CN103886208A - High-resolution optical satellite maneuvering imaging drift angle correction method - Google Patents

High-resolution optical satellite maneuvering imaging drift angle correction method Download PDF

Info

Publication number
CN103886208A
CN103886208A CN201410119891.2A CN201410119891A CN103886208A CN 103886208 A CN103886208 A CN 103886208A CN 201410119891 A CN201410119891 A CN 201410119891A CN 103886208 A CN103886208 A CN 103886208A
Authority
CN
China
Prior art keywords
satellite
rightarrow
drift angle
imaging
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410119891.2A
Other languages
Chinese (zh)
Other versions
CN103886208B (en
Inventor
韩杏子
赵鸿志
孙燕萍
窦强
王付刚
叶钊
董小静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Dongfanghong Satellite Co Ltd
Original Assignee
Aerospace Dongfanghong Satellite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Dongfanghong Satellite Co Ltd filed Critical Aerospace Dongfanghong Satellite Co Ltd
Priority to CN201410119891.2A priority Critical patent/CN103886208B/en
Publication of CN103886208A publication Critical patent/CN103886208A/en
Application granted granted Critical
Publication of CN103886208B publication Critical patent/CN103886208B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)

Abstract

The invention discloses a high-resolution optical satellite maneuvering imaging drift angle correction method. A drift angle correction model under a maneuvering imaging mode is set up according to a satellite attitude maneuver scheme, a method for calculating a drift angle is derived based on the satellite position and ground point position coordinates, and a scheme for installing a drift angle correction device at the focal plane position is provided. Thus, a satellite can have the imaging capacity on a target strip deviating from the flying direction, the observation range and the observation efficiency of the satellite are greatly improved, and meanwhile, the satellite can have the dynamic pushing and blooming imaging capacity in the vertical direction of a sub-satellite point. Large-width imaging of a sub-satellite point area is achieved in a multi-strip splicing manner, and the requirement for the TDICCD camera width is lowered.

Description

一种高分辨率光学卫星机动成像偏流角修正方法A Method of Correcting the Drift Angle of High Resolution Optical Satellite Maneuvering Imaging

技术领域technical field

本发明属于光学遥感卫星成像领域,涉及一种搭载TDICCD相机的高分辨率光学卫星机动成像偏流角修正方法。The invention belongs to the field of optical remote sensing satellite imaging, and relates to a method for correcting a deflection angle of a high-resolution optical satellite mobile imaging equipped with a TDICCD camera.

背景技术Background technique

TDICCD基于对同一目标进行多次曝光实现延时积分,大大增强了光能收集,提高了信噪比,因此被广泛应用于高分辨率光学遥感卫星上。但同时,由于TDICCD这种特殊的工作方式,要求同一列上的每一个像元都对同一目标曝光积分,其正常工作的基本前提是光生电荷包的转移与焦面上图像的运动保持同步,任何的匹配误差都将导致图像模糊。TDICCD is based on multiple exposures of the same target to achieve time-delay integration, which greatly enhances light energy collection and improves the signal-to-noise ratio, so it is widely used in high-resolution optical remote sensing satellites. But at the same time, due to the special working method of TDICCD, each pixel on the same column is required to integrate the exposure of the same target. The basic premise of its normal operation is that the transfer of photogenerated charge packets is synchronized with the movement of the image on the focal plane. Any matching errors will result in blurred images.

目前多数卫星均采用预先通过姿态机动,使相机光轴稳定指向目标区域后,通过卫星运动实现TDICCD相机对目标的推扫成像(见图1),这种成像模式下,卫星姿态保持不变,TDICCD相机物像关系稳定,图像模糊的主要来源是地球自转引起的卫星飞行方向与TDICCD相机实际成像方向不一致,二者之间的夹角即偏流角,偏流角会导致相机在积分成像过程中产生图像的横向像移,影响相机成像质量。因此,对偏流角进行调节是TDICCD相机像移补偿系统中的一项重要任务。At present, most satellites use attitude maneuvering in advance to make the optical axis of the camera point to the target area stably, and then realize the push-broom imaging of the target by the TDICCD camera through satellite movement (see Figure 1). In this imaging mode, the attitude of the satellite remains unchanged. The object-image relationship of the TDICCD camera is stable, and the main source of image blur is that the satellite flight direction caused by the earth's rotation is inconsistent with the actual imaging direction of the TDICCD camera. The angle between the two is the drift angle, which will cause the camera to produce The lateral image motion of the image affects the image quality of the camera. Therefore, adjusting the drift angle is an important task in the image motion compensation system of the TDICCD camera.

近年来航天光学遥感技术发展迅速,卫星快速姿态机动能力大大提升,出现了具有灵活姿态机动能力且具有较高地面分辨率的高分辨率敏捷卫星,若采用图1所示的传统观测模式对目标进行观测,对于与飞行方向有一定夹角的目标条带区域,如果卫星TDICCD相机幅宽有限,一次推扫覆盖不到目标全貌,则需要通过任务规划,通过不同轨的多条带拼接,方可实现对目标区域的全面观察。In recent years, aerospace optical remote sensing technology has developed rapidly, and the rapid attitude maneuverability of satellites has been greatly improved. High-resolution agile satellites with flexible attitude maneuverability and high ground resolution have emerged. If the traditional observation mode shown in Figure 1 is used to detect the target For observation, for the target strip area with a certain angle with the flight direction, if the satellite TDICCD camera width is limited, and one push-broom cannot cover the whole picture of the target, it is necessary to plan the mission and splicing multiple strips of different orbits. Comprehensive observation of the target area can be achieved.

针对敏捷卫星强大姿态机动能力的特点,人们开始研究在姿态实时调节实现对与飞行方向有一定夹角的目标条带实时指向过程中,TDICCD相机进行成像的新型工作模式——机动成像(见附图2)。此模式下,由于卫星姿态随时间不断变化,偏流角的来源不只是地球自转影响,还受到卫星姿态机动方案的影响,研究卫星机动成像模式下偏流角的计算方法及修正方法是实现机动成像的必要前提。In view of the characteristics of the agile satellite's powerful attitude maneuverability, people began to study a new working mode of TDICCD imaging in the process of real-time adjustment of the attitude to realize the real-time pointing of the target strip with a certain angle with the flight direction—maneuvering imaging (see appendix figure 2). In this mode, because the satellite attitude changes with time, the source of the drift angle is not only the influence of the earth's rotation, but also the influence of the satellite attitude maneuver scheme. The calculation method and correction method of the drift angle in the satellite maneuver imaging mode is the key to realize the maneuver imaging. Necessary prerequisite.

国内现有在轨卫星,尚未有机动成像的先例,对姿态变化过程中偏流角的计算方法有一定的研究,但并未结合卫星机动成像模式进行全链路研究。目前国外的资料中,法国的Pleiades卫星、美国的IKONOS卫星均为具有快速机动能力的敏捷卫星,可灵活的实现条带拼接成像、立体成像以及区域点目标成像等,根据Pleiades卫星和IKONOS-2卫星给出的成像模式,推断Pleiades和IKONOS-2应该也具有机动成像能力,但是具体的实现方法,并未有资料可查阅。There are no precedents for mobile imaging of existing satellites in orbit in China. There has been some research on the calculation method of the drift angle during the attitude change process, but no full-link research has been combined with the satellite mobile imaging mode. According to the current foreign data, the French Pleiades satellite and the American IKONOS satellite are agile satellites with fast maneuverability, which can flexibly realize strip splicing imaging, stereoscopic imaging, and regional point target imaging. According to the Pleiades satellite and IKONOS-2 According to the imaging mode given by the satellite, it is inferred that Pleiades and IKONOS-2 should also have mobile imaging capabilities, but there is no information available for the specific implementation method.

发明内容Contents of the invention

本发明解决的技术问题是:克服现有技术的不足,提供一种高分辨率光学卫星机动成像偏流角修正方法,对卫星机动成像模式下,针对不同姿态机动方案,获得机动成像过程中偏流角计算模型,针对偏流角模型提出在焦面安装像移补偿装置进行偏流角实时修正补偿。The technical problem solved by the present invention is: to overcome the deficiencies of the prior art, to provide a high-resolution optical satellite maneuvering imaging drift angle correction method, and to obtain the drift angle in the maneuvering imaging process for different attitude maneuvering schemes under the satellite maneuvering imaging mode According to the calculation model, it is proposed to install an image motion compensation device on the focal plane for real-time correction and compensation of the drift angle.

本发明的技术方案是:一种高分辨率光学卫星机动成像偏流角修正方法,步骤如下:The technical solution of the present invention is: a method for correcting the deflection angle of high-resolution optical satellite mobile imaging, the steps are as follows:

1)根据实际卫星参数,建立卫星模型以及卫星上TDICCD相机成像模型;1) According to the actual satellite parameters, establish the satellite model and the imaging model of the TDICCD camera on the satellite;

2)根据待观测目标位置,确定卫星姿态机动方案,生成卫星实时姿态机动数据,并根据步骤1)得到的卫星模型以及TDICCD相机成像模型,获得姿态机动过程中卫星实时位置坐标以及成像地面点坐标

Figure BDA0000483245870000022
同时得到卫星实时位置坐标和地面点坐标所对应的时间t;2) According to the position of the target to be observed, determine the satellite attitude maneuver plan, generate satellite real-time attitude maneuver data, and obtain the satellite real-time position coordinates during the attitude maneuver process according to the satellite model obtained in step 1) and the TDICCD camera imaging model and the imaging ground point coordinates
Figure BDA0000483245870000022
At the same time, the time t corresponding to the satellite real-time position coordinates and the ground point coordinates is obtained;

3)将步骤2)得到的卫星实时位置坐标

Figure BDA0000483245870000023
对时间t求导,计算获得卫星速度矢量 V → s = ( v x _ s , v y _ s , v z _ s ) , 其中 v x _ s = dSx dt ; v y _ s = dSy dt ; v z _ s = dSz dt ; 3) Use the satellite real-time position coordinates obtained in step 2)
Figure BDA0000483245870000023
Calculate the derivative of time t to obtain the satellite velocity vector V &Right Arrow; the s = ( v x _ the s , v the y _ the s , v z _ the s ) , in v x _ the s = wxya dt ; v the y _ the s = wxya dt ; v z _ the s = wxya dt ;

4)将步骤2)得到的地面点坐标

Figure BDA0000483245870000033
对时间t求导,计算获得摄影点地速矢量 V → g = ( v x _ g , v y _ g , v z _ g ) , 其中 v x _ g = dGx dt ; v y _ g = dGy dt ; v z _ g = dGz dt ; 4) The ground point coordinates obtained in step 2)
Figure BDA0000483245870000033
Deriving time t to calculate the ground speed vector of the photography point V &Right Arrow; g = ( v x _ g , v the y _ g , v z _ g ) , in v x _ g = wxya dt ; v the y _ g = wxya dt ; v z _ g = gz dt ;

5)计算卫星速度矢量

Figure BDA0000483245870000036
与地速矢量
Figure BDA0000483245870000037
在TDICCD相机焦平面上投影矢量之间的夹角θ(t),即偏流角θ(t);5) Calculate the satellite velocity vector
Figure BDA0000483245870000036
and ground speed vector
Figure BDA0000483245870000037
The angle θ(t) between the projection vectors on the focal plane of the TDICCD camera is the bias angle θ(t);

51)计算获得卫星速度矢量在焦平面的投影矢量

Figure BDA0000483245870000038
51) Calculate and obtain the projection vector of the satellite velocity vector on the focal plane
Figure BDA0000483245870000038

52)计算获得地速矢量在焦平面的投影矢量

Figure BDA0000483245870000039
F → = P → s - P → g | P → s - P → g | = ( Sx , Sy , Sz ) - ( Gx , Gy , Gz ) | ( Sx , Sy , Sz ) - ( Gx , Gy , Gz ) = ( ( Sx - Gx ) , ( Sy - G y ) , ( Sz - G z ) ) ( Sx - Gx ) 2 + ( Sy - Gy ) 2 + ( Sz - Gz ) 2 , 其中
Figure BDA00004832458700000312
之间的夹角;52) Calculate the projection vector of the ground speed vector on the focal plane
Figure BDA0000483245870000039
f &Right Arrow; = P &Right Arrow; the s - P &Right Arrow; g | P &Right Arrow; the s - P &Right Arrow; g | = ( S x , Sy , Sz ) - ( Gx , Gy , Gz ) | ( S x , Sy , Sz ) - ( Gx , Gy , Gz ) = ( ( S x - Gx ) , ( Sy - G the y ) , ( Sz - G z ) ) ( S x - Gx ) 2 + ( Sy - Gy ) 2 + ( Sz - Gz ) 2 , in for
Figure BDA00004832458700000312
the angle between

53)计算获得偏流角 θ ( t ) = arcsin d ( | V → s _ c × V → g _ c | | V → s _ c | × | V → g _ c | ) ; 53) Calculate and obtain the drift angle θ ( t ) = arcsin d ( | V &Right Arrow; the s _ c × V &Right Arrow; g _ c | | V &Right Arrow; the s _ c | × | V &Right Arrow; g _ c | ) ;

6)在卫星姿态机动方案下,建立偏流角θ(t)随时间变化模型,根据该模型采用焦面偏流角补偿装置将偏流角θ(t)实时修正为0度。6) Under the satellite attitude maneuver scheme, a model of the drift angle θ(t) changing with time is established, and the focal plane drift angle compensation device is used to correct the drift angle θ(t) to 0 degrees in real time according to the model.

本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:

本发明对搭载TDICCD相机的高分辨率光学卫星机动成像模式进行建模,对卫星这种新型工作模式的实施过程进行模拟。针对卫星姿态机动方案,建立机动成像模式下偏流角修正模型,推导出基于卫星位置及地面点位置坐标计算偏流角的方法,并提出在焦面位置安装偏流角修正装置的方案。使卫星具备对偏离飞行方向目标条带的成像能力,大大提高卫星的观察范围和观察效率,同时可以使卫星具备沿星下点垂直方向的动态推扫成像的能力,通过多条带拼接的方式,实现对星下点区域的大幅宽成像,从而减小对TDICCD相机幅宽的要求。The invention models the high-resolution optical satellite maneuvering imaging mode equipped with the TDICCD camera, and simulates the implementation process of the new working mode of the satellite. Aiming at the satellite attitude maneuvering scheme, the drift angle correction model in maneuvering imaging mode is established, the method of calculating the drift angle based on the satellite position and the ground point position coordinates is deduced, and the scheme of installing the drift angle correction device at the focal plane position is proposed. It enables the satellite to have the ability to image target strips that deviate from the flight direction, greatly improving the observation range and observation efficiency of the satellite, and at the same time enables the satellite to have the ability of dynamic push-broom imaging along the vertical direction of the sub-satellite point, through the way of splicing multiple strips , to achieve a large width imaging of the sub-satellite point area, thereby reducing the requirement for the width of the TDICCD camera.

附图说明Description of drawings

图1为一般卫星成像模式示意图;Figure 1 is a schematic diagram of a general satellite imaging mode;

图2为机动成像模式示意图;Figure 2 is a schematic diagram of the motorized imaging mode;

图3为焦面旋转补偿装置构图;Fig. 3 is a composition diagram of the focal plane rotation compensation device;

图4为焦面二维平移补偿装置构图;Fig. 4 is the composition of the focal plane two-dimensional translation compensation device;

图5为本发明方法流程图。Fig. 5 is a flow chart of the method of the present invention.

具体实施方式Detailed ways

如图5所示,本发明主要包括以下步骤:As shown in Figure 5, the present invention mainly comprises the following steps:

(1)利用stk仿真软件,根据实际卫星参数,建立卫星场景及卫星模型,并利用stk软件中的传感器工具,在卫星模型下建立TDICCD相机模型,获得机动成像基本模型;(1) Use the stk simulation software to establish the satellite scene and satellite model according to the actual satellite parameters, and use the sensor tools in the stk software to establish the TDICCD camera model under the satellite model to obtain the basic model of maneuvering imaging;

(2)利用matlab软件,根据目标轨迹追踪要求,确定姿态机动方案(转序、姿态角速率变化等),对卫星姿态进行模拟计算,得到每一时刻卫星的实时姿态数据,同时对卫星坐标系、姿态角转序、加载时刻等进行规定,按照stk要求的姿态数据格式生成卫星姿态数据文件(.a文件),加载至步骤(1)所建立的基本模型中,对目标轨迹的动态成像过程进行模拟。(2) Using matlab software, according to the target trajectory tracking requirements, determine the attitude maneuver scheme (transition sequence, attitude angular rate change, etc.), simulate and calculate the satellite attitude, obtain the real-time attitude data of the satellite at each moment, and at the same time calculate the satellite coordinate system , attitude angle sequence, loading time, etc., generate a satellite attitude data file (.a file) according to the attitude data format required by stk, and load it into the basic model established in step (1). The dynamic imaging process of the target trajectory to simulate.

Stk要求的姿态数据文件格式具体如下:The attitude data file format required by Stk is as follows:

数据行data line 内容content 11 Stk VersionStk Version 22 BEGIN AttitudeBEGIN Attitude 33 NumberOfAttitudePointsNumberOfAttitudePoints 44 BlockingFactorBlocking Factor 55 InterpolationOrderInterpolation Order

66 CentralBodyCentral Body 77 ScenarioEpochScenarioEpoch 88 CoordinateAxesCoordinateAxes 99 Sequencesequence 1010 AttitudeTimeEulerAnglesAttitudeTimeEulerAngles 1111 Attitude dataAttitude data 1212 END AttitudeEND Attitude

(3)输出步骤(2)中动态成像期间卫星实时位置坐标

Figure BDA0000483245870000051
以及相机视轴指向与地面交点坐标
Figure BDA0000483245870000052
同时输出实时位置坐标和地面点坐标对应的时间t;(3) Output the real-time position coordinates of the satellite during the dynamic imaging in step (2)
Figure BDA0000483245870000051
And the coordinates of the intersection point of the camera's boresight pointing to the ground
Figure BDA0000483245870000052
Simultaneously output the real-time position coordinates and the time t corresponding to the ground point coordinates;

其中,卫星位置坐标及地面点坐标均采用地心固定坐标系下坐标,坐标系原点O为地心且与地球自旋一同运动的固联坐标系,其x轴指向赤道面与Greenwich子午面的相交线,z轴指向赤道北极,y轴与z、x两轴构成右手正交系。Among them, the satellite position coordinates and the ground point coordinates adopt the coordinates in the geocentric fixed coordinate system. The origin O of the coordinate system is a fixed coordinate system that moves with the earth's spin and the center of the earth. Its x-axis points to the equatorial plane and the Greenwich meridian plane. Intersecting lines, the z-axis points to the north pole of the equator, and the y-axis forms a right-handed orthogonal system with the two axes of z and x.

(4)卫星位置坐标对时间求导,获得卫星速度矢量

Figure BDA0000483245870000053
(4) Deriving the satellite position coordinates with respect to time to obtain the satellite velocity vector
Figure BDA0000483245870000053

vv xx __ sthe s == dSxwxya dtdt ;;

vv ythe y __ sthe s == dSywxya dtdt ;;

vv zz __ sthe s == dSzwxya dtdt ;;

(5)地面点坐标对时间求导,获得摄影点地速矢量

Figure BDA0000483245870000057
(5) Deriving the coordinates of the ground point with respect to time to obtain the ground speed vector of the photography point
Figure BDA0000483245870000057

vv xx __ gg == dGxwxya dtdt ;;

vv ythe y __ gg == dGywxya dtdt ;;

vv zz __ gg == dGzgz dtdt ;;

(6)计算卫星速度矢量

Figure BDA00004832458700000511
与地速矢量
Figure BDA00004832458700000512
在TDICCD相机焦平面上投影矢量之间的夹角θ(t),即为偏流角θ(t);(6) Calculate the satellite velocity vector
Figure BDA00004832458700000511
and ground speed vector
Figure BDA00004832458700000512
The angle θ(t) between the projection vectors on the focal plane of the TDICCD camera is the bias angle θ(t);

a.卫星推扫速度矢量在TDICCD相机焦平面的投影矢量计算方法:a. The calculation method of the projection vector of the satellite push-broom velocity vector on the focal plane of the TDICCD camera:

多数TDICCD相机与卫星本体固连安装,TDICCD相机光轴与z轴一致,焦平面垂直于光轴,故卫星推扫速度矢量在焦平面的投影矢量即:Most TDICCD cameras are fixedly connected to the satellite body. The optical axis of the TDICCD camera is consistent with the z-axis, and the focal plane is perpendicular to the optical axis. Therefore, the projection vector of the satellite push-broom velocity vector on the focal plane is:

Figure BDA0000483245870000061
Figure BDA0000483245870000061

b.地速矢量在焦平面的投影矢量计算方法b. Calculation method of the projection vector of the ground speed vector on the focal plane

根据矢量原理,已知一个平面的单位法向量

Figure BDA0000483245870000062
求已知矢量在该平面的投影矢量可按下述方法进行计算:According to the vector principle, the unit normal vector of a plane is known
Figure BDA0000483245870000062
Find a known vector The projection vector on this plane can be calculated as follows:

Figure BDA0000483245870000064
获得矢量到平面的距离b;
Figure BDA0000483245870000064
get vector the distance b to the plane;

Figure BDA0000483245870000066
获得模长为b的垂直于平面的向量;
Figure BDA0000483245870000066
Obtain a vector perpendicular to the plane with modulus length b;

Figure BDA0000483245870000067
即为
Figure BDA0000483245870000068
在平面上的投影矢量。
Figure BDA0000483245870000067
that is
Figure BDA0000483245870000068
Projection vector on a plane.

据上,地速矢量在焦平面的投影矢量计算方法如下:According to the above, the calculation method of the projection vector of the ground speed vector on the focal plane is as follows:

焦平面单位法向量可由下式计算:The focal plane unit normal vector can be calculated by the following formula:

Ff →&Right Arrow; == PP →&Right Arrow; sthe s -- PP →&Right Arrow; gg || PP →&Right Arrow; sthe s -- PP →&Right Arrow; gg || == (( SxS x ,, SySy ,, SzSz )) -- (( GxGx ,, GyGy ,, GzGz )) || (( SxS x ,, SySy ,, SzSz )) -- (( GxGx ,, GyGy ,, GzGz )) || == (( (( SxS x -- GxGx )) ,, (( SySy -- GG ythe y )) ,, (( SzSz -- GG zz )) )) (( SxS x -- GxGx )) 22 ++ (( SySy -- GyGy )) 22 ++ (( SzSz -- GzGz )) 22 ,,

Figure BDA00004832458700000610
在焦平面投影为:but
Figure BDA00004832458700000610
Projected on the focal plane as:

VV →&Right Arrow; gg __ cc == VV →&Right Arrow; gg -- (( VV →&Right Arrow; gg ·· Ff →&Right Arrow; )) ×× Ff →&Right Arrow;

其中:in:

Figure BDA00004832458700000612
V → g , F → 之间的夹角。
Figure BDA00004832458700000612
for V &Right Arrow; g , f &Right Arrow; angle between.

c.偏流角计算方法c. Calculation method of drift angle

已知矢量

Figure BDA00004832458700000613
Figure BDA00004832458700000614
求二者之间夹角可利用下式进行计算:known vector
Figure BDA00004832458700000613
and
Figure BDA00004832458700000614
The angle between the two can be calculated using the following formula:

|| VV →&Right Arrow; sthe s __ cc ×× VV →&Right Arrow; gg __ cc || == || VV →&Right Arrow; sthe s __ cc || ×× || VV →&Right Arrow; gg __ cc || ×× sinsin dd (( θθ (( tt )) )) ⇒⇒

θθ (( tt )) == arcsinarcsin dd (( || VV →&Right Arrow; sthe s __ cc ×× VV →&Right Arrow; gg __ cc || || VV →&Right Arrow; sthe s __ cc || ×× || VV →&Right Arrow; gg __ cc || ))

(7)根据步骤(6)计算所得卫星姿态实时变化情况下,偏流角的实时数值,在焦面增加偏流角补偿装置,可采用如图3和图4所示两种方案。(7) According to the real-time value of the drift angle calculated in step (6) when the satellite attitude changes in real time, a drift angle compensation device is added on the focal plane, and two schemes as shown in Fig. 3 and Fig. 4 can be adopted.

对于图3所示方案,对旋转电机的指标要求按下式计算:For the scheme shown in Figure 3, the index requirements for the rotating motor are calculated according to the following formula:

动态范围:θ(t)min~θ(t)max Dynamic range: θ(t) min ~θ(t) max

最大角速率:

Figure BDA0000483245870000071
Maximum Angular Rate:
Figure BDA0000483245870000071

对于图4所示方案,对位移调节组件的指标要求按下式计算:For the scheme shown in Figure 4, the index requirements for the displacement adjustment component are calculated according to the following formula:

线阵方向位移调节组件:Linear array direction displacement adjustment components:

动态范围:L-L×cosd(θ(t))Dynamic range: L-L×cosd(θ(t))

调节频率:(L-L×cosd(θ(t)))/dtAdjustment frequency: (L-L×cosd(θ(t)))/dt

级数方向位移调节组件:Series direction displacement adjustment components:

动态范围:L-L×sind(θ(t))Dynamic range: L-L×sind(θ(t))

调节频率:(L-L×sind(θ(t)))/dtAdjustment frequency: (L-L×sind(θ(t)))/dt

其中,L为TDICCD半宽值。Among them, L is TDICCD half-width value.

本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。The content that is not described in detail in the specification of the present invention belongs to the well-known technology of those skilled in the art.

Claims (1)

1. the motor-driven imaging drift angle of a high-resolution optical satellite modification method, is characterized in that step is as follows:
1), according to real satellite parameter, set up TDICCD camera imaging model on dummy satellite and satellite;
2) according to target location to be observed, determine the motor-driven scheme of the attitude of satellite, generate the real-time attitude maneuver data of satellite, and the dummy satellite obtaining according to step 1) and TDICCD camera imaging model, obtain attitude maneuver process Satellite real time position coordinate
Figure FDA0000483245860000011
and imaging topocentric coordinates
Figure FDA0000483245860000012
obtain the corresponding time t of satellite real time position coordinate and topocentric coordinates simultaneously;
3) by step 2) the satellite real time position coordinate that obtains to time t differentiate, calculate and obtain satellite velocity vector V → s = ( v x _ s , v y _ s , v z _ s ) , Wherein v x _ s = dSx dt ; v y _ s = dSy dt ; v z _ s = dSz dt ;
4) by step 2) topocentric coordinates that obtains
Figure FDA0000483245860000016
to time t differentiate, calculate and obtain photography point ground vector V → g = ( v x _ g , v y _ g , v z _ g ) , Wherein v x _ g = dGx dt ; v y _ g = dGy dt ; v z _ g = dGz dt ;
5) calculate satellite velocity vector
Figure FDA0000483245860000019
with ground vector angle theta (t) on TDICCD camera focal plane between projection vector, i.e. drift angle θ (t);
51) calculate and obtain the projection vector of satellite velocity vector in focal plane
Figure FDA00004832458600000111
52) calculate and obtain the projection vector of ground vector in focal plane
Figure FDA00004832458600000112
F → = P → s - P → g | P → s - P → g | = ( Sx , Sy , Sz ) - ( Gx , Gy , Gz ) | ( Sx , Sy , Sz ) - ( Gx , Gy , Gz ) = ( ( Sx - Gx ) , ( Sy - G y ) , ( Sz - G z ) ) ( Sx - Gx ) 2 + ( Sy - Gy ) 2 + ( Sz - Gz ) 2 , Wherein
Figure FDA00004832458600000114
for V → g , F → Between angle;
53) calculate and obtain drift angle θ ( t ) = arcsin d ( | V → s _ c × V → g _ c | | V → s _ c | × | V → g _ c | ) ;
6) under the motor-driven scheme of the attitude of satellite, set up drift angle θ (t) temporal evolution model, adopt focal plane drift angle compensation system that drift angle θ (t) is modified to 0 degree in real time according to this model.
CN201410119891.2A 2014-03-27 2014-03-27 High-resolution optical satellite maneuvering imaging drift angle correction method Active CN103886208B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410119891.2A CN103886208B (en) 2014-03-27 2014-03-27 High-resolution optical satellite maneuvering imaging drift angle correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410119891.2A CN103886208B (en) 2014-03-27 2014-03-27 High-resolution optical satellite maneuvering imaging drift angle correction method

Publications (2)

Publication Number Publication Date
CN103886208A true CN103886208A (en) 2014-06-25
CN103886208B CN103886208B (en) 2017-01-18

Family

ID=50955098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410119891.2A Active CN103886208B (en) 2014-03-27 2014-03-27 High-resolution optical satellite maneuvering imaging drift angle correction method

Country Status (1)

Country Link
CN (1) CN103886208B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104567819A (en) * 2015-01-16 2015-04-29 航天东方红卫星有限公司 Method for determining and compensating full-field drift angle of space-based camera
CN105043417A (en) * 2015-07-31 2015-11-11 上海卫星工程研究所 Multi-target continuous imaging drift angle compensation method
CN105160125A (en) * 2015-09-24 2015-12-16 航天东方红卫星有限公司 Simulation analysis method for star sensor quaternion
CN105511482A (en) * 2015-11-30 2016-04-20 上海卫星工程研究所 Mode regulation and control method for autonomous imaging task planning
CN107152926A (en) * 2016-07-18 2017-09-12 哈尔滨工业大学 A kind of satellite quickly rotates super large breadth sweeping imaging method
CN108444446A (en) * 2018-02-07 2018-08-24 哈尔滨工业大学 A method and device for image motion compensation
CN114119473A (en) * 2021-10-21 2022-03-01 航天东方红卫星有限公司 A calculation method for the influence of drift angle correction reference on remote sensing image quality

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426025B (en) * 2011-08-19 2014-02-19 航天东方红卫星有限公司 Simulation Analysis Method of Bias Current Correction Angle During Remote Sensing Satellite Attitude Maneuvering

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104567819B (en) * 2015-01-16 2016-09-28 航天东方红卫星有限公司 A kind of star loaded camera full filed drift angle determines and compensation method
CN104567819A (en) * 2015-01-16 2015-04-29 航天东方红卫星有限公司 Method for determining and compensating full-field drift angle of space-based camera
CN105043417A (en) * 2015-07-31 2015-11-11 上海卫星工程研究所 Multi-target continuous imaging drift angle compensation method
CN105043417B (en) * 2015-07-31 2018-02-09 上海卫星工程研究所 Multiple target continuous imaging drift angle compensation method
CN105160125A (en) * 2015-09-24 2015-12-16 航天东方红卫星有限公司 Simulation analysis method for star sensor quaternion
CN105160125B (en) * 2015-09-24 2018-09-18 航天东方红卫星有限公司 A kind of simulating analysis of star sensor quaternary number
CN105511482B (en) * 2015-11-30 2018-05-22 上海卫星工程研究所 The mode adjusting method of autonomous imaging task planning
CN105511482A (en) * 2015-11-30 2016-04-20 上海卫星工程研究所 Mode regulation and control method for autonomous imaging task planning
WO2018014433A1 (en) * 2016-07-18 2018-01-25 哈尔滨工业大学 Method and apparatus for imaging by rotating rapidly and sweeping in extra-large widths
CN107152926B (en) * 2016-07-18 2018-08-24 哈尔滨工业大学 A kind of satellite quickly rotates super large breadth sweeping imaging method
CN107152926A (en) * 2016-07-18 2017-09-12 哈尔滨工业大学 A kind of satellite quickly rotates super large breadth sweeping imaging method
US10598488B2 (en) 2016-07-18 2020-03-24 Harbin Institute Of Technology Method and apparatus for rapidly rotating imaging with a super large swath width
CN108444446A (en) * 2018-02-07 2018-08-24 哈尔滨工业大学 A method and device for image motion compensation
CN114119473A (en) * 2021-10-21 2022-03-01 航天东方红卫星有限公司 A calculation method for the influence of drift angle correction reference on remote sensing image quality
CN114119473B (en) * 2021-10-21 2024-05-31 航天东方红卫星有限公司 Method for calculating influence of drift angle correction reference on remote sensing imaging quality

Also Published As

Publication number Publication date
CN103886208B (en) 2017-01-18

Similar Documents

Publication Publication Date Title
CN103886208B (en) High-resolution optical satellite maneuvering imaging drift angle correction method
CN105627991B (en) A kind of unmanned plane image real time panoramic joining method and system
CN108344396B (en) An attitude calculation method for agile satellite oblique strip imaging mode
CN103761737B (en) Robot motion's method of estimation based on dense optical flow
CN103822615B (en) A kind of multi-control point extracts and the unmanned aerial vehicle target real-time location method be polymerized automatically
CN110675450B (en) Method and system for generating orthoimage in real time based on SLAM technology
CN106500669A (en) A kind of Aerial Images antidote based on four rotor IMU parameters
CN103673995B (en) A kind of linear array push-broom type camera optical distortion parameter calibration method in-orbit
CN109753076A (en) A kind of unmanned plane vision tracing implementing method
CN102229362B (en) Attitude compensation method of agile satellite imagery in reverse push-broom mismatch
CN102410831B (en) Design and positioning method of multi-stripe scan imaging model
CN106708066A (en) Autonomous landing method of unmanned aerial vehicle based on vision/inertial navigation
CN101825475A (en) Image motion compensation method for space optical remote sensor
CN106373159A (en) Simplified unmanned aerial vehicle multi-target location method
CN103871075B (en) A kind of large oval remote sensing satellite earth background relative motion method of estimation
CN102519436B (en) Chang'e-1 (CE-1) stereo camera and laser altimeter data combined adjustment method
CN105444781B (en) It is spaceborne to be imaged ground validation method from main boot
CN104897159B (en) An Aircraft Whole Course Navigation Method Based on Sequence Image Matching
CN110223233B (en) Unmanned aerial vehicle aerial photography image building method based on image splicing
CN104298887A (en) Relative radiation calibration method of multichip linear CCD (charge coupled device) camera
CN113264201A (en) Implementation method for active push-broom imaging of agile satellite
CN102279001B (en) Phase shift compensation method of space-borne camera
CN103929635B (en) Binocular vision image compensation method when a kind of UUV shakes in length and breadth
CN105005310B (en) A kind of attitude adjusting method being imaged along slanted bar band
CN103487032A (en) Low earth orbit space camera free-pointing image motion vector calculation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant