CN103898894A - Method for solidifying soft soil foundation by solar electroosmosis - Google Patents
Method for solidifying soft soil foundation by solar electroosmosis Download PDFInfo
- Publication number
- CN103898894A CN103898894A CN201410144402.9A CN201410144402A CN103898894A CN 103898894 A CN103898894 A CN 103898894A CN 201410144402 A CN201410144402 A CN 201410144402A CN 103898894 A CN103898894 A CN 103898894A
- Authority
- CN
- China
- Prior art keywords
- cathode
- anode
- solar
- soft soil
- soft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002689 soil Substances 0.000 title claims abstract description 82
- 238000005370 electroosmosis Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000007596 consolidation process Methods 0.000 claims abstract description 22
- 238000011282 treatment Methods 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 34
- 239000004744 fabric Substances 0.000 claims description 14
- 230000005684 electric field Effects 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 8
- 239000011810 insulating material Substances 0.000 claims description 5
- 238000005086 pumping Methods 0.000 claims description 3
- 239000011148 porous material Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000004927 clay Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Landscapes
- Photovoltaic Devices (AREA)
Abstract
一种太阳能电渗固结软土地基的方法,其包括以下步骤:提供多个阳极装置及多个阴极装置,所述阳极装置包括一阳极,所述阴极装置包括一阴极;将阳极装置及阴极装置打入软土地基中,并使阳极装置和阴极装置规律排列;提供一太阳能电池,其包括正极和负极,将多个阳极装置连接所述正极,将多个阴极装置连接所述连接负极;利用太阳能电池的能量与日照强度的关系实现间歇通电,对软土地基进行多次间歇电渗处理,以固结所述软土地基。
A method for solar electroosmotic consolidation of soft ground, comprising the following steps: providing a plurality of anode devices and a plurality of cathode devices, wherein the anode devices include an anode, and the cathode devices include a cathode; the anode devices and the cathode The device is driven into the soft ground, and the anode device and the cathode device are arranged regularly; a solar cell is provided, which includes a positive electrode and a negative electrode, and a plurality of anode devices are connected to the positive electrode, and a plurality of cathode devices are connected to the negative electrode; The relationship between the energy of the solar cell and the intensity of sunlight is used to realize intermittent power supply, and the soft soil foundation is subjected to intermittent electroosmosis treatment for many times to consolidate the soft soil foundation.
Description
技术领域 technical field
本发明涉及一种太阳能电渗固结软土地基的方法。 The invention relates to a method for consolidating soft ground by solar energy electroosmosis.
背景技术 Background technique
1809年,俄国学者Reuss发现了在土中通电后引起的电渗现象,而后引发了大量关于电渗现象的研究。1938年,Cassagrande首次将电渗法应用于实际工程中,通过在地基中施加外加电场,将土中的孔隙水逐渐运移到阴极并排出,以达到使地基排水固结、强度提高的效果。随后,电渗法开始作为一种软土地基处理技术逐步在各国得到研究和应用。研究发现,软粘土体的电渗透系数稳定,基本维持在10-5~10-4cm2/v·s的范围内,这个特性使得电渗法在处理渗透系数低的软粘土地基时具有非常好的效果。 In 1809, Russian scholar Reuss discovered the electroosmotic phenomenon caused by electrification in the soil, and then triggered a lot of research on electroosmotic phenomena. In 1938, Cassagrande applied the electroosmotic method to practical engineering for the first time. By applying an external electric field in the foundation, the pore water in the soil was gradually moved to the cathode and discharged, so as to achieve the effect of consolidating the drainage and improving the strength of the foundation. Subsequently, electroosmosis began to be gradually studied and applied in various countries as a soft soil foundation treatment technology. The study found that the electro-osmotic coefficient of soft clay is stable and basically maintained in the range of 10 -5 ~ 10 -4 cm 2 /v·s. Good results.
电渗法在应用过程中会消耗大量电能,导致电渗成为一种成本较高的软土地基处理方法。而且,电渗法主要应用于渗透系数较小、强度低的软粘土地基中,这些场地大多分布在我国沿海地区,并且多集中于我国南部,很多都远离城市,较为偏远。为了利用电渗法对这些软土地基进行处理,需要将配套设施运输到这些场地,并且需要搭设电线,将电能输送到需要处理的场地,这些沿程设施费用、运输费用以及电能输送损耗,进一步增加了电渗法的成本。 The electroosmosis method consumes a lot of electric energy during the application process, which makes electroosmosis become a costly soft soil foundation treatment method. Moreover, the electroosmosis method is mainly used in soft clay foundations with small permeability coefficient and low strength. Most of these sites are distributed in the coastal areas of my country, and most of them are concentrated in the south of my country. Many of them are far away from cities and are relatively remote. In order to use the electroosmosis method to treat these soft soil foundations, it is necessary to transport the supporting facilities to these sites, and it is necessary to set up wires to transmit electric energy to the sites that need to be treated. Increased cost of electroosmosis.
发明内容 Contents of the invention
因此,有必要提供一种成本较低,节约能源的固结软土地基的方法。 Therefore, it is necessary to provide a method for consolidating soft ground with lower cost and energy saving.
一种太阳能电渗固结软土地基的方法,其包括以下步骤:提供多个阳极装置及多个阴极装置,所述阳极装置包括一阳极,所述阴极装置包括一阴极;将阳极装置及阴极装置打入软土地基中,并使阳极装置和阴极装置规律排列;提供一太阳能电池,其包括正极和负极,将多个阳极装置连接所述正极,将多个阴极装置连接所述连接负极;利用太阳能电池的能量与日照强度的关系实现间歇通电,对软土地基进行多次间歇电渗处理,以固结所述软土地基。 A method for solar electroosmotic consolidation of soft ground, comprising the following steps: providing a plurality of anode devices and a plurality of cathode devices, wherein the anode devices include an anode, and the cathode devices include a cathode; the anode devices and the cathode The device is driven into the soft ground, and the anode device and the cathode device are arranged regularly; a solar cell is provided, which includes a positive electrode and a negative electrode, and a plurality of anode devices are connected to the positive electrode, and a plurality of cathode devices are connected to the negative electrode; The relationship between the energy of the solar cell and the intensity of sunlight is used to realize intermittent power supply, and the soft soil foundation is subjected to intermittent electroosmosis treatment for many times to consolidate the soft soil foundation.
本发明所提供的太阳能电渗固结软土地基的方法,利用太阳能实现对软土地基的电渗处理,无需从额外提供电源,使固结软土地基的方法成本大幅度降低;利用太阳能与日照强度的关系实现间歇通电,对软土地基间歇电渗处理,提高了电渗效率。 The method for consolidating soft ground by solar energy electroosmosis provided by the present invention utilizes solar energy to realize the electroosmotic treatment of soft ground without additional power supply, which greatly reduces the cost of the method for consolidating soft ground; using solar energy and Intermittent energization is realized according to the relationship of sunlight intensity, and the intermittent electroosmotic treatment of soft soil foundation improves the efficiency of electroosmosis.
附图说明 Description of drawings
图1是本发明实施例所提供的太阳能电渗固结软土地基的方法在处理软土地基时的施工结构俯视示意图。 Fig. 1 is a schematic top view of the construction structure of the method for consolidating soft soil foundations by solar electroosmosis provided by an embodiment of the present invention when processing soft soil foundations.
图2是图1的竖直剖面图。 FIG. 2 is a vertical sectional view of FIG. 1 .
图3是本发明另一实施例提供的太阳能电渗固结软土地基的方法中,阳极装置和阴极装置排列形成多个行和列时的施工结构俯视示意图。 Fig. 3 is a schematic plan view of the construction structure when the anode device and the cathode device are arranged to form multiple rows and columns in the method of solar electroosmotic consolidation of soft ground provided by another embodiment of the present invention.
图4是本发明另一实施例提供的太阳能电渗固结软土地基的方法中,阳极装置排列形成方形,阴极装置位于方形中心时的施工结构俯视示意图。 Fig. 4 is a schematic plan view of the construction structure when the anode devices are arranged to form a square and the cathode device is located in the center of the square in the method of solar electroosmosis consolidation of soft ground provided by another embodiment of the present invention.
图5是本发明实施例所提供的太阳能电渗固结软土地基的方法中抽水泵与阴极装置连接时的剖面示意图。 Fig. 5 is a schematic cross-sectional view of a water pump connected to a cathode device in the method for solar electroosmotic consolidation of soft ground provided by an embodiment of the present invention.
主要元件符号说明 Description of main component symbols
如下具体实施方式将结合上述附图进一步说明本发明。 The following specific embodiments will further illustrate the present invention in conjunction with the above-mentioned drawings.
具体实施方式 Detailed ways
下面结合附图及具体实施例对本发明所提供的太阳能电渗固结软土地基的方法做进一步详细说明。 The method for consolidating soft ground by solar energy electroosmosis provided by the present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
请参见图1及图2,本发明实施例提供一种太阳能电渗固结软土地基的方法,其包括以下步骤: Please refer to Fig. 1 and Fig. 2, an embodiment of the present invention provides a method for solar electroosmotic consolidation of soft ground, which includes the following steps:
S1:提供多个阳极装置12及多个阴极装置14,所述阳极装置12包括一阳极122,所述阴极装置14包括一阴极142;
S1: providing a plurality of
S2:将阳极装置12及阴极装置14打入软土地基10中,并使阳极装置12和阴极装置14规律排列;
S2: Drive the
S3:提供一太阳能电池16,其包括正极和负极,将多个阳极装置12连接所述正极,将多个阴极装置14连接所述负极;
S3: providing a
S4:利用太阳能电池16的能量与日照强度的关系实现间歇通电,对软土地基10进行多次间歇电渗处理,所述间歇电渗的步骤包括:
S4: Utilize the relationship between the energy of the
S41:日照强度强,利用太阳能电池16吸收太阳能,使阳极装置12和阴极装置14之间产生电流,对软土地基10进行电渗处理,在阴极装置14中产生水分;
S41: the intensity of sunlight is strong, using the
S42:采用抽水管将阴极装置14中的水分不断抽出;以及
S42: Using a water pump to continuously extract the moisture in the
S43:日照强度减弱或消失,软土地基10中的剩余水分重新均匀分配。
S43: The intensity of sunlight weakens or disappears, and the remaining moisture in the
在步骤S1中,所述阳极装置12包括一阳极122及一阳极附加部124。阳极122与阳极附加部124在结点P1处相互连接。所述阳极122为一长条状结构,可以为管状、柱状、线状等结构。所述阳极122的材料为金属,可以为铜、铁、合金等。本实施例中,所述阳极122为一钢筋条。阳极122的长度不限,可根据需要处理的软土地基10的深度而定。所述阳极附加部124为一长条状结构,可以为管状、柱状、线状等结构。所述阳极附加部124的材料不限,可以为绝缘材料或导电材料。绝缘材料可以为塑料、橡胶、陶瓷等。导电材料可以为金属。阳极附加部124的材料可以与阳极122相同。所述阳极附加部124的长度不限,可根据软土地基10的深度而定。阳极附加部124和阳极122可以为一体成型的结构,如一根较长的钢筋条。阳极122和阳极附加部124的长度比例可以根据软土地基10的深度调整。阳极附加部124的材料也可以和阳极122不同,本实施例中,阳极附加部124为一PVC管,在结点P1处与钢筋条阳极122连接,阳极122和阳极附加部124的长度相同。
In step S1 , the
所述阴极装置14包括一阴极142及一阴极附加部144。阴极142与阴极附加部144在结点P2处相互连接。所述阴极142为一中空的管状结构,且管壁上设置有多个通孔。所述阴极142为金属电极,其材料可以为铜或者铁。在电渗过程中,靠近阳极122的软土中的水分向靠近阴极142的方向转移,从而靠近阴极142软土地基10中会出现渗水现象,通孔的作用为可以使水透过阴极142,储存在阴极142的管状结构中。通孔的排列方式不限,每个阴极142上的通孔个数也不限,只要具有较好的透水效果即可。阴极142的外径不限,可以为2厘米至20厘米。阴极142的长度不限,可根据需要处理的软土地基10的深度而定。在阴极142打入软土地基10之前,使用导电滤布142a将阴极142包裹,然后再将导电滤布142a包裹后的阴极142打入软土地基10内。导电滤布142a的作用为防止软土地基10内的土质通过阴极142上的通孔渗到阴极142内,影响阴极142的使用性能。本实施例中,阴极142为一铜管,铜管的表面被导电滤布142a包裹。所述阴极附加部144为一中空的管状结构,其外径可以与阴极142的外径相同。所述阴极附加部144的材料为绝缘材料。绝缘材料可以为塑料、橡胶、陶瓷等。所述阴极附加部144也可以为导电材料,当其为导电材料时,阴极附加部144和阴极142通过一绝缘体144c相互绝缘设置。所述绝缘体144c可以为陶瓷、木、塑料等材料。所述阴极附加部144的长度不限,可根据软土地基10的深度而定。阴极附加部144的管壁上可进一步包括多个通孔。当阴极附加部144的管壁上包括多个通孔时,在阴极装置14打入软土地基10之前,阴极附加部144被滤布144a包裹。所述滤布144a可以为导电滤布。导电滤布应该与阴极142绝缘设置。阴极附加部144外面的滤布144a也可以为绝缘滤布。阴极142和阴极附加部144的长度比例可以根据软土地基10的深度调整。本实施例中,阴极附加部144为一PVC管,管壁上设置有多个通孔,该PVC管被导电滤布所包裹,阴极附加部144和阴极142的长度相同,阴极附加部144和阴极142通过一螺栓相互链接。
The
在步骤S2中,阳极装置12和阴极装置14打入软土地基10中并以一定规律排列,形成阵列。阳极装置12埋入软土地基10中,阳极122在远离地表的深处,阳极附加部124靠近地表设置。阳极122和阴极142的长度相同。阴极装置14埋入软土地基10中,阴极142在远离地表的深处,阴极附加部144靠近地表设置。阳极122和阴极142均位于软土地基10的深处。所述阳极122和阴极142位于软土地基深处,阳极122和阴极142位于一平面P下部,平面P位于软土地基表面下部。阳极122与阳极附加部124的结点P1和阴极142与阴极附加部144的结点P2处于同一平面P上。本实施例中,阳极装置12和阴极装置14整体相互平行,且垂直于软土地基10的地表面。平面P与软土地基10的地表面相互平行。平面P与软土地基10的地表面之间的距离可根据实际情况调整,优选地,该距离可以为0.5米~2米。所述阳极装置12和阴极装置14在软土地基10中形成的阵列中,相邻的阳极装置12和阴极装置14之间的距离相同,以在软土地基10中形成均匀的电场。相邻的阳极装置12和阴极装置14之间的距离可根据实际情况调整,优选地,该距离为0.5米~3米。请参见图1,在软土地基10中,阳极装置12排列形成多个六边形单元,阴极装置14位于该六边形单元的中心位置,相当于一个阴极装置14对应两个阳极装置12。请参考图3,在软土地基10中,阳极装置12和阴极装置14交替排列形成多个行和列,行列之间相互垂直,即,阳极装置12和阴极装置14为一一对应的关系。请参见图4,在软土地基10中,阳极装置12排列形成多个方形单元,阴极装置14位于方形单元的中心位置,方形可以为正方形或者长方形,这种排列方式相当于一个阳极装置12对应一个阴极装置14。当然,阳极装置12和阴极装置14在软土地基10中的排列方式不限于上述几种情况,只要阳极装置12和阴极装置14在软土地基10中规律排列,且相邻的阳极装置12和阴极装置14之间的距离相等即可。
In step S2, the
在步骤S3中,阳极装置12和阴极装置14分别通过电极引线与太阳能电池16连接。所述电极引线包括阳极引线126和阴极引线146。阳极引线126与阳极122电连接,阴极引线146与阴极142电连接。多个阳极122可以分别通过多根阳极引线126与太阳能电池16的正极电连接;也可以先通过一根阳极引线126串联,然后再连接到正极。多个阴极142可以分别通过多根阴极引线146与太阳能电池16的负极电连接;也可以先通过一根阴极引线146串联,然后再连接到负极。所述阳极引线126插入软土地基,与软土地基10下方的阳极122连接。优选地,当阳极附加部124为一管状结构时,阳极引线126可以从该管状结构的内部空间穿过后与阳极122电连接,这样阳极附加部124还可以起到保护阳极引线126的作用,而且阳极引线126更容易延伸到软土地基10的内部。所述阴极引线146插入软土地基,与软土地基10下方的阴极142连接。优选地,由于阴极附加部144为一管状结构,阴极引线146可以从该管状结构的内部空间穿过后与阴极142电连接,这样阴极附加部144还可以起到保护阴极引线146的作用,而且阴极引线146更容易延伸到软土地基10的内部。
In step S3, the
在阴极142和太阳能电池16的负极之间可进一步连接一电能测量计18,电能测量计18的作用为检测负极和阴极142之间的通电情况,以判断太阳能电池16是否在正常工作。电能测量计18可以为伏特表、电流表或者万用表等。本实施例中采用电流表。
An electric energy meter 18 can be further connected between the
在步骤S4中,进一步在软土地基10的表面设置多个地面沉降杆22。地面沉降杆22垂直插入软土地基10中,并在软土地基10的表面均匀分布。地面沉降杆22的作用为标识软土地基10在固结过程中的下降幅度。地面沉降杆22的表面可设置刻度,以清楚观察软土地基10的表面下降幅度。地面沉降杆22个数可根据被处理的软土地基10的面积而定,一般1~2平方米设置一个地面沉降杆22。
In step S4, a plurality of
在步骤S41中,日间,太阳能电池16吸收太阳能,产生电能,使阳极装置12的阳极122和阴极装置14的阴极142之间产生电场。由于阳极122和阴极142位于软土地基10地表以下的深处,电场位于阳极122和阴极142之间,因此,电场位于软土地基10的远离地表的深处。阳极122和阴极142之间的电场所覆盖的软土区域发生电渗,即平面P以下的区域。在电渗过程中,软土地基10中的水分不断由阳极122向阴极142转移,软土地基10土体中逐渐产生负的超静孔压,增大有效应力引起土体固结。同时,上部未电渗部分土体中的水分也会逐渐向下运移至电渗区域,并在电场作用下逐渐由阳极122向阴极142转移。水分通过阴极142上的小孔渗透至阴极142管中。随着电渗的进行,具有管状结构的阴极装置14的内部储存电渗产生的水分。
In step S41 , during the day, the
在步骤S42中,请参见图5,进一步提供一抽水泵20,该抽水泵20包括多个抽水管202。每个抽水管202延伸至阴极装置14中。抽水管202的个数与阴极装置14的个数可以相同。抽水泵20可以连续工作,持续从阴极装置14中抽水。也可以间歇抽水,即当水分储存到一定量时,开始抽水,水位下降至一定量时,停止工作。在此过程中,由于平面P以下的软土地基10中的水分被不断抽出,使平面P下移,从而导致平面P以上的软土土体整体下降,软土地基10的表面下降。地面沉降杆22用于测量出软土地基10的表面下降的程度。优选地,抽水泵20可以选择太阳能泵,即,利用太阳能工作的抽水泵。在上述电渗处理固结软土地基10的过程中,不同于现有技术中的对地基整体均进行电渗处理,本发明中电场施加在软土地基10的一定深度处,可以有效防止被电渗处理的土体的开裂现象,以及防止其与软土土体与电极脱离,保证电渗效率。
In step S42 , referring to FIG. 5 , a
在步骤S43中,在夜间,光照消失,太阳能电池16不再产生电能,阳极122和阴极142之间的电场消失。由于在电渗的过程中,软土地基10内的水分从阳极122向阴极142转移,在阴极装置14中产生蓄水,并在阴极装置14中被抽走,因此,电渗停止之后,土体中存在从阴极142向阳极122的水头梯度,即软土地基10中的含水量从阴极142向阳极122逐渐减小。故,土体中的孔隙水缓慢由阴极142向阳极122运移,使得第二天再次开始电渗时,土体中的孔隙水分布更加均匀,这样一定程度的减轻了由于阳极122附近土体太干而导致的电势损失过大现象,提高了电渗效率。
In step S43 , at night, the light disappears, the
在步骤S4中,多次进行上述间歇电渗处理软土地基10的步骤,即,保持太阳能电池16工作多个昼夜,或多个间歇循环。当软土地基10的表面不再下降或者基本不再下降时,停止电渗。
In step S4, the above-mentioned step of intermittent electroosmotic treatment of the
本发明所提供太阳能电渗固结软土地基的方法具有以下优点:第一,利用太阳能电池,将太阳能转换为电能应用于电渗排水,由于太阳能是一种天然的清洁能源,本发明节省了大量电能,并且更加环保。第二,利用太阳能昼夜循环特性,可自动实现电渗过程中的间歇通电技术。在白天电渗过程中,随着水不断由阳极向阴极运移,土体中逐渐产生负的超静孔压,增大有效应力引起土体固结。同时,土体上部区域内水分也会逐渐向下运移并被排出,使地基整体均得到处理。而到了晚上电渗结束后,土体中存在从阴极向阳极的水头梯度,土体中的孔隙水缓慢由阴极向阳极运移,使得第二天再次开始电渗时,土体中的孔隙水分布更加均匀,这样一定程度的减轻了由于阳极附近土体太干而导致的电势损失过大现象,提高了电渗效率。第三,本发明中抽水装置可以采用太阳能泵,所有设施都不需要太阳能之外的能源,因此本系统工作时间长,维护费用低。第四,本方法施工简单,不需要运输电源设施,不需要布设电线运输电能,减少了采用电渗法处理软土地基的前期成本,尤其是在处理偏远地区的软土地基时,成本大大降低。第五,本系统安装成功后即可自行开始电渗排水固结,节省了人工费用。第六,太阳能电池板及太阳能泵等设施电渗之后可以回收重复利用,节能环保,降低成本。 The method for solar energy electroosmotic consolidation of soft ground provided by the present invention has the following advantages: first, utilize solar cells to convert solar energy into electrical energy and apply it to electroosmotic drainage. Since solar energy is a natural clean energy source, the present invention saves A lot of power, and more environmentally friendly. Second, using the day and night cycle characteristics of solar energy, the intermittent power supply technology in the electroosmosis process can be automatically realized. During the daytime electroosmotic process, as water continues to migrate from the anode to the cathode, negative excess static pore pressure is gradually generated in the soil, increasing the effective stress and causing soil consolidation. At the same time, the water in the upper area of the soil will gradually move downward and be discharged, so that the whole foundation can be treated. After the end of electroosmosis at night, there is a water head gradient from the cathode to the anode in the soil, and the pore water in the soil slowly migrates from the cathode to the anode, so that when the electroosmosis starts again the next day, the pore water in the soil The distribution is more uniform, which to a certain extent alleviates the phenomenon of excessive potential loss caused by the soil near the anode being too dry, and improves the electroosmosis efficiency. Third, the pumping device in the present invention can use solar pumps, and all facilities do not need energy other than solar energy, so the system has long working hours and low maintenance costs. Fourth, this method is simple in construction, does not need to transport power facilities, does not need to lay wires to transport electric energy, and reduces the initial cost of using the electroosmotic method to treat soft soil foundations, especially when dealing with soft soil foundations in remote areas, the cost is greatly reduced . Fifth, after the system is successfully installed, the electroosmotic drainage and consolidation can be started automatically, which saves labor costs. Sixth, facilities such as solar panels and solar pumps can be recycled and reused after electroosmosis, saving energy and environmental protection, and reducing costs.
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。 In addition, those skilled in the art can also make other changes within the spirit of the present invention. Of course, these changes made according to the spirit of the present invention should be included within the scope of protection claimed by the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410144402.9A CN103898894A (en) | 2014-04-11 | 2014-04-11 | Method for solidifying soft soil foundation by solar electroosmosis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410144402.9A CN103898894A (en) | 2014-04-11 | 2014-04-11 | Method for solidifying soft soil foundation by solar electroosmosis |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103898894A true CN103898894A (en) | 2014-07-02 |
Family
ID=50990449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410144402.9A Pending CN103898894A (en) | 2014-04-11 | 2014-04-11 | Method for solidifying soft soil foundation by solar electroosmosis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103898894A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104929140A (en) * | 2015-06-26 | 2015-09-23 | 东华理工大学 | Slope rapid seepage and drainage and self-reinforcement device and method |
CN107724376A (en) * | 2017-11-15 | 2018-02-23 | 广西岩土新技术有限公司 | A kind of Tailings Dam self-draining arrangement |
CN110284490A (en) * | 2019-06-12 | 2019-09-27 | 上海大学 | Thermal vacuum pre-pressed joint solar energy intermittent power supply electric osmose punishes barged-in fill device and method |
CN110644309A (en) * | 2019-09-26 | 2020-01-03 | 山东大学 | Roadbed drainage structure, system and construction method |
CN113791028A (en) * | 2021-09-13 | 2021-12-14 | 国网山东省电力公司电力科学研究院 | Detection device and method for directly detecting soil corrosion rate of metal material |
CN114858895A (en) * | 2022-05-07 | 2022-08-05 | 江苏科技大学 | A test device and test method for electrochemically consolidating drainage cyclically heating cathode local soil |
CN115262525A (en) * | 2022-08-30 | 2022-11-01 | 江苏科技大学 | Device for solidifying soft soil in water-rich area by combining thermal evaporation and electroosmosis |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1121871A (en) * | 1997-06-30 | 1999-01-26 | Taiyo Gijutsu Kaihatsu Kk | Electro-osmosis draining method |
TW200909643A (en) * | 2007-08-27 | 2009-03-01 | mao-song Shen | Construction method for ground modification by solar electro-osmosis |
CN201406681Y (en) * | 2009-04-30 | 2010-02-17 | 中国科学院武汉岩土力学研究所 | Pre-reinforcement treatment device for mixed dredging soft soil foundation |
CN202181548U (en) * | 2011-06-28 | 2012-04-04 | 中国二十冶集团有限公司 | Electro-osmosis well point |
CN102535432A (en) * | 2011-12-26 | 2012-07-04 | 河海大学 | Vacuumizing-electroosmosis-stacking combined soft-foundation consolidating system and method |
-
2014
- 2014-04-11 CN CN201410144402.9A patent/CN103898894A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1121871A (en) * | 1997-06-30 | 1999-01-26 | Taiyo Gijutsu Kaihatsu Kk | Electro-osmosis draining method |
TW200909643A (en) * | 2007-08-27 | 2009-03-01 | mao-song Shen | Construction method for ground modification by solar electro-osmosis |
CN201406681Y (en) * | 2009-04-30 | 2010-02-17 | 中国科学院武汉岩土力学研究所 | Pre-reinforcement treatment device for mixed dredging soft soil foundation |
CN202181548U (en) * | 2011-06-28 | 2012-04-04 | 中国二十冶集团有限公司 | Electro-osmosis well point |
CN102535432A (en) * | 2011-12-26 | 2012-07-04 | 河海大学 | Vacuumizing-electroosmosis-stacking combined soft-foundation consolidating system and method |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104929140A (en) * | 2015-06-26 | 2015-09-23 | 东华理工大学 | Slope rapid seepage and drainage and self-reinforcement device and method |
CN107724376A (en) * | 2017-11-15 | 2018-02-23 | 广西岩土新技术有限公司 | A kind of Tailings Dam self-draining arrangement |
CN110284490A (en) * | 2019-06-12 | 2019-09-27 | 上海大学 | Thermal vacuum pre-pressed joint solar energy intermittent power supply electric osmose punishes barged-in fill device and method |
CN110644309A (en) * | 2019-09-26 | 2020-01-03 | 山东大学 | Roadbed drainage structure, system and construction method |
CN110644309B (en) * | 2019-09-26 | 2022-01-18 | 山东大学 | Roadbed drainage structure, system and construction method |
CN113791028A (en) * | 2021-09-13 | 2021-12-14 | 国网山东省电力公司电力科学研究院 | Detection device and method for directly detecting soil corrosion rate of metal material |
CN114858895A (en) * | 2022-05-07 | 2022-08-05 | 江苏科技大学 | A test device and test method for electrochemically consolidating drainage cyclically heating cathode local soil |
CN114858895B (en) * | 2022-05-07 | 2023-09-22 | 江苏科技大学 | Test device and test method for electrochemical consolidation drainage circulation heating cathode local soil body |
CN115262525A (en) * | 2022-08-30 | 2022-11-01 | 江苏科技大学 | Device for solidifying soft soil in water-rich area by combining thermal evaporation and electroosmosis |
CN115262525B (en) * | 2022-08-30 | 2023-04-21 | 江苏科技大学 | Device for solidifying soft soil in water-rich area by combining thermal evaporation and electroosmosis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103898894A (en) | Method for solidifying soft soil foundation by solar electroosmosis | |
Wang et al. | Experimental study on the improvement of marine clay slurry by electroosmosis-vacuum preloading | |
CN106192982B (en) | A method of the electric osmose soil stake based on tubulose ekg electrode handles soft base | |
CN102704463B (en) | Vacuum pre-compaction and electro-osmosis combined reinforcing device and method for muck foundation | |
CN103215946A (en) | Electroosmosis electrode and electroosmosis draining system thereof | |
CN103321208B (en) | Vacuum-electroosmosis combined soft foundation reinforcing treatment system utilizing alternative arrangement of long and short cathodes | |
CN104131549B (en) | A kind of method of electrode tube electric drainage consolidation | |
CN101748724B (en) | Electroosmosis electrode and mounting mode | |
CN107905211B (en) | Electric osmosis electrode capable of quickly crusting by newly dredger fill and use method thereof | |
CN103374910B (en) | Electroosmosis united air pressure separation device and technology | |
CN203795412U (en) | Solar electro-osmotic consolidation device for soft soil foundation | |
CN104846711A (en) | Electro-osmosis method for reinforcing soil side slope | |
CN104594333A (en) | Treatment method for soft clay foundations of annular electroosmosis single well drainage | |
CN103898893A (en) | Electro-osmosis treatment method for expansive soil | |
CN103174128B (en) | Earthen archaeological site electric control moistureproof method | |
CN207934014U (en) | A kind of electric osmose combined vacuum prepressing device that electrode plate is arranged up and down | |
CN110670574A (en) | Enhanced electroosmosis method and system for strengthening soft clay foundations | |
CN109914442B (en) | Integrative stake of electroosmosis drainage | |
CN101740886A (en) | Anti-corrosion grounding device and construction method thereof | |
CN101701458B (en) | Triangularly arranged compound electrode of soft soil electrochemistry solidification | |
CN108612078B (en) | A method for eliminating cathode bubbles in the reinforcement of soft foundation by electroosmosis | |
CN115262525B (en) | Device for solidifying soft soil in water-rich area by combining thermal evaporation and electroosmosis | |
CN106284292A (en) | A kind of consolidating mud soil electrochemical modification hardened system | |
CN212375837U (en) | The device of vacuum preloading-electroosmosis-heating combined with biological enzymes to strengthen the foundation | |
CN105714763B (en) | A kind of seasonality frost heave method for processing foundation and processing unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140702 |
|
RJ01 | Rejection of invention patent application after publication |