CN103900457B - 微纳级电磁栅尺及其制造装置及制造方法及位移检测系统 - Google Patents

微纳级电磁栅尺及其制造装置及制造方法及位移检测系统 Download PDF

Info

Publication number
CN103900457B
CN103900457B CN201410099777.8A CN201410099777A CN103900457B CN 103900457 B CN103900457 B CN 103900457B CN 201410099777 A CN201410099777 A CN 201410099777A CN 103900457 B CN103900457 B CN 103900457B
Authority
CN
China
Prior art keywords
electrospinning
nano
micro
controller
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410099777.8A
Other languages
English (en)
Other versions
CN103900457A (zh
Inventor
王晗
李敏浩
陈新
陈新度
朱自明
唐立虎
李炯杰
巫孟良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201410099777.8A priority Critical patent/CN103900457B/zh
Publication of CN103900457A publication Critical patent/CN103900457A/zh
Application granted granted Critical
Publication of CN103900457B publication Critical patent/CN103900457B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明是一种微纳级电磁栅尺及其制造装置及制造方法及位移检测系统。本发明的微纳级电磁栅尺是基于电感效应的微纳级电磁栅尺,通过电磁传感器利用电磁感应原理将被测非电量(如位移、压力、流量、振动等)转换成线圈自感系数L或互感系数M的变化,再经过测量电路转换为相应电压或电流的变化量输出,从而实现非电量到电量的转换和测量。本发明微纳级电磁栅尺制造方法是基于近场电纺直写技术,设计加工简单易操作,便于大规模制造,得到的栅线平行度好,且刻线均匀。本发明微纳级电磁栅尺的制造装置,是近场电纺直写设备,具有良好的自动控制性能。本发明的位移检测系统,利用钨针作为探头,用脉冲技术进行计数,计数准确,检测精度高。

Description

微纳级电磁栅尺及其制造装置及制造方法及位移检测系统
技术领域
本发明涉及一种微纳级电磁栅尺及其制造装置及方法及位移检测系统,属于微纳级位移传感监测工具制造领域。
背景技术
高压静电纺丝技术,是国内外最近十几年发展起来的用于制备超细纤维的重要方法。电纺丝技术最早由Formhzls在1934年提出,随后Taylor等人于1964年对静电纺丝过程中带电聚合物的变形提出了泰勒锥这一概念,直到上个世纪90年代人们开始广泛关注电纺丝技术。孙道恒等人于2006年提出了近场电纺直写技术,近场电纺直写技术具有可靠的沉积精度,且参数可控,为电纺纳米纤维产业开拓了一种新的方法。
早期的结构型敏感元件利用物质的机械尺寸或形状受外界环境引起的变化来探测外界物质世界的参量。1860年,自从人类发明了利用铜线圈电阻变化检测温度开始,解开了人类对传感器研究的序幕。随着电子技术的进步出现了热敏电阻、热电偶等电子原件。20世纪70年代,微电子技术促进了各种半导体传感器的发展。80年代初期,集成传感器和只能传感器成为了电感器的主流,他们主要是充分采用了微电子技术和集成电路技术的发展。90年代开始,微电子技术的进步促进了微机械技术(MEMS)的兴起和发展。
电感式传感器是利用电磁感应原理将被测非电量(如位移、压力、流量、振动等)转换成线圈自感系数L或互感系数M的变化,再经过测量电路转换为相应电压或电流的变化量输出,从而实现非电量到电量的转换和测量。
发明内容
本发明的目的在于考虑上述问题而提供一种微纳级电磁栅尺。本发明的微纳级电磁栅尺是基于电感效应的微纳级电磁栅尺,能够进行纳米级别的位移测量,具有良好的测量精度。
本发明的另一目的在于提供一种设计合理,结构简单的操作方便的微纳级电磁栅尺的制造装置。
本发明的另一目的在于提供一种操作方便的微纳级电磁栅尺的制造方法。
本发明的另一目的在于提供一种检测简单方便的微纳级电磁栅尺的位移检测系统。
本发明的技术方案是:本发明的微纳级电磁栅尺,包括有不导电基板、联通电纺导电纳米纤维线、不导电有机聚合物薄膜,在不导电基板上沉积有规则排列的联通电纺导电纳米纤维线,这些联通导电纳米纤维线作为电纺电磁栅刻线,且在沉积有规则排列的联通导电纳米纤维线的基板面上覆盖一层不导电有机聚合物薄膜,不导电有机聚合物薄膜可以保护电纺电磁栅刻线。
上述规则排列的联通电纺导电纳米纤维线由多个周期的曲线段构成。
上述曲线段为S形,联通电纺导电纳米纤维线的排列为方正的S型。
上述联通电纺导电纳米纤维线分布均匀且平行排布;且规则排列的联通电纺导电纳米纤维线接通微电流电源,纤维线内部产生定向电流。并在磁性薄膜上录磁制成磁栅尺。
上述联通电纺导电纳米纤维线是通过阵列喷头近场电纺直写形成,是用高分子聚合物电纺沉积而成,不导电有机聚合物薄膜是不导电高分子聚合物薄膜。
本发明微纳级电磁栅尺的制造装置,包括有XY平面运动平台、Z轴运动导轨、纺丝喷针、注射器、注射泵、高压电源、高压电源控制器、注射泵控制器、Z轴运动控制器、XY运动平台控制器、电纺控制器、微电流检测器,其中XY平面运动平台用于固定基板,并提供XY平面方向的相对运动;Z轴运动导轨用于提供Z方向的距离控制;用于实施电纺的纺丝喷针装设在用于为电纺提供聚合物材料的注射器的下端,用于为注射器提供推力的注射泵装设在注射器的上端,注射泵与注射泵控制器连接,注射泵控制器用于控制注射泵的工作状态;高压电源用于为纺丝喷针提供电压,且高压电源与高压电源控制器连接,高压电源控制器用于控制高压电源的工作状态;用于控制Z轴运动导轨的运动状态的Z轴运动控制器与Z轴运动导轨的驱动装置连接;用于控制XY平面运动平台的工作状态的XY平台运动控制器与XY平面运动平台的驱动装置连接;用于检测电纺电流参数的微电流检测器装设在平面运动平台的旁侧,微电流检测器将检测的电纺电流参数反馈给用于确定电纺状态并调节电纺参数的电纺控制器,高压电源控制器、注射泵控制器、Z轴运动控制器、XY运动平台控制器与电纺控制器连接,电纺控制器用于在生产制造中协调控制高压电源控制器、注射泵控制器、Z轴运动控制器、XY运动平台控制器的控制状态。可以通过调节电纺参数,选择栅线宽度。
本发明基于电感效应的微纳级电磁栅尺制造方法,包括以下步骤:
16)制作尺坯:切割一块基板,并清洗干净;
17)电纺S型栅线:在基板上通过近场电纺的方法,直写沉积出规则排列的联通导电纳米纤维线,这些联通导电纳米纤维线作为电纺电磁栅刻线;
18)覆膜:在沉积有规则排列的联通导电纳米纤维线的基板面上覆盖一层不导电有机聚合物薄膜,以实现对电纺电磁栅刻线的保护;
19)接通电源:对电纺电磁栅刻线接通微电流电源,完成电磁栅尺制造。
上述步骤17)电纺S型栅线通过基于近场电纺直写技术所刻栅线范围能选择从几纳米到几微米。
上述步骤17)电纺S型栅线的方法是:将基板沿电纺运动方向固定在XY平面运动平台上,启动电纺装置,通过微电流检测器检测电纺电流参数,并反馈给电纺控制器,从而改变高压电源控制器、注射泵控制器、Z轴运动控制器、XY运动平台控制器的控制参数,改变电纺参数,从而使得联通导电纳米纤维线贴合基板面宽度和所要加工栅尺栅距相同。
本发明微纳级电磁栅尺的测量系统,包括有用于精确定位的钨针、电感式传感器、脉冲计数器,其中用钨针作为感应器件划过联通导电纳米纤维线,电感式传感器在钨针划过联通导电纳米纤维线时产生电流脉冲,脉冲计数器记下电感式传感器产生电流脉冲的脉冲数量从而确定钨针的位移量。
本发明与现有技术相比,具有如下优点:
1)本发明所述基于电感效应的微纳级电磁栅尺,能够进行纳米级别的位移测量;
2)本发明所述基于电感效应的微纳级电磁栅尺,基于电感效应进行测量,具有良好的精度;
3)本发明所述基于电感效应的微纳级电磁栅尺制造方法,基于近场电纺直写技术,其设计加工简单易操作,便于大规模制造;
4)本发明所述基于电感效应的微纳级电磁栅尺制造方法,基于近场电纺直写技术,得到栅线平行度好且刻线均匀。
5. 本发明所述基于电感效应的微纳级电磁栅尺的制造装置,是近场电纺直写设备,具有良好的自动控制性能。
6)本发明所述基于电感效应的微纳级电磁栅尺的位移检测系统,利用钨针作为探头,检测精度很高。
7)本发明所述基于电感效应的微纳级电磁栅尺的检测系统,用脉冲技术进行计数,计数准确,是一种增量式测量方法。
本发明是一种设计巧妙,性能优良,方便实用的微纳级电磁栅尺及其制造装置及制造方法及位移检测系统。
附图说明
图1为近场电纺直写装置示意图;
图2为所述微纳级电磁栅尺制造流程图;
图3为基板经过电纺加工后沉积结构的俯视图;
图4为基板经过电纺加工后沉积结构的剖面图;
图5为覆盖保护膜后电栅尺的剖面图;
图6为电磁栅尺测量系统的示意图。
具体实施方式
实施例:
本发明的微纳级电磁栅尺,包括有不导电基板、联通电纺导电纳米纤维线、不导电有机聚合物薄膜,在不导电基板上沉积有规则排列的联通电纺导电纳米纤维线,这些联通导电纳米纤维线作为电纺电磁栅刻线,且在沉积有规则排列的联通导电纳米纤维线的基板面上覆盖一层不导电有机聚合物薄膜,不导电有机聚合物薄膜可以保护电纺电磁栅刻线。
上述规则排列的联通电纺导电纳米纤维线由多个周期的曲线段构成。
上述曲线段为S形,联通电纺导电纳米纤维线的排列为方正的S型。
上述联通电纺导电纳米纤维线分布均匀且平行排布;且规则排列的联通电纺导电纳米纤维线接通微电流电源,纤维线内部产生定向电流。并在磁性薄膜上录磁制成磁栅尺。
上述联通电纺导电纳米纤维线是通过阵列喷头近场电纺直写形成,是用高分子聚合物电纺沉积而成,不导电有机聚合物薄膜是不导电高分子聚合物薄膜。
本发明微纳级电磁栅尺结构的制造装置如图1所示,是一种近场电纺直写装置,图1中,XY平面运动平台1用于固定基板13,并提供XY平面方向的相对运动;Z轴运动导轨2用于提供Z方向的距离控制;纺丝喷针3用于实施电纺;注射器4用于为电纺提供聚合物材料;注射泵5用于为注射器4提供推力;高压电源6用于为纺丝喷针提供电压;高压电源控制器7用于控制高压电源6的工作状态;注射泵控制器8用于控制注射泵5的工作状态;Z轴运动控制器9用于控制Z轴运动导轨2的运动状态;XY平台运动控制器10用于控制XY平面运动平台1的工作状态;电纺控制器11用于在生产制造中协调控制高压电源控制器7、注射泵控制器8、Z轴运动控制器9、XY运动平台控制器10的控制状态、微电流检测器12用于检测电纺电流参数,并反馈给电纺控制器11,用于确定电纺状态并调节电纺参数。
本发明所述基于近场电纺直写技术的光栅尺制造方法的流程图如图2所示,包括如下步骤:
16)制作尺坯:切割一块基板13,并清洗干净;
17)电纺S型栅线:在基板13上通过近场电纺的方法,直写沉积出规则排列的联通导电纳米纤维线14,这些联通导电纳米纤维线作为电纺电磁栅刻线;基板经过电纺加工后沉积的结构示意图如图3所示;联通导电纳米纤维线14是导电聚合物纤维丝线。
18)覆膜:在沉积有规则排列的联通导电纳米纤维线的基板面上覆盖一层不导电有机聚合物薄膜15,以实现对电纺电磁栅刻线的保护,覆盖保护膜后电磁栅尺的剖面图如图4、5所示。
19)接通电源:对电纺电磁栅刻线接通微电流电源20,完成电磁栅尺制造,得到微纳级电磁栅尺。
本发明微纳级电磁栅尺的位移检测系统的原理图如图6所示,包括有用于精确定位的钨针21、电感式传感器22、脉冲计数器23,其中用钨针21作为感应器件划过联通导电纳米纤维线14,电感式传感器22在钨针21划过联通导电纳米纤维线14时产生电流脉冲,脉冲计数器23记下电感式传感器22产生电流脉冲的脉冲数量从而确定钨针21的位移量。此外,可以通过电磁传感器利用电磁感应原理将被测非电量(如位移、压力、流量、振动等)转换成线圈自感系数L或互感系数M的变化,再经过测量电路转换为相应电压或电流的变化量输出,从而实现非电量到电量的转换和测量。
本发明的工作原理如下:
本发明近场电纺可以实现直径由纳米级到微米级范围内近百种不同聚合物纳米纤维、各种类型聚合物、无机物复合纳米纤维及无机纳米纤维的制备。因此所述电感效应微纳级电磁栅尺的栅距可控制在几纳米到几微米之间。
本发明微纳级电磁栅尺的位移检测系统,电感式传感器22可以与通电的联通导电纳米纤维线14产生感应,从而在钨针21划过联通导电纳米纤维线14时产生电流脉冲。脉冲计数器23记下脉冲数量从而确定钨针21的位移量。
本发明的基于电感效应的微纳级电磁栅尺,是通过电纺直写技术在基板上直写规则排列的导电聚合物纤维阵列。电纺直写技术可以直写几纳米到几百纳米的导电聚合物纤维丝线,因此可以用来制作精度很高的导电刻线。将导电聚合物纤维丝线接入电源,使导电聚合物纤维丝线通有电流。钨针21针头极细,可以用于测量电磁栅距。本发明微纳级电磁栅尺的位移检测系统,由于当钨针21划过导电的联通导电纳米纤维线14时会产生一个瞬间电流脉冲,因此可以通过电感式传感器22感应电磁变化从而判断钨针21相对该电磁栅尺的位置。

Claims (4)

1.一种微纳级电磁栅尺的制造装置,其特征在于包括有XY平面运动平台(1)、Z轴运动导轨(2)、纺丝喷针(3)、注射器(4)、注射泵(5)、高压电源(6)、高压电源控制器(7)、注射泵控制器(8)、Z轴运动控制器(9)、XY运动平台控制器(10)、电纺控制器(11)、微电流检测器(12),其中XY平面运动平台(1)用于固定基板(13),并提供XY平面方向的相对运动;Z轴运动导轨(2)用于提供Z方向的距离控制;用于实施电纺的纺丝喷针(3)装设在用于为电纺提供聚合物材料的注射器(4)的下端,用于为注射器(4)提供推力的注射泵(5)装设在注射器(4)的上端,注射泵(5)与注射泵控制器(8)连接,注射泵控制器(8)用于控制注射泵(5)的工作状态;高压电源(6)用于为纺丝喷针(3)提供电压,且高压电源(6)与高压电源控制器(7)连接,高压电源控制器(7)用于控制高压电源(6)的工作状态;用于控制Z轴运动导轨(2)的运动状态的Z轴运动控制器(9)与Z轴运动导轨(2)的驱动装置连接;用于控制XY平面运动平台(1)的工作状态的XY平台运动控制器(10)与XY平面运动平台(1)的驱动装置连接;用于检测电纺电流参数的微电流检测器(12)装设在平面运动平台(1)的旁侧,微电流检测器(12)将检测的电纺电流参数反馈给用于确定电纺状态并调节电纺参数的电纺控制器(11),高压电源控制器(7)、注射泵控制器(8)、Z轴运动控制器(9)、XY运动平台控制器(10)与电纺控制器(11)连接,电纺控制器(11)用于在生产制造中协调控制高压电源控制器(7)、注射泵控制器(8)、Z轴运动控制器(9)、XY运动平台控制器(10)的控制状态,可以通过调节电纺参数,选择栅线宽度。
2.一种基于电感效应的微纳级电磁栅尺制造方法,其特征在于包括以下步骤:
16)制作尺坯:切割一块基板(13),并清洗干净;
17)电纺S型栅线:在基板(13)上通过近场电纺的方法,直写沉积出规则排列的联通导电纳米纤维线,这些联通导电纳米纤维线作为电纺电磁栅刻线;
18)覆膜:在沉积有规则排列的联通导电纳米纤维线的基板面上覆盖一层不导电有机聚合物薄膜,以实现对电纺电磁栅刻线的保护;
19)接通电源:对电纺电磁栅刻线接通微电流电源,完成电磁栅尺制造。
3.根据权利要求2所述的微纳级电磁栅尺制造方法,其特征在于上述步骤17)电纺S型栅线的方法是:将基板(13)沿电纺运动方向固定在XY平面运动平台(1)上,启动电纺装置,通过微电流检测器(12)检测电纺电流参数,并反馈给电纺控制器(11),从而改变高压电源控制器(7)、注射泵控制器(8)、Z轴运动控制器(9)、XY运动平台控制器(10)的控制参数,改变电纺参数,从而使得联通导电纳米纤维线(14)贴合基板面宽度和所要加工栅尺栅距相同。
4.一种微纳级电磁栅尺的测量系统,其特征在于包括有用于精确定位的钨针(21)、电感式传感器(22)、脉冲计数器(23),其中用钨针(21)作为感应器件划过联通导电纳米纤维线(14),电感式传感器(22)在钨针(21)划过联通导电纳米纤维线(14)时产生电流脉冲,脉冲计数器(23)记下电感式传感器(22)产生电流脉冲的脉冲数量从而确定钨针(21)的位移量。
CN201410099777.8A 2014-03-18 2014-03-18 微纳级电磁栅尺及其制造装置及制造方法及位移检测系统 Expired - Fee Related CN103900457B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410099777.8A CN103900457B (zh) 2014-03-18 2014-03-18 微纳级电磁栅尺及其制造装置及制造方法及位移检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410099777.8A CN103900457B (zh) 2014-03-18 2014-03-18 微纳级电磁栅尺及其制造装置及制造方法及位移检测系统

Publications (2)

Publication Number Publication Date
CN103900457A CN103900457A (zh) 2014-07-02
CN103900457B true CN103900457B (zh) 2017-05-03

Family

ID=50991927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410099777.8A Expired - Fee Related CN103900457B (zh) 2014-03-18 2014-03-18 微纳级电磁栅尺及其制造装置及制造方法及位移检测系统

Country Status (1)

Country Link
CN (1) CN103900457B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104526461B (zh) * 2014-11-05 2016-11-09 北京工业大学 一种测试链式刀库中链条节距变化的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5866001A (ja) * 1981-10-15 1983-04-20 Sony Magnescale Inc 磁気スケ−ル装置
US4429276A (en) * 1978-10-27 1984-01-31 Sony Corporation Magnetoresistive displacement sensor and signal reprocessing circuits therefor
CN1584504A (zh) * 2004-06-02 2005-02-23 北京科技大学 一种使用金属薄膜磁电阻探头的磁栅尺位移传感器
CN1740748A (zh) * 2005-09-09 2006-03-01 清华大学 含有可调零的gmr芯片的磁位移传感器
CN203881291U (zh) * 2014-03-18 2014-10-15 广东工业大学 微纳级电磁栅尺及其制造装置及位移检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4429276A (en) * 1978-10-27 1984-01-31 Sony Corporation Magnetoresistive displacement sensor and signal reprocessing circuits therefor
JPS5866001A (ja) * 1981-10-15 1983-04-20 Sony Magnescale Inc 磁気スケ−ル装置
CN1584504A (zh) * 2004-06-02 2005-02-23 北京科技大学 一种使用金属薄膜磁电阻探头的磁栅尺位移传感器
CN1740748A (zh) * 2005-09-09 2006-03-01 清华大学 含有可调零的gmr芯片的磁位移传感器
CN203881291U (zh) * 2014-03-18 2014-10-15 广东工业大学 微纳级电磁栅尺及其制造装置及位移检测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
针对纳米纤维制备的静电纺丝技术研究进展;王晗等;《广东工业大学学报》;20120331;第78-82页 *

Also Published As

Publication number Publication date
CN103900457A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
CN103898618B (zh) 针对微纳加工的电纺射流快速稳定控制装置及其控制方法
CN102582293B (zh) 电纺直写闭环控制系统及控制方法
CN103900480B (zh) 一种基于近场电纺直写技术的光栅尺制造方法
CN1966399A (zh) 微纳米结构直写装置
CN109228304A (zh) 一种电场诱导辅助电喷射的三维打印装置
CN108648890A (zh) 纳米颗粒线阵列电阻的制备方法
CN103900457B (zh) 微纳级电磁栅尺及其制造装置及制造方法及位移检测系统
CN104723677A (zh) 基于电液耦合动力的柔性电路印刷方法及其装置
CN203881291U (zh) 微纳级电磁栅尺及其制造装置及位移检测系统
CN103906365B (zh) 一种基于石墨烯的电子电路的制作设备及其制作方法
CN103993369A (zh) 一种可控波形微纳米纤维的生成装置
CN203782281U (zh) 一种针对微纳加工的电纺射流快速稳定控制装置
CN103898621A (zh) 基于多传感信息融合技术的电纺控制装置及其控制方法
CN113624121A (zh) 一种纤维式摩擦电应变传感器及其制备方法
CN204526424U (zh) 基于电液耦合动力的柔性电路印刷装置
CN104007014B (zh) 微构件综合力学性能测试装置
CN109115606A (zh) 一种薄膜测试装置
CN105908288B (zh) 一种测试梳棉机主梳区内气流参数的装置及其测试方法
CN104495743B (zh) 用于微纳加工与表面形貌测量的设备及其使用方法
CN105259521B (zh) 巨磁电阻传感器差分驱动与磁场偏置电路及偏置方法
CN203785633U (zh) 一种基于近场电纺直写技术的光栅尺制造装置
Devaraj et al. Low velocity digital air flow sensor from 3D printed PEDOT: PSS micro-hair structures
CN202274866U (zh) 基于石英音叉的三维谐振触发测头
CN208833600U (zh) 一种薄膜测试装置
CN103900456B (zh) 基于阵列喷头电纺直写精度可变磁栅尺及制造装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170503

Termination date: 20210318

CF01 Termination of patent right due to non-payment of annual fee