征在于,所述机床包括多个主要结构件以及各个主要结构件的连接结合部,所述方法包括以下步骤:
步骤A:设定所述机床的性能目标,其中,该性能目标包括速度、加速度及动态精度;
步骤B:基于有限元分析软件对所述机床中各主要结构件进行静力学分析和模态分析,根据所述静力学分析和模态分析所得到的仿真结果建立所述各主要结构件的性能数据库;
步骤C:基于多体动力学软件建立机床机械模型,并根据多体动力学仿真结果得到所述机床中各个主要结构件的连接结合部对动态精度的影响以及各主要结构件的受力情况,且根据上述性能目标对各主要结构件进行模态匹配和动态精度分布;
步骤D:基于有限元分析软件对各主要结构件及其装配体进行优化;
步骤E:根据该性能目标建立电气控制模型,该电气控制模型与上述机床机械模型相结合进行机电联合仿真,对所述机床进行扫频分析和动态精度分析,并根据上述分析结果进行机械结构及机床控制参数优化,其中,该电气控制模型包括伺服电机、驱动器、上位机控制模型;
步骤F:对所述机床进行动态精度测试,根据测试结果微调控制参数,使所述机床的性能最优化。
2.根据权利要求1所述的龙门式激光切割机床的设计方法,其特征在于,所述机床包括床身、横梁、托板、切割头、X轴电机、Y轴电机、Z轴电机以及各个结构件的连接结合部。
3.根据权利要求2所述的龙门式激光切割机床的设计方法,其特征在于,该主要结构件包括床身、横梁和托板。
4.根据权利要求1所述的龙门式激光切割机床的设计方法,其特征在于,在步骤A中,所述机床的速度为120m/min,所述机床的加速度为20m/s2,所述机床的动态精度为±0.02mm。
5.根据权利要求3所述的龙门式激光切割机床的设计方法,其特征在于,上述步骤B具体包括以下步骤:
B1.在有限元分析软件中构建横梁、床身以及托板的三维实体模型;
B2.基于有限元分析软件对横梁、床身以及托板进行静力学分析和模态分析;
B3.根据所述静力学分析和模态分析所得到的仿真结果建立上述横梁、床身以及托板的性能数据库,为后续优化提供数据参考。
6.根据权利要求5所述的龙门式激光切割机床的设计方法,其特征在于,上述步骤C具体包括以下步骤:
C1.基于多体动力学软件建立机床机械模型,并根据多体动力学仿真结果得到所述机床中各个主要结构件的连接结合部对动态精度的影响以及各主要结构件的受力情况,为所述机床中各个主要结构件的连接结合部的选型提供依据,确定最优连接结合部的参数,其中,该各个主要结构件的连接结合部包括导轨滑块和齿轮齿条;
C2.计算所述机床的主要工作频率,其中,所述主要工作频率包括齿轮齿条啮合频率和电机激励频率;
C3.根据动态精度、电机激励频率以及连接结合部的刚度要求,设计横梁、床身和托板,并分配横梁、床身和托板的模态值及静力学变形值。
7.根据权利要求6所述的龙门式激光切割机床的设计方法,其特征在于,上述步骤D具体包括以下步骤:
D1.在有限元分析软件中构建结构件及其装配体的三维实体模型;
D2.根据所分配的模态值及连接结合部的刚度要求,并基于有限元分析软件对横梁、托板、床身及其各自装配体避开电机激励频率,同时对横梁、托板和床身进行模态解耦。
8.根据权利要求7所述的龙门式激光切割机床的设计方法,其特征在于,上述步骤E具体包括以下步骤:
E1.根据该性能目标建立电气控制模型,该电气控制模型与上述机床机械模型相结合进行机电联合仿真;
E2.对所述机床进行扫频分析和动态精度分析,并根据上述分析结果进行机械结构及机床控制参数优化,使电气控制模型与机床机械模型达到最佳匹配,最大限度优化机床的动态精度。
9.根据权利要求8所述的龙门式激光切割机床的设计方法,其特征在于,上述步骤F具体包括以下步骤:
F1.基于海德汉动态精度测试仪设计实验工装,编制测试方案;
F2.测试不同工况下机床的动态精度,根据测试结果对控制参数进行微调,使所述机床的性能最优化。
CN201410128588.9A 2014-04-01 2014-04-01 一种龙门式激光切割机床的设计方法 Active CN103927411B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410128588.9A CN103927411B (zh) 2014-04-01 2014-04-01 一种龙门式激光切割机床的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410128588.9A CN103927411B (zh) 2014-04-01 2014-04-01 一种龙门式激光切割机床的设计方法

Publications (2)

Publication Number Publication Date
CN103927411A CN103927411A (zh) 2014-07-16
CN103927411B true CN103927411B (zh) 2017-02-22

Family

ID=51145629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410128588.9A Active CN103927411B (zh) 2014-04-01 2014-04-01 一种龙门式激光切割机床的设计方法

Country Status (1)

Country Link
CN (1) CN103927411B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104765937B (zh) * 2015-04-30 2017-09-29 哈尔滨工业大学 一种基于机床动力学特性的切削模拟方法
CN106650178B (zh) * 2017-01-20 2019-11-19 浙江大学 一种基于细分构型的机床龙门结构刚度的优化设计方法
CN111460599B (zh) * 2019-01-02 2024-03-26 大族激光科技产业集团股份有限公司 一种激光焊接夹具的设计方法
CN112859754B (zh) * 2019-11-28 2022-06-17 智能云科信息科技有限公司 机床加工控制方法、装置、存储介质、边缘设备及服务器
CN113343508A (zh) * 2020-02-18 2021-09-03 北京福田康明斯发动机有限公司 一种分析连杆屈曲的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101450421A (zh) * 2007-11-30 2009-06-10 上海团结普瑞玛激光设备有限公司 龙门式数控激光切割机
CN102741009A (zh) * 2010-02-08 2012-10-17 弗劳恩霍弗实用研究促进协会 在使用仿真程序的情况下确定激光切割工艺的切割结果的方法
CN103106307A (zh) * 2013-02-02 2013-05-15 深圳市大族激光科技股份有限公司 激光切割机的横梁设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101450421A (zh) * 2007-11-30 2009-06-10 上海团结普瑞玛激光设备有限公司 龙门式数控激光切割机
CN102741009A (zh) * 2010-02-08 2012-10-17 弗劳恩霍弗实用研究促进协会 在使用仿真程序的情况下确定激光切割工艺的切割结果的方法
CN103106307A (zh) * 2013-02-02 2013-05-15 深圳市大族激光科技股份有限公司 激光切割机的横梁设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Software Algorithms and Control System Design of FPCB Laser Cutting Machine;Liao Yonghong;《Proceedings of 2011 3rd IEEE International Conference on Information Management and Engineering》;20110521;第154-157页 *
一种基于并联机构的三维激光切割机的设计与仿真;周鹏飞等;《锻压装备与制造技术》;20120229;第28-30页 *

Also Published As

Publication number Publication date
CN103927411A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
CN103927411B (zh) 一种龙门式激光切割机床的设计方法
CN108515217B (zh) 一种球头铣削自由曲面表面形貌仿真方法
CN103901852B (zh) 一种飞机装配结合面数字化加垫方法
CN103434653A (zh) 一种基于激光跟踪测量技术的飞机部件数字化柔性装配测量方法
CN102430961B (zh) 基于多传感器集成测量的自由曲面类零件加工系统
CN102592017B (zh) 一种双面锁紧刀柄/主轴联接性能仿真优化方法
CN104992038B (zh) 一种刚柔-机电耦合进给系统的动态性能优化设计方法
CN102096749A (zh) 一种线性导轨数控机床静力学及模态分析方法
CN103995937A (zh) 基于响应面和遗传算法的精密机床质量匹配设计方法
EP4031947A1 (en) Hybrid additive and subtractive manufacturing
CN104021242B (zh) 基于零件特征的数控机床加工能力评定方法
CN110103075A (zh) 调整多轴数控机床精度偏差的方法及其工装
CN102279126B (zh) 测试与cae仿真相结合确定材料性能参数的方法
CN103197606A (zh) 一种基于step-nc的智能数控系统
CN107479503A (zh) 一种数控加工螺纹孔尺寸仿真对比检查方法
CN102354161A (zh) 数控加工零件变形有限元补偿方法
CN103111764B (zh) 一种激光切割零件的快速定位方法
CN110281017A (zh) 一种曲面锻件中心孔的钻取方法
CN104484511A (zh) 一种基于仿真分析的机器人结构动态特性设计方法
CN101574781B (zh) Pcb数控成形机工作台底架的设计方法
CN108170097A (zh) 一种用于直线电机进给系统的运动精度综合分析评价方法
CN203117724U (zh) 一种基于step-nc的智能数控系统
CN112464401A (zh) 一种金属材料焊点的精准建模方法
CN109614748B (zh) 结合测试与仿真技术提升机床动态特性的结构优化方法
CN103413049B (zh) 基于机电耦合特性的并联机床结构优化参数值的获取方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB02 Change of applicant information

Address after: No. 9988 Nanshan District Shennan Road Shenzhen city Guangdong province 518000

Applicant after: HANS LASER TECHNOLOGY INDUSTRY GROUP CO., LTD.

Address before: 518000 Shenzhen Province, Nanshan District high tech park, North West New Road, No. 9

Applicant before: Dazu Laser Sci. & Tech. Co., Ltd., Shenzhen

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: DAZU LASER SCI. + TECH. CO., LTD., SHENZHEN TO: HAN'S LASER TECHNOLOGY INDUSTRY GROUP CO., LTD.

C14 Grant of patent or utility model
GR01 Patent grant