CN103904108B - 具有石墨烯电极的GaN基半导体器件及其制备方法 - Google Patents

具有石墨烯电极的GaN基半导体器件及其制备方法 Download PDF

Info

Publication number
CN103904108B
CN103904108B CN201410120531.4A CN201410120531A CN103904108B CN 103904108 B CN103904108 B CN 103904108B CN 201410120531 A CN201410120531 A CN 201410120531A CN 103904108 B CN103904108 B CN 103904108B
Authority
CN
China
Prior art keywords
graphene film
layer
type semiconductor
graphene
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410120531.4A
Other languages
English (en)
Other versions
CN103904108A (zh
Inventor
杨连乔
冯伟
胡建正
张建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201410120531.4A priority Critical patent/CN103904108B/zh
Publication of CN103904108A publication Critical patent/CN103904108A/zh
Application granted granted Critical
Publication of CN103904108B publication Critical patent/CN103904108B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes

Abstract

本发明公开了一种具有石墨烯电极的GaN基半导体器件,由衬底、缓冲层、N型半导体层、有源层、P型半导体层、石墨烯薄膜层和金属电极结合形成,P型半导体层为含GaN的复合材料层,石墨烯薄膜层设有贯穿的孔道,使金属电极穿过石墨烯薄膜层与P型半导体层固定连接,形成石墨烯薄膜层的焊盘,使石墨烯薄膜层固定结合在P型半导体层上,形成复合电极。本发明采用MO源作为催化剂与碳源的前驱体,在现有GaN外延工艺及设备的情况下实现了低温石墨烯电极的自生长,并可通过对金属图形的控制,进一步改善电流分布,提高了器件的出光与散热性能。

Description

具有石墨烯电极的GaN基半导体器件及其制备方法
技术领域
本发明涉及一种半导体器件及其制备工艺,还涉及一种石墨烯电极及其制备方法,应用于半导体器件结构和制备技术领域。
背景技术
石墨烯是一种由碳原子紧密堆积成的单原子层的晶体,具有很多独特的性质,如高的比表面积、良好的热稳定性、优良的导热特性等。这些优异的性能使石墨烯在纳米电子器件、气体传感器、超级电容器和能量存储等领域有很好的应用前景。特别的,石墨烯在可见光波段极高的透过率,550nm时单层石墨烯理论透过率可达97.7%,及良好的电学与热传输性能,使得其有潜力成为一种理想的透明导电材料。
近年来,采用石墨烯及其复合材料作为光电器件电极材料的研究很多,也取得了一定的效果。目前采用的方法大都是先制备出石墨烯或氧化石墨烯,再采用一定方法转移至GaN外延片,在转移过程中容易导致石墨烯的破损与杂质的引入;同时,石墨烯与GaN之间依靠范德华力结合,容易在后续的工艺中出现分离或脱落的现象,从而影响器件的性能;除此之外,与现有GaN基器件外延与芯片设备与工艺不兼容,不具有良好的产业推广性。
发明内容
为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种具有石墨烯电极的GaN基半导体器件及其制备方法,采用MO源作为催化剂与碳源的前驱体,在现有GaN外延工艺及设备的情况下实现了低温石墨烯电极的自生长,并可通过对金属图形的控制,进一步改善电流分布。
为达到上述发明创造目的,本发明采用下述技术方案:
一种具有石墨烯电极的GaN基半导体器件,依次由衬底层、缓冲层、N型半导体层、有源层、P型半导体层、石墨烯薄膜层和金属电极结合形成,P型半导体层为含GaN的复合材料层,P型半导体层和石墨烯薄膜层为欧姆接触,石墨烯薄膜层设有贯穿的孔道,使金属电极穿过石墨烯薄膜层的孔道并与P型半导体层固定连接,形成石墨烯薄膜层的焊盘,使石墨烯薄膜层固定结合在P型半导体层上,使石墨烯薄膜层和金属电极相互结合形成复合电极,石墨烯薄膜层的孔道的截面为设定形状的图形形状。
上述石墨烯薄膜层优选采用1-10层石墨烯。
上述金属电极优选采用的材料为Au、Ag、Cr、Pt、Ni、Ti、Rh和Zn中的任意一种金属材料或者任意几种金属的合金材料制成。
本发明具有石墨烯电极的GaN基半导体器件的制备方法,包括以下步骤:
a. 选用适合InGaN沉积的衬底,采用金属有机化合物化学气相沉积制备依次由衬底层、缓冲层、n型半导体、有源层、P型半导体层形成的半导体器件体系;
b. 在上述步骤a中制备的半导体器件体系的P型半导体层之上,采用金属有机化合物化学气相沉积制备石墨烯薄膜,具体采用Ga和In中的任意一种或两种金属的合金作为催化剂,采用H2作为MO源的载气,即以MO源作为催化剂与碳源的前驱体,同时通入MO源及载气H2,完成金属催化剂的沉积催化,制备得到石墨烯薄膜,使石墨烯薄膜和P型半导体层之间临时通过薄层催化剂层连接;优选石墨烯薄膜具有1-10层单原子石墨层,石墨烯薄膜的制备温度优选为300-800℃;MO源优选采用三甲基镓,二甲基镓,三乙基镓,三甲基铟,二甲基乙基铟中的一种气体或者任意几种组成的混合气体;
c. 进行温度为200-800℃,时间为5-30min氢气氛围下的退火工艺,实现催化剂与P型半导体的短程互扩散,然后进行温度为30-80℃,时间为1-60min酸处理,去除薄层催化剂,使石墨烯薄膜与P型半导体直接固定连接;酸处理采用的酸优选采用任意一种无机酸或者任意几种无机酸组成的混合酸溶液;
d. 将在上述步骤c中沉积于P型半导体层上的石墨烯薄膜进行图形化,为石墨烯薄膜制作图案化孔道;石墨烯薄膜的图形化孔洞优选光刻、等离子体刻蚀、激光刻蚀中的任意一种制作方法或者任意几种制作方法的组合制作方法;
e.将在上述步骤d中制作的石墨烯薄膜的图案化孔洞中沉积金属电极材料,形成完整的器件结构,使金属电极材料穿过石墨烯薄膜层的孔道并与所述P型半导体层固定连接,形成石墨烯薄膜层的焊盘,使石墨烯薄膜层固定结合在所述P型半导体层上,使石墨烯薄膜层和金属电极相互结合形成复合电极;优选真空热蒸发、电子束沉积、磁控溅射中的任意一种制作方法或任意几种制作方法的组合制作方法,将金属电极材料沉积到石墨烯薄膜的图形化孔洞中,形成石墨烯薄膜层的焊盘;金属电极材料优选采用Au、Ag、Cr、Pt、Ni、Ti、Rh和Zn中的任意一种金属材料或者任意几种金属的合金材料制成;金属电极优选采用金。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
1. 本发明采用金属Ga,金属In或GaIn的合金作为石墨烯生长的催化剂,利用MO源的热分解特性,在不破坏有源层的情况下实现了低温石墨烯电极的制备;
2. 本发明采用MOCVD实现石墨烯制备,与现有GaN基器件的制备设备、工艺及气源实现了无缝兼容,提高了其产业可行性;
3. 本发明通过对电极图案的优化,进一步改善电流分布,提高了器件的出光与散热性能。
附图说明
图1是本发明优选实施例具有石墨烯电极的GaN基半导体器件的层次结构示意图。
图2是沿图1中A-A线的剖视图。
具体实施方式
本发明的优选实施例详述如下:
在本实施例中,参见图1和图2,一种具有石墨烯电极的GaN基半导体器件,依次由衬底层1、缓冲层2、N型半导体层3、有源层4、P型半导体层5、石墨烯薄膜层6和金属电极7结合形成,衬底层1采用蓝宝石,N型半导体层3采用n型氮化镓,P型半导体层5采用p型氮化镓,P型半导体层5与石墨烯薄膜层6为欧姆接触方式进行连接固定,石墨烯薄膜层6设有贯穿的孔道,使金属电极7穿过石墨烯薄膜层6的孔道并与P型半导体层5固定连接,形成石墨烯薄膜层6的焊盘,使石墨烯薄膜层6固定结合在P型半导体层5上,使石墨烯薄膜层6和金属电极7相互结合形成复合电极,石墨烯薄膜层6的孔道的截面为设定形状的图形形状。
在本实施例中,参见图1和图2,具有石墨烯电极的GaN基半导体器件的制备方法,包括以下步骤:
a. 外延片制备:采用传统工艺,依次在蓝宝石衬底上通过金属有机化合物化学气相沉积法依次沉积缓冲层/n型氮化镓/量子阱/p型氮化镓形成的半导体器件体系;
b. 石墨烯薄膜制备:采用金属有机化合物化学气相沉积法,切断氮源与CP2Mg,降温至600度,控制混合气体流量为80sccm,生长10分钟,以三甲基铟作为催化剂与碳源的前驱体,同时通入含三甲基铟及载气H2,完成催化剂的沉积催化,在上述步骤a中制备的半导体器件体系的P型半导体层之上,制备得到石墨烯薄膜;
c. 石墨烯薄膜退火:采用H2氛围,控制温度在200-800℃下退火5-30min,实现催化剂In与P型半导体的短程互扩散,在P型半导体内形成功函数较低的薄层InGaN,促进欧姆接触的实现;
d. 进行温度为30-80℃,时间为1-60mmin酸处理,彻底去除薄层催化剂In,得到依次由蓝宝石衬底/缓冲层2/n型氮化镓/量子阱/p型氮化镓/石墨烯薄膜形成的半导体器件体系;
e.根据所需阳极金属图形,采用特定的掩膜版进行光刻,等离子体刻蚀去除暴露的石墨烯部分,随后采用氧气等离子体刻蚀除去光刻胶,实现石墨烯薄膜的图形化,为石墨烯薄膜制作图案化孔洞,图形化金属电极图案如图2所示;
f. 沉积金属:将在上述步骤e中制作的石墨烯薄膜的图案化孔洞中采用电子束沉积法沉积金属电极材料,形成完整的器件结构,使金属电极材料穿过石墨烯薄膜层的孔道并与P型半导体固定连接,形成石墨烯薄膜层的焊盘,使石墨烯薄膜层固定结合在p型氮化镓上,使石墨烯薄膜层和金属电极相互复合形成结合电极,完成芯片电极制备。
在本实施例中,参见图1和图2,石墨烯采用三甲基铟作为石墨烯催化剂与碳源的前驱体,通过金属有机化合物有化学相沉积制备。本实施例利用三甲基铟的热分解特性,采用金属铟作为石墨烯生长的催化剂;在不破坏有源层的情况下实现了低温石墨烯电极的制备;同时采用MOCVD实现石墨烯制备,与现有GaN基器件的制备设备、工艺及气源实现了无缝兼容,且无需转移,提高了其产业可行性。并通过对电极图案的优化,进一步改善电流分布,提高了器件的出光与散热性能。
上面结合附图对本发明实施例进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合、简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明具有石墨烯电极的GaN基半导体器件及其制备方法的技术原理和发明构思,都属于本发明的保护范围。

Claims (6)

1.一种具有石墨烯电极的GaN基半导体器件的制备方法,依次由衬底层(1)、缓冲层(2)、N型半导体层(3)、有源层(4)、P型半导体层(5)、石墨烯薄膜层(6)和金属电极(7)结合形成,所述P型半导体层(5)为含GaN的复合材料层,所述P型半导体层(5)和石墨烯薄膜层(6)为欧姆接触,所述石墨烯薄膜层(6)设有贯穿的孔道,使所述金属电极(7)穿过所述石墨烯薄膜层(6)的孔道并与所述P型半导体层(5)固定连接,形成所述石墨烯薄膜层(6)的焊盘,使所述石墨烯薄膜层(6)固定结合在所述P型半导体层(5)上,使所述石墨烯薄膜层(6)和所述金属电极(7)相互结合形成复合电极,所述石墨烯薄膜层(6)的孔道的截面为设定形状的图形形状,其特征在于,包括以下步骤:
a. 选用适合InGaN沉积的衬底,采用金属有机化合物化学气相沉积制备依次由衬底层、缓冲层、n型半导体、有源层、P型半导体层形成的半导体器件体系;
b. 在上述步骤a中制备的半导体器件体系的P型半导体层之上,采用金属有机化合物化学气相沉积制备石墨烯薄膜,具体采用Ga和In中的任意一种或两种金属的合金作为催化剂,采用H2作为MO源的载气,即以MO源作为催化剂与碳源的前驱体,同时通入MO源及载气H2,完成金属催化剂的沉积催化,制备得到石墨烯薄膜,使石墨烯薄膜和P型半导体层之间临时通过薄层催化剂层连接;
c. 进行温度为200-800℃,时间为5-30min氢气氛围下的退火工艺,实现催化剂与P型半导体的短程互扩散,然后进行温度为30-80℃,时间为1-60min酸处理,去除薄层催化剂,使石墨烯薄膜与P型半导体直接固定连接;
d. 将在上述步骤c中沉积于P型半导体层上的石墨烯薄膜进行图形化,为石墨烯薄膜制作图案化孔道;石墨烯薄膜的图形化孔道选择光刻、等离子体刻蚀、激光刻蚀中的任意一种制作方法或者任意几种制作方法的组合制作方法;
e.将在上述步骤d中制作的石墨烯薄膜的图案化孔道中沉积金属电极材料,形成完整的器件结构,使金属电极材料穿过石墨烯薄膜层的孔道并与所述P型半导体层固定连接,形成石墨烯薄膜层的焊盘,使石墨烯薄膜层固定结合在所述P型半导体层上,使石墨烯薄膜层和金属电极相互结合形成复合电极。
2.根据权利要求1所述具有石墨烯电极的GaN基半导体器件的制备方法,其特征在于:所述石墨烯薄膜层(6)具有1-10层石墨烯;所述金属电极(7)采用的材料为Au、Ag、Cr、Pt、Ni、Ti、Rh和Zn中的任意一种金属材料或者任意几种金属的合金材料制成。
3.根据权利要求1或2所述具有石墨烯电极的GaN基半导体器件的制备方法,其特征在于:在上述步骤e中,选择真空热蒸发、电子束沉积、磁控溅射中的任意一种制作方法或任意几种制作方法的组合制作方法,将金属电极材料沉积到石墨烯薄膜的图形化孔道中,形成石墨烯薄膜层的焊盘。
4.根据权利要求1或2所述具有石墨烯电极的GaN基半导体器件的制备方法,其特征在于:在上述步骤b中,石墨烯薄膜具有1-10层单原子石墨层,石墨烯薄膜的制备温度为300-800℃。
5.根据权利要求1或2所述具有石墨烯电极的GaN基半导体器件的制备方法,其特征在于:在上述步骤b中,MO源为三甲基镓,二甲基镓,三乙基镓,三甲基铟,二甲基乙基铟中的一种气体或者任意几种组成的混合气体。
6.根据权利要求1或2所述具有石墨烯电极的GaN基半导体器件的制备方法,其特征在于:在上述步骤c中,酸处理采用的酸为任意一种无机酸或者任意几种无机酸组成的混合酸溶液。
CN201410120531.4A 2014-03-28 2014-03-28 具有石墨烯电极的GaN基半导体器件及其制备方法 Active CN103904108B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410120531.4A CN103904108B (zh) 2014-03-28 2014-03-28 具有石墨烯电极的GaN基半导体器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410120531.4A CN103904108B (zh) 2014-03-28 2014-03-28 具有石墨烯电极的GaN基半导体器件及其制备方法

Publications (2)

Publication Number Publication Date
CN103904108A CN103904108A (zh) 2014-07-02
CN103904108B true CN103904108B (zh) 2016-08-17

Family

ID=50995349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410120531.4A Active CN103904108B (zh) 2014-03-28 2014-03-28 具有石墨烯电极的GaN基半导体器件及其制备方法

Country Status (1)

Country Link
CN (1) CN103904108B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935608B (zh) 2017-02-27 2019-10-25 深圳市华星光电技术有限公司 微发光二极管阵列基板及显示面板
CN109473472A (zh) * 2018-12-27 2019-03-15 张家港意发功率半导体有限公司 半导体器件及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1645633A (zh) * 2004-01-19 2005-07-27 三星电机株式会社 氮化物发光器件及其制造方法
CN103078036A (zh) * 2013-01-17 2013-05-01 北京工业大学 基于石墨烯薄膜的透明电极的制备方法
CN103484831A (zh) * 2013-09-17 2014-01-01 中国科学院半导体研究所 在含镓氮化物上生长石墨烯薄膜的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101652788B1 (ko) * 2009-02-17 2016-09-09 삼성전자주식회사 층간 화합물 함유 그라펜 시트 및 그의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1645633A (zh) * 2004-01-19 2005-07-27 三星电机株式会社 氮化物发光器件及其制造方法
CN103078036A (zh) * 2013-01-17 2013-05-01 北京工业大学 基于石墨烯薄膜的透明电极的制备方法
CN103484831A (zh) * 2013-09-17 2014-01-01 中国科学院半导体研究所 在含镓氮化物上生长石墨烯薄膜的方法

Also Published As

Publication number Publication date
CN103904108A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
CN102212794B (zh) 一种基于电镀铜衬底制备大面积石墨烯薄膜的方法
CN101859858B (zh) 基于石墨烯的透明导电电极及其制法与应用
CN100375303C (zh) 含有金锗镍的欧姆电极、铟镓铝氮半导体发光元件及制造方法
EP2770545B1 (en) Growth substrate, nitride semiconductor device and method of manufacturing the same
US9640391B2 (en) Direct and pre-patterned synthesis of two-dimensional heterostructures
Seo et al. Graphene network on indium tin oxide nanodot nodes for transparent and current spreading electrode in InGaN/GaN light emitting diode
JP2012089876A (ja) 太陽電池の製造方法
CN110277421A (zh) 阵列基板及其制造方法、显示装置
CN104810455A (zh) 紫外半导体发光器件及其制造方法
CN101523626A (zh) 化合物半导体发光元件和其制造方法
WO2008004657A1 (fr) FILM MINCE D'OXYDE DE ZINC DE TYPE p ET PROCÉDÉ DE FORMATION DE CELUI-CI
CN103904186A (zh) 基于石墨烯电极的半导体器件及其制备方法
CN103904108B (zh) 具有石墨烯电极的GaN基半导体器件及其制备方法
CN105742445A (zh) 一种垂直led芯片结构及其制备方法
CN204857768U (zh) 紫外半导体发光器件
Sarkar et al. Performance improvement of ohmic contacts on Al-rich n-AlGaN grown on single crystal AlN substrate using reactive ion etching surface treatment
JP2007149966A (ja) 発光素子
CN110611017B (zh) 一种氮化镓上生长石墨烯提高led透明导电及散热性的方法
CN102593296A (zh) 半导体发光装置
JP4870133B2 (ja) シリサイドナノワイヤーを有する電界放出素子及びその製造方法
CN103996777B (zh) 自生长石墨烯电极发光二极管及其制备方法
JP2004186245A (ja) カーボンナノチューブの製造方法とカーボンナノチューブ・デバイス
Wang et al. Electrochemical liftoff of freestanding GaN by a thick highly conductive sacrificial layer grown by HVPE
CN111223918B (zh) P型半导体低阻欧姆接触结构及其制备方法
CN113838817A (zh) 一种金刚石基氮化镓异质结二极管器件的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant