CN103916065A - Estimation method for static initial position of electro-magnetic synchronous motor rotor of no-position sensor - Google Patents

Estimation method for static initial position of electro-magnetic synchronous motor rotor of no-position sensor Download PDF

Info

Publication number
CN103916065A
CN103916065A CN201410161015.6A CN201410161015A CN103916065A CN 103916065 A CN103916065 A CN 103916065A CN 201410161015 A CN201410161015 A CN 201410161015A CN 103916065 A CN103916065 A CN 103916065A
Authority
CN
China
Prior art keywords
rotor
temp
max
synchronous motor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410161015.6A
Other languages
Chinese (zh)
Other versions
CN103916065B (en
Inventor
毛帅
刘卫国
马鹏
彭纪昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201410161015.6A priority Critical patent/CN103916065B/en
Publication of CN103916065A publication Critical patent/CN103916065A/en
Application granted granted Critical
Publication of CN103916065B publication Critical patent/CN103916065B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

本发明涉及一种无位置传感器的电励磁同步电机转子静止初始位置估算方法,通过对电励磁同步电机转子施加励磁电压,给定子上多次施加电压空间矢量,采集每次施加过程中定子上的最大电流响应值iA、iB、iC,计算三相定子电流响应值通过坐标变换得到d′q′坐标系下的电流id′,继而根据id′得到对应id′电流的电压空间矢量与电机静止坐标系A轴的夹角,从而估算电励磁同步电机转子初始位置值。有益效果:能够减小电励磁同步电机在利用电感饱和效应估算转子初始位置时由于转子励磁磁链波动带来的误差。

The invention relates to a method for estimating the static initial position of the rotor of an electrically excited synchronous motor without a position sensor. By applying an excitation voltage to the rotor of an electrically excited synchronous motor, the voltage space vector is applied to the stator multiple times, and the voltage on the stator is collected during each application process. The maximum current response value i A , i B , i C , calculate the three-phase stator current response value and obtain the current i d ′ in the d′q′ coordinate system through coordinate transformation, and then obtain the voltage corresponding to the current i d ′ according to i d ′ The angle between the space vector and the A-axis of the static coordinate system of the motor is used to estimate the initial position value of the rotor of the electrically excited synchronous motor. Beneficial effect: it can reduce the error caused by the fluctuation of the rotor excitation flux chain when the electric excitation synchronous motor uses the inductance saturation effect to estimate the initial position of the rotor.

Description

一种无位置传感器的电励磁同步电机转子静止初始位置估算方法A method for estimating the static initial position of the rotor of an electrically excited synchronous motor without a position sensor

技术领域technical field

本发明属于交流电机传动控制技术领域,具体涉及一种无位置传感器的电励磁同步电机转子静止初始位置估算方法,The invention belongs to the technical field of AC motor drive control, and in particular relates to a method for estimating the static initial position of a rotor of an electrically excited synchronous motor without a position sensor.

背景技术Background technique

转子的初始位置(N极所在位置)在电励磁同步电机的驱动控制中是一个很重要的量,不准确的初始位置会导致电机带负载能力下降和反转等问题。光电编码器、旋转变压器、霍尔元件等常用的转子位置检测装置由于机械安装的误差,通常无法直接得到转子的初始位置;位置传感器的安装还会增加系统的成本、体积和重量,造成系统可靠性的下降,并且在有些场合下,位置传感器的安装是不允许的或者无法实现的。由于电励磁同步电机安装和使用场合的限制,很多时候需要在转子静止的情况下得到初始位置。The initial position of the rotor (the position of the N pole) is a very important quantity in the drive control of the electric excitation synchronous motor. An inaccurate initial position will lead to problems such as the reduction of the motor's load capacity and reverse rotation. Commonly used rotor position detection devices such as photoelectric encoders, resolvers, and Hall elements cannot directly obtain the initial position of the rotor due to mechanical installation errors; the installation of position sensors will also increase the cost, volume and weight of the system, resulting in system reliability. The performance is reduced, and in some cases, the installation of the position sensor is not allowed or cannot be realized. Due to the limitations of the installation and use of the electric excitation synchronous motor, it is often necessary to obtain the initial position when the rotor is stationary.

目前,电机转子初始位置估算的方法有很多,但主要是针对永磁同步电机,简单实用的方法主要有下面两种:At present, there are many methods for estimating the initial position of the motor rotor, but mainly for permanent magnet synchronous motors. There are two simple and practical methods:

(1)施加恒定电压矢量法。在定子上施加恒定的电压空间矢量,从而使得转子转向特定的位置。但是,在要求电机在静止条件下得到转子初始位置的场合,这种方法就不再适用,同时恒定的电压空间矢量会产生很大的定子电流,有可能对电机本体造成损坏。(1) Applying a constant voltage vector method. Applying a constant voltage space vector to the stator causes the rotor to turn to a specific position. However, this method is no longer applicable when the motor is required to obtain the initial position of the rotor under static conditions. At the same time, a constant voltage space vector will generate a large stator current, which may cause damage to the motor body.

(2)利用定子电感的饱和效应检测转子初始位置是常用的一种方法。这种方法简单易行,在定子上施加一周(360°电角度)等幅值的电压空间矢量,同时采集定子三相电流,通过计算比较相应的电流响应值来估算转子位置。但是由于电励磁同步电机转子励磁绕组的磁链没有永磁同步电机转子的永磁磁链稳定,所以直接使用此方法时,会有较大的估算误差。(2) It is a commonly used method to detect the initial position of the rotor by using the saturation effect of the stator inductance. This method is simple and easy to implement. A voltage space vector of equal amplitude (360° electrical angle) is applied to the stator, and the three-phase current of the stator is collected at the same time. The rotor position is estimated by calculating and comparing the corresponding current response values. However, since the flux linkage of the excitation winding of the electric excitation synchronous motor rotor is not as stable as that of the permanent magnet synchronous motor rotor, there will be a large estimation error when using this method directly.

从理论上讲,此法的估算精度随着电压空间矢量细分程度的提高而提高。但实际使用时,由于检测元件误差,开关管死区时间等的存在,使得仅仅通过电压空间矢量细分很难进一步提高估算精度,因此不适合用于对转子初始位置要求较高的场合中。Theoretically speaking, the estimation accuracy of this method increases with the subdivision degree of the voltage space vector. However, in actual use, due to the existence of detection element errors and switch tube dead time, it is difficult to further improve the estimation accuracy only through voltage space vector subdivision, so it is not suitable for applications that require high initial rotor positions.

发明内容Contents of the invention

要解决的技术问题technical problem to be solved

为了避免现有技术的不足之处,本发明提出一种无位置传感器的电励磁同步电机转子静止初始位置估算方法,解决利用电感饱和效应检测永磁同步电机转子初始位置的方法应用于电励磁同步电机检测精度较低的问题,在减小电励磁同步电机转子励磁磁链波动带来的估算误差的同时,可以在一定的电压空间矢量细分条件下,进一步提高转子初始位置的估算精度。In order to avoid the deficiencies of the prior art, the present invention proposes a method for estimating the static initial position of the electric excitation synchronous motor rotor without a position sensor, and solves the problem of using the inductance saturation effect to detect the initial position of the permanent magnet synchronous motor rotor for electric excitation synchronous For the problem of low motor detection accuracy, while reducing the estimation error caused by the fluctuation of the rotor excitation flux linkage of the electrically excited synchronous motor, the estimation accuracy of the initial rotor position can be further improved under a certain voltage space vector subdivision condition.

技术方案Technical solutions

一种无位置传感器的电励磁同步电机转子静止初始位置估算方法,其特征在于步骤如下:A method for estimating the static initial position of the rotor of an electrically excited synchronous motor without a position sensor, characterized in that the steps are as follows:

步骤1:对电励磁同步电机转子施加励磁电压;Step 1: Apply an excitation voltage to the rotor of an electrically excited synchronous motor;

步骤2:给定子上施加某一幅值电压空间矢量,等待定子上的电流为零时,再次施加这个幅值的电压空间矢量,循环次数大于n大于24次;Step 2: Apply a voltage space vector of a certain magnitude to the stator, wait for the current on the stator to be zero, apply the voltage space vector of this magnitude again, and the number of cycles is greater than n and greater than 24 times;

所述施加时间为微控制器发PWM波的周期;所述的幅值保证不损坏电机本体;The application time is the cycle of the PWM wave sent by the microcontroller; the amplitude is guaranteed not to damage the motor body;

步骤3:采集每次施加过程中定子上的最大电流响应值iA、iB、iC,计算三相定子电流响应值通过坐标变换得到d′q′坐标系下的电流id′,得到n个id′;Step 3: Collect the maximum current response values i A , i B , and i C on the stator during each application process, calculate the three-phase stator current response values, and obtain the current i d ′ in the d′q′ coordinate system through coordinate transformation, and obtain n i d ';

其中:θ为每次施加的电压空间矢量与电机静止坐标系A轴的夹角Among them: θ is the angle between the voltage space vector applied each time and the A-axis of the motor's static coordinate system

步骤4:求出n个id′中所有大于等于idmax-Δid′的id′电流,并找出对应id′电流的θ值,得到所有θ值中的最大值θmax与最小值θminStep 4: Calculate all i d ′ currents greater than or equal to i dmax -Δi d ′ among n i d ′, and find out the θ value corresponding to i d current, and obtain the maximum value θ max among all θ values with the minimum value θ min ;

所述Δid′为5~10A;The Δi d 'is 5-10A;

步骤5:初步估算电励磁同步电机转子初始位置值θr_tempStep 5: Preliminary estimation of the initial rotor position value θ r_temp of the electrically excited synchronous motor:

1、当θmax-θmin<180°时,θr_temp=(θmax+θmin)/2;1. When θ max - θ min <180°, θ r_temp = (θ max + θ min )/2;

2、当θmax-θmin≥180°时,2. When θ max - θ min ≥ 180°,

如果360°-θmax≥θmin,那么θr_temp=(θmax+θmin+360°)/2,If 360°-θ maxθ min , then θ r_temp = (θ max + θ min + 360°)/2,

如果360°-θmax<θmin,那么θr_temp=(θmax+θmin-360°)/2;If 360°-θ max < θ min , then θ r_temp = (θ max + θ min - 360°)/2;

步骤6:当θr_temp-90°≥0°,计算中间变量θtemp=θr_temp-90°;当θr_temp-90°<0°,计算中间变量θtemp=θr_temp-90°+360°;Step 6: When θ r_temp -90°≥0°, calculate the intermediate variable θ temp = θ r_temp -90°; when θ r_temp -90°<0°, calculate the intermediate variable θ temp = θ r_temp -90°+360°;

步骤7:令θk=360k/n,对应的d′轴电流为id′(θk),当θk≥360°时,id′(θk)=id′(θk -n),当θk<0°时,id′(θk)=id′(θk+n);求出使|θk-θtemp|最小的k值m,对应的d′轴电流为id′(θm);其中k为整数;Step 7: Let θ k = 360k/n, the corresponding d′ axis current is i d ′(θ k ), when θ k ≥ 360°, i d ′(θ k )=i d ′(θ k -n ), when θ k <0°, i d ′(θ k )=i d ′(θ k+n ); find the k value m that minimizes |θ k -θ temp |, and the corresponding d′ axis current is i d ′(θ m ); where k is an integer;

步骤8:令Δid′(θm)=id′(θm)-id′(θm+n/2),Δid′(θm+1)=id′(θm+1)-id′(θm+1+n/2),…,Δid′(θm+n/2-1)=id′(θm+n/2-1)-id′(θm+n/2-1+n/2);Step 8: Let Δi d ′(θ m )=i d ′(θ m )-i d ′(θ m+n/2 ), Δi d ′(θ m+1 )=i d ′(θ m+1 )-i d ′(θ m+1+n/2 ),…, Δi d ′(θ m+n/2-1 )=i d ′(θ m+n/2-1 )-i d ′( θ m+n/2-1+n/2 );

步骤9:对离散点(θm,Δid′(θm)),(θm+1,Δid′(θm+1)),…,(θm+n/2-1,Δid′(θm+n/2-1))进行高斯曲线拟合,高斯函数为y=Aexp(-(x-μ)2/(2σ2)),求出拟合系数μ;由于高斯函数最高点理论上代表着转子最大、最小响应电流的差值,对应着转子N极的位置,所以估算的转子位置θr=μ,如果μ≥360°,则估算的转子位置θr=μ-360°;如果μ<0°,则估算的转子位置θr=μ+360°。Step 9: For discrete points (θ m , Δi d ′(θ m )), (θ m+1 , Δi d ′(θ m+1 )), …, (θ m+n/2-1 , Δi d ′(θ m+n/2-1 )) for Gaussian curve fitting, the Gaussian function is y=Aexp(-(x-μ) 2 /(2σ 2 )), and the fitting coefficient μ is obtained; since the Gaussian function is the highest Point theoretically represents the difference between the maximum and minimum response current of the rotor, corresponding to the position of the N pole of the rotor, so the estimated rotor position θ r =μ, if μ≥360°, the estimated rotor position θ r =μ-360 °; if μ<0°, the estimated rotor position θ r =μ+360°.

所述24≤n≤120。Said 24≤n≤120.

有益效果Beneficial effect

本发明提出的一种无位置传感器的电励磁同步电机转子静止初始位置估算方法,通过对电励磁同步电机转子施加励磁电压,给定子上多次施加电压空间矢量,采集每次施加过程中定子上的最大电流响应值iA、iB、iC,计算三相定子电流响应值通过坐标变换得到d′q′坐标系下的电流id′,继而根据id′得到对应id′电流的电压空间矢量与电机静止坐标系A轴的夹角,从而估算电励磁同步电机转子初始位置值。有益效果:能够减小电励磁同步电机在利用电感饱和效应估算转子初始位置时由于转子励磁磁链波动带来的误差。A method for estimating the static initial position of the rotor of an electrically excited synchronous motor without a position sensor proposed by the present invention. By applying an excitation voltage to the rotor of an electrically excited synchronous motor, the voltage space vector is applied to the stator multiple times, and the voltage space vector on the stator is collected during each application process. The maximum current response value i A , i B , i C , calculate the three-phase stator current response value and obtain the current i d ′ in the d′q′ coordinate system through coordinate transformation, and then obtain the corresponding i d ′ current according to i d ′ The angle between the voltage space vector and the A-axis of the motor's static coordinate system is used to estimate the initial position value of the rotor of the electrically excited synchronous motor. Beneficial effect: it can reduce the error caused by the fluctuation of the rotor excitation flux chain when the electric excitation synchronous motor uses the inductance saturation effect to estimate the initial position of the rotor.

附图说明Description of drawings

图1:电压空间矢量的幅值选择要求示意图Figure 1: Schematic diagram of the amplitude selection requirements of the voltage space vector

图2:电机定子施加电压空间矢量示意图Figure 2: Schematic diagram of the space vector of the voltage applied to the stator of the motor

图3:d′q′坐标系示意图Figure 3: Schematic diagram of the d'q' coordinate system

图4:定子三相电流响应曲线Figure 4: Stator three-phase current response curve

图5:施加的72个电压空间矢量示意图Figure 5: Schematic diagram of the 72 applied voltage space vectors

图6:不同位置定子三相电流响应曲线Figure 6: Stator three-phase current response curves at different positions

图7:不同位置电流id′曲线Figure 7: Curves of current i d ′ at different positions

图8:θmax与θmin示意图Figure 8: Schematic diagram of θ max and θ min

图9:由坐标点描点作图曲线Figure 9: Drawing curves from coordinate points

图10:高斯拟合曲线Figure 10: Gaussian Fitting Curve

具体实施方式Detailed ways

现结合实施例、附图对本发明作进一步描述:Now in conjunction with embodiment, accompanying drawing, the present invention will be further described:

(1)对电励磁同步电机转子施加励磁电压。(1) Apply an excitation voltage to the rotor of an electrically excited synchronous motor.

(2)确定施加的电压空间矢量的幅值、施加时间以及相邻两个电压空间矢量间插入的零矢量的时间。电压空间矢量的幅值从0开始逐渐增加,施加时间为微控制器发PWM波的周期,而相邻两个电压空间矢量间插入的零矢量的时间根据电压空间矢量的幅值以及施加时间而定,一般可以从1ms开始逐渐增加。这一步可以通过示波器观察来完成,确保上述参数可以满足不损坏电机本体的要求,同时应满足每次施加电压空间矢量前,定子三相电流都已衰减到零,如图1所示。(2) Determine the magnitude of the applied voltage space vector, the application time and the time of the zero vector inserted between two adjacent voltage space vectors. The amplitude of the voltage space vector increases gradually from 0, and the application time is the cycle of the PWM wave sent by the microcontroller, and the time of the zero vector inserted between two adjacent voltage space vectors depends on the amplitude of the voltage space vector and the application time. Generally, it can be gradually increased from 1ms. This step can be completed by observing with an oscilloscope to ensure that the above parameters can meet the requirements of not damaging the motor body. At the same time, it should be satisfied that the three-phase current of the stator has decayed to zero before the voltage space vector is applied each time, as shown in Figure 1.

本实施例中确定施加的电压空间矢量的幅值Um=0.3(调制度),施加时间200us,相邻两个电压空间矢量间插入零矢量的时间为6ms。In this embodiment, the amplitude U m of the applied voltage space vector is determined to be 0.3 (modulation degree), the application time is 200 us, and the time for inserting a zero vector between two adjacent voltage space vectors is 6 ms.

(3)选择所施加的电压空间矢量个数n(24≤n≤120),如图2所示(以n=24为例),设每次施加的电压空间矢量与电机静止坐标系A轴的夹角为θ。电压空间矢量的个数不可以过少(24个以上),否则估算会有较大误差。同时要求电压空间矢量个数为偶数。(3) Select the number n of voltage space vectors applied (24≤n≤120), as shown in Figure 2 (taking n=24 as an example), and set the voltage space vector applied each time to the A-axis of the static coordinate system of the motor The included angle is θ. The number of voltage space vectors should not be too small (more than 24), otherwise there will be large errors in estimation. At the same time, the number of voltage space vectors is required to be an even number.

本实施例中选择所施加的电压空间矢量个数n=72,如图5所示。In this embodiment, the number of applied voltage space vectors is selected to be n=72, as shown in FIG. 5 .

(4)如图3所示,αβ坐标系固定在电机的定子绕组上,dq坐标系是同步旋转坐标系,d轴与转子的N极同向,θr表示转子的实际位置,d′q′坐标系是估算坐标系。令d′q′坐标系与静止坐标系A轴的夹角为θ,d′轴与施加在定子上的电压空间矢量Us同向。为防止电机转动,按图2所示的顺序1~24来向电机定子施加电压空间矢量(保证每一个电压空间矢量作用前,定子三相电流已经全部减小到0),同时通过电流传感器采集定子三相电流,如图4所示,取出每一次施加电压空间矢量完毕时对应的定子三相电流响应值iA、iB、iC(4) As shown in Figure 3, the αβ coordinate system is fixed on the stator winding of the motor, the dq coordinate system is a synchronous rotating coordinate system, the d axis is in the same direction as the N pole of the rotor, θr represents the actual position of the rotor, and d′q ' The coordinate system is the estimated coordinate system. Let the angle between the d'q' coordinate system and the A axis of the static coordinate system be θ, and the d' axis is in the same direction as the voltage space vector U s applied to the stator. In order to prevent the motor from rotating, the voltage space vector is applied to the motor stator according to the sequence 1-24 shown in Figure 2 (to ensure that the three-phase current of the stator has been reduced to 0 before each voltage space vector is applied), and at the same time, it is collected by the current sensor Stator three-phase current, as shown in Figure 4, take out the stator three-phase current response values i A , i B , and i C corresponding to each time the voltage space vector is applied.

本实施例中按图5所示的顺序1~72来向电机定子施加电压空间矢量,同时通过电流传感器采集定子三相电流,取出每一次施加电压空间矢量完毕时对应的定子三相电流响应值iA、iB、iC。所有位置的电流响应值如图6所示。In this embodiment, the voltage space vector is applied to the stator of the motor according to the sequence 1 to 72 shown in Figure 5, and at the same time, the stator three-phase current is collected through the current sensor, and the corresponding stator three-phase current response value is taken out when the voltage space vector is applied each time. i A , i B , i C . The current response values for all positions are shown in Fig. 6.

(5)将得到的三相定子电流响应值通过坐标变换得到d′q′坐标系下的电流id′,坐标变换如下式所示。(5) The obtained three-phase stator current response value is obtained by coordinate transformation to obtain the current i d ′ in the d′q′ coordinate system, and the coordinate transformation is shown in the following formula.

本实施例结果如图7所示。The results of this embodiment are shown in Figure 7.

(6)如图3所示,设d′q′坐标系与转子轴线所在的d轴的夹角为δ,随着|δ|的减小,转子绕组在励磁电压下产生的励磁磁链将与定子d′轴绕组交链的越来越多,使得Ld′越来越小,因此,相比于其他角度的相同幅值的电压空间矢量来说,在d′轴与d轴重合的这个位置电流变化率最大。由于电励磁同步电机转子磁链的波动,存在如图3所示的阴影部分,这部分区域内施加的电压空间矢量所得到的电流响应id′在误差范围内几乎是相同的。通过比较得出步骤(5)中算出的最大d′轴电流idmax,由电流采集精度确定误差Δid′,求出所有大于等于idmax-Δid′的id′电流,并找出对应的θ值,比较得出其中的最大值θmax与最小值θmin(6) As shown in Figure 3, the angle between the d′q′ coordinate system and the d-axis where the rotor axis is located is δ. As |δ| decreases, the excitation flux linkage generated by the rotor winding under the excitation voltage will be There are more and more interlinkages with the stator d′ axis winding, making L d ′ smaller and smaller. Therefore, compared with the voltage space vectors of the same amplitude at other angles, the d′ axis coincides with the d axis This position has the greatest rate of change of current. Due to the fluctuation of the rotor flux linkage of the electrically excited synchronous motor, there is a shaded part as shown in Fig. 3, and the current response i d ' obtained by the applied voltage space vector in this part area is almost the same within the error range. By comparison, the maximum d′-axis current i dmax calculated in step (5) is obtained, and the error Δi d ′ is determined by the current acquisition accuracy, and all i d ′ currents greater than or equal to i dmax -Δi d ′ are obtained, And find out the corresponding θ value, and compare the maximum value θ max and the minimum value θ min among them.

本实施例求出idmax=255A,确定Δid′=6A,找出所有大于等于idmax-Δid′=249A的id′电流对应的角度值,并求出其中的最大值θmax=95°与最小值θmin=75°,如图8所示。In this embodiment, i dmax = 255A, determine Δi d ′=6A, find out the angle values corresponding to all i d ′ currents greater than or equal to i dmax -Δi d ′=249A , and find the maximum The value θ max =95° and the minimum value θ min =75° are shown in FIG. 8 .

(7)初步估算电励磁同步电机转子初始位置值:θr_temp=(θmax+θmin)/2,当θmax-θmin>180°时,如果360°-θmax≥θmin,那么θr_temp=(θmax+θmin+360°)/2,如果360°-θmax<θmin,那么θr_temp=(θmax+θmin-360°)/2。(7) Preliminary estimation of the initial position value of the electric excitation synchronous motor rotor: θ r_temp = (θ max + θ min )/2, when θ max - θ min > 180°, if 360° - θ max ≥ θ min , then θ r_temp = (θ max + θ min + 360°)/2, if 360° - θ max < θ min , then θ r_temp = (θ max + θ min - 360°)/2.

本实施例初步估算电励磁同步电机转子初始位置值:θr_temp=(θmax+θmin)/2=85°。This embodiment preliminarily estimates the initial position value of the rotor of the electrically excited synchronous motor: θ r_temp = (θ max + θ min )/2 = 85°.

(8)计算θtemp=θr_temp-90°,如果θr_temp-90°<0°,那么θtemp=θr_temp-90°+360°。(8) Calculate θ temp = θ r_temp -90°, if θ r_temp -90°<0°, then θ temp = θ r_temp -90°+360°.

本实施例计算θtemp=θr_temp-90°+360°=355°。In this embodiment, θ tempr_temp −90°+360°=355° is calculated.

(9)令θk=360k/n,其中n为电压空间矢量的个数,k为整数。对应的d′轴电流为id′(θk),当θk≥360°时,id′(θk)=id′(θk-n),当θk<0°时,id′(θk)=id′(θk+n)。求出使|θk-θtemp|最小的k值m,对应的d′轴电流为id′(θm)。(9) Let θ k = 360k/n, where n is the number of voltage space vectors and k is an integer. The corresponding d′ axis current is i d ′(θ k ), when θ k ≥360°, i d ′(θ k )=i d ′(θ k-n ), when θ k <0°, i d '(θ k )=i d '(θ k+n ). Find the k value m that minimizes |θ k -θ temp |, and the corresponding d′-axis current is i d ′(θ m ).

本实施例求出使|θk-θtemp|最小的k值m=71,对应的d′轴电流为id′(θ71)。In this embodiment, the k value m=71 that minimizes |θ k - θ temp | is obtained, and the corresponding d'-axis current is i d '(θ 71 ).

(10)令Δid′(θm)=id′(θm)-id′(θm+n/2),Δid′(θm+1)=id′(θm+1)-id′(θm+1+n/2),…,Δid′(θm+n/2 -1)=id′(θm+n/2-1)-id′(θm+n/2-1+n/2)。(10) Let Δi d ′(θ m )=i d ′(θ m )-i d ′(θ m+n/2 ), Δi d ′(θ m+1 )=i d ′(θ m+1 )-i d ′(θ m+1+n/2 ),…, Δi d ′(θ m+n/2 -1 )=i d ′(θ m+n/2-1 )-i d ′( θ m+n/2-1+n/2 ).

本实施例令Δid′(θ71)=id′(θ71)-id′(θ107),Δid′(θ72)=id′(θ72)-id′(θ108),…,Δid′(θ106)=id′(θ106)-id′(θ142)。In this embodiment, Δi d ′(θ 71 )=i d ′(θ 71 )-i d ′(θ 107 ), Δi d ′(θ 72 )=i d ′(θ 72 )-i d ′(θ 108 ),..., Δi d ′(θ 106 )=i d ′(θ 106 )−i d ′(θ 142 ).

(11)对离散点(θm,Δid′(θm)),(θm+1,Δid′(θm+1)),…,(θm+n/2-1,Δid′(θm+n/2-1))进行高斯曲线拟合(高斯曲线拟合方法可参见数值分析类教材),高斯函数为y=Aexp(-(x-μ)2/(2σ2)),求出拟合系数μ。由于高斯函数最高点理论上代表着转子最大、最小响应电流的差值,对应着转子N极的位置,所以估算的转子位置θr=μ,如果μ≥360°,则估算的转子位置θr=μ-360°;如果μ<0°,则估算的转子位置θr=μ+360°。(11) For discrete points (θ m , Δi d ′(θ m )), (θ m+1 , Δi d ′(θ m+1 )), …, (θ m+n/2-1 , Δi d ′(θ m+n/2-1 )) for Gaussian curve fitting (Gaussian curve fitting method can be found in numerical analysis textbooks), the Gaussian function is y=Aexp(-(x-μ) 2 /(2σ 2 ) ) to find the fitting coefficient μ. Since the highest point of the Gaussian function theoretically represents the difference between the maximum and minimum response current of the rotor, corresponding to the position of the N pole of the rotor, the estimated rotor position θ r =μ, if μ≥360°, the estimated rotor position θ r =μ−360°; if μ<0°, the estimated rotor position θ r =μ+360°.

由(θ71,Δid′(θ71)),(θ72,Δid′(θ72)),…,(θ106,Δid′(θ106))描点作图,如图9所示,可以看出,其形状近似于高斯分布,因此选用高斯函数来对数据进行拟合。通过高斯曲线拟合,求得μ=444.8,σ=35.1,A=47.07,拟合结果如图10所示。因为μ≥360°,则估算的转子位置θr=μ-360°=84.8°。From (θ 71 , Δi d ′(θ 71 )), (θ 72 , Δi d ′(θ 72 )), …, (θ 106 , Δi d ′(θ 106 )) to draw a plot, as shown in Figure 9 , it can be seen that its shape is similar to the Gaussian distribution, so the Gaussian function is used to fit the data. Through Gaussian curve fitting, μ=444.8, σ=35.1, A=47.07 are obtained, and the fitting results are shown in Fig. 10 . Since μ≥360°, the estimated rotor position θ r =μ−360°=84.8°.

本发明实施例所估算的转子位置与实际电机转子位置84.381°相差0.419个电角度,完全可以满足驱动控制的要求。The difference between the rotor position estimated by the embodiment of the present invention and the actual motor rotor position of 84.381° is 0.419 electrical angles, which fully meets the requirements of drive control.

Claims (2)

1. an electric excitation synchronous motor stationary rotor initial position evaluation method for position-sensor-free, is characterized in that step is as follows:
Step 1: electric excitation synchronous motor rotor is applied to exciting voltage;
Step 2: to applying a certain amplitude voltage space vector on stator, wait for that the electric current on stator is at 1 o'clock, again apply the space vector of voltage of this amplitude, cycle-index is greater than n and is greater than 24 times;
Described application time is that microcontroller is sent out PWM wave period; Described amplitude guarantees not damage motor body;
Step 3: gather and apply the maximum current response i on stator in process at every turn a, i b, i c, calculate threephase stator current response value and obtain the current i under d ' q ' coordinate system by coordinate transform d', obtain n i d';
Wherein: θ is the space vector of voltage that at every turn applies and the angle of motor rest frame A axle
Step 4: obtain n i d' in all i that are more than or equal to d' max-Δ i d' i d' electric current, and find out corresponding i dthe θ value of ' electric current, obtains the maximum θ in all θ values maxwith minimum value θ min;
Described Δ i d' be 5~10A;
Step 5: preresearch estimates electric excitation synchronous motor initial position of rotor value θ r_temp:
1, work as θ maxminwhen 180 ° of <, θ r_temp=(θ max+ θ min)/2;
2, work as θ maxmin>=180 ° time,
If 360 °-θ max>=θ min, θ so r_temp=(θ max+ θ min+ 360 °)/2,
If 360 °-θ max< θ min, θ so r_temp=(θ max+ θ min-360 °)/2;
Step 6: work as θ r_temp-90 °>=0 °, calculate intermediate variable θ tempr_temp-90 °; Work as θ r_temp0 ° of-90 ° of <, calculates intermediate variable θ tempr_temp-90 °+360 °;
Step 7: make θ k=360k/n, corresponding d ' shaft current is i d' (θ k), work as θ k>=360 ° time, i d' (θ k)=i d' (θ k -n), work as θ kwhen 0 ° of <, i d' (θ k)=i d' (θ k+n); Obtain and make | θ ktemp| minimum k value m, corresponding d ' shaft current is i d' (θ m); Wherein k is integer;
Step 8: make Δ i d' (θ m)=i d' (θ m)-i d' (θ m+n/ 2), Δ i d' (θ m+1)=i d' (θ m+1)-i d' (θ m+1+n/ 2) ..., Δ i d' (θ m+n/2-1)=i d' (θ m+n/2-1)-i d' (θ m+n/2-1+n/ 2);
Step 9: to discrete point (θ m, Δ i d' (θ m)), (θ m+1, Δ i d' (θ m+1)) ..., (θ m+n/2-1, Δ i d' (θ m+n/2-1)) carrying out gaussian curve approximation, Gaussian function is y=Aexp ((x-μ) 2/ (2 σ 2)), obtain fitting coefficient μ; Because Gaussian function peak is representing the difference of rotor maximum, minimum response electric current in theory, corresponding the position of the rotor N utmost point, so the rotor position of estimation r=μ, if μ>=360 °, the rotor position of estimation r=μ-360 °; If 0 ° of μ <, the rotor position of estimation r=μ+360 °.
2. the electric excitation synchronous motor stationary rotor initial position evaluation method of position-sensor-free according to claim 1, is characterized in that: described 24≤n≤120.
CN201410161015.6A 2014-04-21 2014-04-21 A kind of electric excitation synchronous motor stationary rotor initial position evaluation method of position-sensor-free Active CN103916065B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410161015.6A CN103916065B (en) 2014-04-21 2014-04-21 A kind of electric excitation synchronous motor stationary rotor initial position evaluation method of position-sensor-free

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410161015.6A CN103916065B (en) 2014-04-21 2014-04-21 A kind of electric excitation synchronous motor stationary rotor initial position evaluation method of position-sensor-free

Publications (2)

Publication Number Publication Date
CN103916065A true CN103916065A (en) 2014-07-09
CN103916065B CN103916065B (en) 2016-02-03

Family

ID=51041516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410161015.6A Active CN103916065B (en) 2014-04-21 2014-04-21 A kind of electric excitation synchronous motor stationary rotor initial position evaluation method of position-sensor-free

Country Status (1)

Country Link
CN (1) CN103916065B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167971A (en) * 2014-08-22 2014-11-26 徐州中矿大传动与自动化有限公司 Detection device and method of initial position of rotor of electrically excited synchronous motor
CN104300868A (en) * 2014-10-14 2015-01-21 西北工业大学 Method for Estimating Initial Rotor Position of Aeronautical Three-Stage Synchronous Motor
CN106253783A (en) * 2016-09-28 2016-12-21 西北工业大学 Initial position evaluation method under electric excitation synchronous motor rotor oscillation
CN104300867B (en) * 2014-10-14 2017-01-18 西北工业大学 Initial angle detecting method for aviation three-level type synchronous motor rotor
CN106788082A (en) * 2016-12-09 2017-05-31 西北工业大学 The method for improving three-level formula synchronous electric motor rotor initial position detection precision
CN107036599A (en) * 2017-04-20 2017-08-11 西北工业大学 Permanent magnet synchronous motor rotor position detection method based on MEMS inertia devices
CN110138302A (en) * 2018-02-02 2019-08-16 西安中车永电捷通电气有限公司 The method and apparatus for obtaining the initial position angle of rotor of permanent magnet synchronous motor
CN111585494A (en) * 2019-02-18 2020-08-25 柯尼卡美能达株式会社 Motor control device, initial position estimation method, and image forming apparatus
CN115459664A (en) * 2022-08-16 2022-12-09 西北工业大学 A Fast Estimation Method of Initial Rotor Position of Electrically Excited Synchronous Motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012367A1 (en) * 2002-07-15 2004-01-22 Honda Giken Kogyo Kabushiki Kaisha Apparatus for controlling brushless motor
US20100045218A1 (en) * 2008-08-20 2010-02-25 Sanyo Electric Co., Ltd. Motor Control Device
CN101783636A (en) * 2009-01-21 2010-07-21 珠海格力电器股份有限公司 Motor rotor position estimation method and motor drive control method
CN103051276A (en) * 2012-08-27 2013-04-17 深圳市正弦电气股份有限公司 Initial position distinguishing method of permanent magnet synchronous motor rotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012367A1 (en) * 2002-07-15 2004-01-22 Honda Giken Kogyo Kabushiki Kaisha Apparatus for controlling brushless motor
US20100045218A1 (en) * 2008-08-20 2010-02-25 Sanyo Electric Co., Ltd. Motor Control Device
CN101783636A (en) * 2009-01-21 2010-07-21 珠海格力电器股份有限公司 Motor rotor position estimation method and motor drive control method
CN103051276A (en) * 2012-08-27 2013-04-17 深圳市正弦电气股份有限公司 Initial position distinguishing method of permanent magnet synchronous motor rotor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SIDDHESWAR KAR ET AL.: "Direct Torque Control of Permanent Magnet Synchronous Motor Drive with a Sensorless Initial Rotor Position Estimation Scheme", 《ADVANCES IN POWER CONVERSION AND ENERGY TECHNOLOGIES (APCET),2012 INTERNATIONAL CONFERENCE ON》, 4 August 2012 (2012-08-04), pages 1 - 6, XP032235410, DOI: doi:10.1109/APCET.2012.6301999 *
吴湘莲 等: "隐极式永磁同步电机转子初始位置估计", 《微电机》, vol. 47, no. 2, 28 February 2014 (2014-02-28) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167971A (en) * 2014-08-22 2014-11-26 徐州中矿大传动与自动化有限公司 Detection device and method of initial position of rotor of electrically excited synchronous motor
CN104300868A (en) * 2014-10-14 2015-01-21 西北工业大学 Method for Estimating Initial Rotor Position of Aeronautical Three-Stage Synchronous Motor
CN104300867B (en) * 2014-10-14 2017-01-18 西北工业大学 Initial angle detecting method for aviation three-level type synchronous motor rotor
CN104300868B (en) * 2014-10-14 2017-01-25 西北工业大学 Estimation method for initial position of rotor of aerial three-level synchronous motor
CN106253783A (en) * 2016-09-28 2016-12-21 西北工业大学 Initial position evaluation method under electric excitation synchronous motor rotor oscillation
CN106788082B (en) * 2016-12-09 2019-01-11 西北工业大学 The method for improving three-level formula synchronous electric motor rotor initial position detection precision
CN106788082A (en) * 2016-12-09 2017-05-31 西北工业大学 The method for improving three-level formula synchronous electric motor rotor initial position detection precision
CN107036599A (en) * 2017-04-20 2017-08-11 西北工业大学 Permanent magnet synchronous motor rotor position detection method based on MEMS inertia devices
CN110138302A (en) * 2018-02-02 2019-08-16 西安中车永电捷通电气有限公司 The method and apparatus for obtaining the initial position angle of rotor of permanent magnet synchronous motor
CN111585494A (en) * 2019-02-18 2020-08-25 柯尼卡美能达株式会社 Motor control device, initial position estimation method, and image forming apparatus
CN111585494B (en) * 2019-02-18 2023-11-07 柯尼卡美能达株式会社 Motor control device, initial position estimation method, and image forming apparatus
CN115459664A (en) * 2022-08-16 2022-12-09 西北工业大学 A Fast Estimation Method of Initial Rotor Position of Electrically Excited Synchronous Motor
CN115459664B (en) * 2022-08-16 2024-03-08 西北工业大学 Rapid estimation method for initial position of rotor of electro-magnetic synchronous motor

Also Published As

Publication number Publication date
CN103916065B (en) 2016-02-03

Similar Documents

Publication Publication Date Title
CN103916065B (en) A kind of electric excitation synchronous motor stationary rotor initial position evaluation method of position-sensor-free
CN103916066B (en) The electric excitation synchronous motor stationary rotor initial position evaluation method of position-sensor-free
Inoue et al. Maximum torque per ampere control of a direct torque-controlled PMSM in a stator flux linkage synchronous frame
KR101684073B1 (en) Method for detecting initial magnetic-pole position of rotor in permanent magnet synchronous motor
CN104753431B (en) Permagnetic synchronous motor inductance parameters detection method and system
CN106253783B (en) Initial position evaluation method under electric excitation synchronous motor rotor oscillation
CN103532465A (en) Permanent magnet synchronous motor inductance identification algorithm based on incremental model reference adaptive system
CN103825524A (en) Offline identification method for basic electric appliance parameters of permanent-magnet synchronous motor
RU2560090C1 (en) Electric motor control unit with permanent magnets without position sensors
CN107425781A (en) A SRM Position Prediction Method Based on Linear Flux Model and Linear Regression Analysis
CN104316876B (en) Method for rapidly obtaining three-phase 12/8 pole SRM magnetic linkage characteristics with consideration on mutual inductance coupling
CN110932642B (en) A method for predicting instantaneous phase torque of switched reluctance motor based on Hermite interpolation
JP2007336708A (en) Temperature detection apparatus for permanent magnet of permanent-magnetic rotating machine
Nguyen et al. High-speed sensorless control of a synchronous reluctance motor based on an Extended Kalman Filter
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
CN105656379B (en) A kind of switched reluctance machines position predictor method based on magnetoresistive characteristic coordinate transform
Offermann et al. Simulation of magnetization errors using conformal mapping field computations
CN107317525B (en) Initial position detection method of multi-stage brushless motor based on signal inverse transmission
JP7364436B2 (en) Magnetic pole direction detection device and magnetic pole direction detection method
JP7487826B1 (en) Motor control device
JP7381303B2 (en) Magnetic pole direction detection device and magnetic pole direction detection method
CN112825462A (en) Magnetic pole direction detection device and magnetic pole direction detection method
CN111146996B (en) A method for controlling a switched reluctance motor without a position sensor
Yoshino et al. Stability analysis of extended induced voltage observer used for high speed position sensorless control of surface permanent magnet synchronous motor
Armentia et al. Experimental validation of fem based design method for synchronous reluctance machine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant