CN103885267A - 基于三重晶格光子晶体的三波长太赫兹波调制器及调制方法 - Google Patents

基于三重晶格光子晶体的三波长太赫兹波调制器及调制方法 Download PDF

Info

Publication number
CN103885267A
CN103885267A CN201410117903.8A CN201410117903A CN103885267A CN 103885267 A CN103885267 A CN 103885267A CN 201410117903 A CN201410117903 A CN 201410117903A CN 103885267 A CN103885267 A CN 103885267A
Authority
CN
China
Prior art keywords
photonic crystal
silicon
lattice
triangular
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410117903.8A
Other languages
English (en)
Other versions
CN103885267B (zh
Inventor
陈鹤鸣
周雯
孙会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201410117903.8A priority Critical patent/CN103885267B/zh
Publication of CN103885267A publication Critical patent/CN103885267A/zh
Application granted granted Critical
Publication of CN103885267B publication Critical patent/CN103885267B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明是一种基于三重晶格光子晶体的三波长太赫兹波调制器及调制方法,尤其是一种缺陷模变化型光子晶体太赫兹波调制器。其中三重结构三角晶格硅光子晶体(1)由简单结构的圆形硅介质柱三角晶格光子晶体,正方形硅介质柱三角晶格光子晶体和三角形硅介质柱三角晶格光子晶体嵌套而成,是沿X—Z平面周期性分布的介质柱型硅光子晶体。介质柱材料为硅,背景材料为空气;波导区(2)位于三重结构三角晶格光子晶体(1)的两端,由移去了三重晶格光子晶体的两排对称交替的圆形,方形和三角形硅介质柱构成的线缺陷(但两线缺陷不相通)组成。点缺陷谐振腔(3)是由光控可调谐材料砷化镓构造方形介质柱形成。

Description

基于三重晶格光子晶体的三波长太赫兹波调制器及调制方法
技术领域
本发明是一种太赫兹波调制器(三重三角晶格结构光子晶体),尤其是一种缺陷模变化型、三波长太赫兹波光子晶体太赫兹波调制器,涉及太赫兹波通信与光信息处理的技术领域。
背景技术
光子晶体作为一种新型的光学功能材料,已受到了广泛的关注。人们正试图利用光子晶体的特殊性质,开发出更多的光学元器件,其中光子晶体调制器就是研究的热点之一。而太赫兹波(100GHz—10THz)是频谱上的最后一段空白,将其应用于未来的无线通信领域,以解决高速率、超宽带无线接入问题是必然的趋势。将光子晶体调制器的调制波段迁移到THz波段,就很好地满足了现代无线移动通信的宽频带要求。
根据调制机理的不同,光子晶体太赫兹波调制器主要分为以下两类:光子带隙型和缺陷模型。其中光子带隙型太赫兹波调制器是利用光子带隙的改变来实现对太赫兹波的断、通调制;而缺陷模型太赫兹波调制器是利用光子晶体的缺陷模迁移(或变化)来实现对太赫兹波的断、通调制。并且缺陷模型太赫兹波调制器比光子带隙型太赫兹波调制器的调制性能更好。
光控三重晶格光子晶体的三波长太赫兹波调制器具有以下优势:调制器性能好,可同时实现对三波长太赫兹波的调制,调制速率高达GHz量级;调制器的插入损耗低;消光比可以达到很大。调制器的稳定性和可靠性强,泵浦光的阈值功率小。并且调制器体积很小,易于光电集成。
缺陷模变化型的光子晶体太赫兹波调制器是通过在光子晶体的点缺陷处引入光控材料砷化镓实现的。泵浦光在点缺陷处垂直于X—Z平面入射,随着控制泵浦光强的有无,非线性光学介质砷化镓的折射率将发生快速变化,光子晶体中谐振腔内三个缺陷模的频率将发生动态变化,从而控制所传播三波长太赫兹波的通、断,实现把信号加载到太赫兹波上。
发明内容
技术问题:本发明目的是提供一种基于三重晶格光子晶体的三波长太赫兹波调制器及调制方法,其采用光控的方法,具有很高的调制速率,且为缺陷模变化型,从而大大减小了调制器的插入损耗,消光比也得到了很大的改善。
技术方案:为了适应高速、超宽带太赫兹波通信系统的发展,使太赫兹波调制器能同时调制三个太赫兹波长并且具有调制速率高、低插损和高消光比的性能,我们提出了一种新型的基于三重三角晶格结构光子晶体的三波长太赫兹波调制器,使其工作在太赫兹波段,更具实际的应用价值。传统的光子晶体太赫兹波调制器通过单个点缺陷只能实现单波长太赫兹波的调制,而已研究出的基于复式晶格光子晶体的太赫兹波调制器也只能通过单个点缺陷实现双波长太赫兹波的调制,同时大部分光子晶体太赫兹波调制器采用液晶等响应时间缓慢的可调谐材料,因此调制速率都很低,仅为10KHz左右,限制了其在高速太赫兹波通信系统中的应用;且调制器都采用带隙迁移型结构,其插入损耗,消光比等性能不理想。我们采用基于三重晶格的点、线缺陷组合结构,并在中心点缺陷处填充光控砷化镓材料,得以实现缺陷模变化型、基于三重晶格光子晶体的三波长太赫兹波调制器,调制器的调制速率高达3.95GHz,消光比达34dB,插入损耗低达0.16dB,调制性能良好。
本发明的基于三重晶格光子晶体的三波长太赫兹波调制器包括三角晶格三重结构光子晶体、波导区、点缺陷谐振腔;其中,三角晶格三重结构光子晶体是沿X—Z平面周期性分布的介质柱型硅光子晶体,其构造是将圆形硅介质柱三角晶格光子晶体和正方形硅介质柱三角晶格光子晶体旋转后相互嵌套形成蜂窝型结构的光子晶体,再将三角形硅介质柱三角晶格光子晶体嵌套在蜂窝型光子晶体的中心处,从而形成方形,圆形和三角形硅介质柱构成三角晶格三重结构光子晶体;在三角晶格三重结构光子晶体的两端引入对称的线缺陷构成波导区,然后在三角晶格三重结构光子晶体的中心处采用光控可调谐材料砷化镓构造方形介质柱,形成点缺陷谐振腔,太赫兹波从波导区的左端输入,波导区的右端输出;控制光沿着垂直于X—Z平面的方向入射到方形点缺陷谐振腔上。
所述控制光由常用激光器提供或者由其倍频光提供。
信号光是三种波长的太赫兹波,太赫兹波从波导区左端输入,波导区右端输出,泵浦控制光由常用激光器提供或者由其倍频光提供,泵浦光沿着垂直于X—Z平面的方向入射到方形点缺陷谐振腔上。
本发明的基于三重晶格光子晶体的三波长太赫兹波调制器的调制方法是:所述的调制器通过控制泵浦光的有无,引起点缺陷填充的光控可调谐材料砷化镓的折射率发生非线性效应,使得在光子晶体中心点缺陷处谐振的三波长缺陷模发生动态变化,进而实现对三波长太赫兹波的通、断调制,实现了把信号加载到太赫兹波上。
有益效果:本发明提出的一种基于三重晶格光子晶体的三波长太赫兹波调制器,尤其是一种可同时实现三种波长太赫兹波调制的光子晶体太赫兹波调制器。此调制器在二维三角晶格三重结构、介质柱型硅光子晶体中,将线缺陷波导区和方形点缺陷可调谐振腔相结合,其中波导区提供了太赫兹波在光子晶体中的有效传输路径,填充光控可调谐材料砷化镓构造的点缺陷谐振腔起着快速高效地谐振和选频作用。更重要的是,只需引入单个点缺陷,就可同时实现三波长的太赫兹波的调制,大大提高了调制的效率。并且由于点缺陷填充了光控可调谐材料,此太赫兹波调制器的调制速率很高,可达GHz量级,满足了未来高速率、超宽带太赫兹波通信系统的需求。
附图说明
图1为本发明光子晶体太赫兹波调制器的结构图,图中有:三角晶格三重结构光子晶体1、波导区2、点缺陷谐振腔3。
图2a为无泵浦控制光情况下缺陷模的频谱图,
图2b为有泵浦控制光情况下缺陷模的频谱图。
图3a为三种波长的太赫兹波都是“通”状态的示意图,
图3b,图3c,图3d为只有一种波长的太赫兹波可通过的状态示意图;
图3e为三种波长的太赫兹波均不能通过的状态示意图。
具体实施方式
该基于三重晶格光子晶体的三波长太赫兹波调制器包括三角晶格三重结构光子晶体1、波导区2、点缺陷谐振腔3;其中,三角晶格三重结构光子晶体1是沿X—Z平面周期性分布的介质柱型硅光子晶体,由简单结构的圆形硅介质柱三角晶格光子晶体、正方形硅介质柱三角晶格光子晶体和三角形硅介质柱三角晶格光子晶体嵌套而成。在其两端引入对称的线缺陷构成波导区2,在三角晶格三重结构光子晶体1的中心采用光控可调谐材料砷化镓构造方形介质柱,形成点缺陷谐振腔3,太赫兹波从波导区2的下端输入,波导区2的上端输出;控制光沿着垂直于X—Z平面的方向入射到方形点缺陷谐振腔3上。
波导区2是由移去了三角晶格三重结构光子晶体的两排对称交替的圆形,方形和三角形硅介质柱构成的线缺陷组成,两线缺陷不相通,与谐振腔沿直线排列。
太赫兹波载频分别为4.02THz,3.9THz和3.57THz(对应波长为74.599μm,76.965μm,84.033μm),控制泵浦光由太赫兹激光器提供或者由其倍频光提供。
本发明提供的基于三重晶格光子晶体可调谐振腔的太赫兹波调制器由三角晶格三重结构光子晶体1、波导区2、点缺陷谐振腔3构成。其中三角晶格三重结构光子晶体1是沿X—Z平面呈三角形周期性分布的介质柱型硅光子晶体,由简单结构的圆形硅介质柱三角晶格光子晶体,正方形硅介质柱三角晶格光子晶体和三角形硅介质柱三角晶格光子晶体嵌套而成。介质柱材料为硅,背景材料为空气。波导区2位于光子晶体的两端,由移去了三角晶格三重结构光子晶体的两排对称交替的圆形、方形和三角形硅介质柱构成的线缺陷(但两线缺陷不相通)组成。在两线缺陷连接处引入点缺陷谐振腔3,点缺陷3内填充光控可调谐材料砷化镓。太赫兹波从波导区2的左端输入,波导区2的右端输出。太赫兹波载频为4.02THz,3.9THz和3.57THz,泵浦光沿着垂直于X—Z平面的方向入射到方形点缺陷谐振腔3上;泵浦光可以由太赫兹激光器提供或者由其倍频光提供。
具体参数为:晶格常数a=33μm,圆形介质柱半径r=5μm,方形介质柱边长b=9μm,三角形介质柱底边s=15μm,高为h=11μm,硅介质柱折射率为3.4,背景材料空气的折射率为1,点缺陷处填充非线性光学材料砷化镓。(砷化镓的折射率定义为N=n-n’,包括实部与虚部两部分,其虚部的大小决定于泵浦光的波长与强度。砷化镓在太赫兹波段内的损耗机理为由于稀薄等离子体内自由载流子的吸收作用,进而影响其折射率虚部。当砷化镓处于基态时,损耗几乎可以忽略不计,但其在太赫兹波段的折射率虚部随泵浦光强的增加而增加,且其折射率实部基本保持不变。随着砷化镓内部载流子浓度从1015cm-3变化到1017cm-3,其虚部逐渐增加到和实部相等,进而超过实部。当没有泵浦光入射时,砷化镓处于基态,在太赫兹波段内损耗很小,可以忽略,即其虚部为0。当使用的泵浦光源(调制光源)波长为810nm,当其入射强度为0.4pJ/cm2时,砷化镓处于光子激发态,其折射率虚部约为2.55。当没有泵浦光入射点缺陷时,砷化镓的折射率为3.55;当使用泵浦光源(调制光源)波长为810nm,当其入射强度为0.4pJ/cm2时,砷化镓折射率实部仍为3.55,虚部约为2.55。)
此缺陷模变化型三波长太赫兹波调制器的工作原理如下:线缺陷的引入,实质是为太赫兹波的传输提供了波导,使频率范围落在光子禁带范围内的太赫兹波能够通过线缺陷;点缺陷的引入,实质上是一个太赫兹波谐振腔,它可以对太赫兹波选频,使符合谐振频率(即缺陷模频率)的太赫兹波在缺陷处谐振,在该调制器中,点缺陷可以激励三种波长的太赫兹波进行谐振。因此当没有泵浦光入射点缺陷时,砷化镓的折射率为3.55,虚部为0,点缺陷处对应的谐振模频率分别为4.02THz,3.9THz,3.57THz(对应波长为74.599μm,76.965μm,84.033μm),此时符合缺陷模频率的三波长太赫兹波均可通过线缺陷并耦合入方形点缺陷中进行谐振。当入射光在方形点缺陷处完全谐振时,几乎所有的输入光经过线缺陷输出,调制器表现为开。当使用泵浦光源入射光在点缺陷处不能产生谐振,(调制光源)波长为810nm,其入射强度为0.4pJ/cm2时,砷化镓折射率实部仍为3.55,虚部约为2.55,响应时间在ps量级,此时点缺陷处三缺陷模消失,线缺陷的输出端口没有光输出,调制器表现为关。
调制过程如下:当一束频率为4.02THz,3.9THz和3.57THz的TE模太赫兹波从调制器的线缺陷波导区入射时:
(1)当方形点缺陷处不加泵浦光,点缺陷处砷化镓的折射率实部为n=3.55,虚部n’=0,入射光为三种波长的太赫兹波,此时三种波长的光均能通过调制器。如图3a所示。缺陷模频率分别为4.02THz,3.9THz,3.57THz(对应波长为74.599μm,76.965μm,84.033μm)。此时调制器输出的光强约为2.89,响应时间约为253ps,插入损耗为0.16dB,消光比为34dB。
(2)在方形点缺陷处不加泵浦光,入射光频率为4.02THz的,此时该频率的入射光可通过调制器,如图3b所示。此时调制器输出的光强约为0.93,响应时间约为352ps,插入损耗为0.31dB。
(3)在方形点缺陷处不加泵浦光,入射光频率为3.9THz,此时该频率的入射光可通过调制器,如图3c所示。此时调制器输出的光强约为0.98,响应时间约为259ps,插入损耗为0.08dB。
(4)在方形点缺陷处不加泵浦光,入射光频率为3.57THz,此时该频率的入射光可通过调制器,如图3d所示。此时调制器输出的光强约为0.95,响应时间约为223ps,插入损耗为0.22dB。
(5)在方形点缺陷处加泵浦光,砷化镓折射率实部仍为3.55,虚部约为2.55,此时波长分别为74.599μm,76.965μm,84.033μm的入射光均不能通过线缺陷输出,如图3e所示。

Claims (3)

1.一种基于三重晶格光子晶体的三波长太赫兹波调制器,其特征在于该光子晶体太赫兹波调制器包括三角晶格三重结构光子晶体(1)、波导区(2)、点缺陷谐振腔(3);其中,三角晶格三重结构光子晶体(1)是沿X—Z平面周期性分布的介质柱型硅光子晶体,其构造是将圆形硅介质柱三角晶格光子晶体和正方形硅介质柱三角晶格光子晶体旋转后相互嵌套形成蜂窝型结构的光子晶体,再将三角形硅介质柱三角晶格光子晶体嵌套在蜂窝型光子晶体的中心处,从而形成方形,圆形和三角形硅介质柱构成三角晶格三重结构光子晶体(1);在三角晶格三重结构光子晶体(1)的两端引入对称的线缺陷构成波导区(2),然后在三角晶格三重结构光子晶体(1)的中心处采用光控可调谐材料砷化镓构造方形介质柱,形成点缺陷谐振腔(3),太赫兹波从波导区(2)的左端输入,波导区(2)的右端输出;控制光沿着垂直于X—Z平面的方向入射到方形点缺陷谐振腔(3)上。
2.根据权利要求1所述的基于三重晶格光子晶体的三波长太赫兹波调制器,其特征在于所述控制光由常用激光器提供或者由其倍频光提供。
3.一种如权利要求1所述的基于三重晶格光子晶体的三波长太赫兹波调制器的调制方法,其特征在于:所述的调制器通过控制泵浦光的有无,引起点缺陷填充的光控可调谐材料砷化镓的折射率发生非线性效应,使得在光子晶体中心点缺陷处谐振的三波长缺陷模发生动态变化,进而实现对三波长太赫兹波的通、断调制,实现了把信号加载到太赫兹波上。
CN201410117903.8A 2014-03-26 2014-03-26 基于三重晶格光子晶体的三波长太赫兹波调制器及调制方法 Active CN103885267B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410117903.8A CN103885267B (zh) 2014-03-26 2014-03-26 基于三重晶格光子晶体的三波长太赫兹波调制器及调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410117903.8A CN103885267B (zh) 2014-03-26 2014-03-26 基于三重晶格光子晶体的三波长太赫兹波调制器及调制方法

Publications (2)

Publication Number Publication Date
CN103885267A true CN103885267A (zh) 2014-06-25
CN103885267B CN103885267B (zh) 2016-07-06

Family

ID=50954233

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410117903.8A Active CN103885267B (zh) 2014-03-26 2014-03-26 基于三重晶格光子晶体的三波长太赫兹波调制器及调制方法

Country Status (1)

Country Link
CN (1) CN103885267B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932119A (zh) * 2015-06-25 2015-09-23 南京邮电大学 垂直磁控等离子体光子晶体太赫兹波调制器及调制方法
CN105572922A (zh) * 2016-02-15 2016-05-11 欧阳征标 光子晶体t型波导直角输出双路反相光学时钟信号发生器
CN105607305A (zh) * 2016-02-15 2016-05-25 欧阳征标 基于光子晶体t型波导的横向输出磁光调制器
CN105607304A (zh) * 2016-02-15 2016-05-25 欧阳征标 基于光子晶体t型波导的横向输出磁控二选一光路开关
CN105607303A (zh) * 2016-02-15 2016-05-25 欧阳征标 基于光子晶体t型波导的直角输出磁光调制器
CN108089251A (zh) * 2018-01-24 2018-05-29 厦门大学嘉庚学院 太赫兹波段四重光子晶体带阻滤波器
CN109669240A (zh) * 2019-01-04 2019-04-23 深圳大学 一种光子晶体波导六极分裂模干涉fano共振结构
CN109669242A (zh) * 2019-01-04 2019-04-23 深圳大学 一种光子晶体波导对角模干涉fano共振结构
CN109669239A (zh) * 2019-01-04 2019-04-23 深圳大学 一种光子晶体波导正交分裂模干涉fano共振结构
CN110008650A (zh) * 2019-05-17 2019-07-12 杭州电子科技大学 一种三维光子晶体内部缺陷成型定位的建模方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571657A (zh) * 2009-06-10 2009-11-04 南京邮电大学 一种光子晶体全光开关
CN101881918A (zh) * 2010-05-25 2010-11-10 南京邮电大学 一种基于非线性光子晶体的太赫兹波调制器及调制方法
CN102062987A (zh) * 2010-11-30 2011-05-18 南京邮电大学 复式结构光子晶体可调谐振腔的太赫兹波调制器及调制方法
CN102393571A (zh) * 2011-11-09 2012-03-28 南开大学 高速光子晶体波导太赫兹调制器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571657A (zh) * 2009-06-10 2009-11-04 南京邮电大学 一种光子晶体全光开关
CN101881918A (zh) * 2010-05-25 2010-11-10 南京邮电大学 一种基于非线性光子晶体的太赫兹波调制器及调制方法
CN102062987A (zh) * 2010-11-30 2011-05-18 南京邮电大学 复式结构光子晶体可调谐振腔的太赫兹波调制器及调制方法
CN102393571A (zh) * 2011-11-09 2012-03-28 南开大学 高速光子晶体波导太赫兹调制器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HE-MING CHEN等: "Optically-controlled high-speed terahertz wave modulator based on nonlinear photonic crystals", 《OPTICS EXPRESS》 *
L. FEKETE等: "Fast one-dimensional photonic crystal modulators for the terahertz range", 《OPTICS EXPRESS》 *
TIAN-BAO YU等: "Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler", 《JOURNAL OF OPTICS A》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932119A (zh) * 2015-06-25 2015-09-23 南京邮电大学 垂直磁控等离子体光子晶体太赫兹波调制器及调制方法
CN105607303B (zh) * 2016-02-15 2021-02-19 深圳大学 基于光子晶体t型波导的直角输出磁光调制器
CN105607304B (zh) * 2016-02-15 2021-02-19 欧阳征标 基于光子晶体t型波导的横向输出磁控二选一光路开关
CN105607304A (zh) * 2016-02-15 2016-05-25 欧阳征标 基于光子晶体t型波导的横向输出磁控二选一光路开关
CN105607303A (zh) * 2016-02-15 2016-05-25 欧阳征标 基于光子晶体t型波导的直角输出磁光调制器
CN105607305B (zh) * 2016-02-15 2021-03-02 欧阳征标 基于光子晶体t型波导的横向输出磁光调制器
CN105572922A (zh) * 2016-02-15 2016-05-11 欧阳征标 光子晶体t型波导直角输出双路反相光学时钟信号发生器
CN105607305A (zh) * 2016-02-15 2016-05-25 欧阳征标 基于光子晶体t型波导的横向输出磁光调制器
CN105572922B (zh) * 2016-02-15 2021-02-19 深圳大学 光子晶体t型波导直角输出双路反相光学时钟信号发生器
CN108089251A (zh) * 2018-01-24 2018-05-29 厦门大学嘉庚学院 太赫兹波段四重光子晶体带阻滤波器
CN108089251B (zh) * 2018-01-24 2023-05-12 厦门大学嘉庚学院 太赫兹波段四重光子晶体带阻滤波器
CN109669242A (zh) * 2019-01-04 2019-04-23 深圳大学 一种光子晶体波导对角模干涉fano共振结构
CN109669240A (zh) * 2019-01-04 2019-04-23 深圳大学 一种光子晶体波导六极分裂模干涉fano共振结构
CN109669239A (zh) * 2019-01-04 2019-04-23 深圳大学 一种光子晶体波导正交分裂模干涉fano共振结构
CN110008650A (zh) * 2019-05-17 2019-07-12 杭州电子科技大学 一种三维光子晶体内部缺陷成型定位的建模方法
CN110008650B (zh) * 2019-05-17 2023-02-07 杭州电子科技大学 一种三维光子晶体内部缺陷成型定位的建模方法

Also Published As

Publication number Publication date
CN103885267B (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN103885267A (zh) 基于三重晶格光子晶体的三波长太赫兹波调制器及调制方法
CN102062987B (zh) 复式结构光子晶体可调谐振腔的太赫兹波调制器及调制方法
CN102062986B (zh) 光控双波长太赫兹波调制器及调制方法
CN104932119B (zh) 垂直磁控等离子体光子晶体太赫兹波调制器及调制方法
CN101414029B (zh) 二维异质结光子晶体可调谐滤波器
CN104965319A (zh) 平行磁控等离子体光子晶体太赫兹波调制器及调制方法
CN101840126B (zh) 一种可降低功耗的硅基级联谐振腔全光逻辑与门结构
CN101794053B (zh) 基于微环谐振器结构的全光逻辑异或非门结构
CN104977775A (zh) 基于注入种子光的光学微腔光频梳产生装置及产生方法
CN103018928A (zh) 基于光注入半导体激光器系统的可调谐微波光子滤波器
Rahmati et al. Design and simulation of a switch based on nonlinear directional coupler
CN114137664B (zh) 一种用于提高全光波长转换效率的双谐振腔双波导耦合结构
CN101881918A (zh) 一种基于非线性光子晶体的太赫兹波调制器及调制方法
CN103064199A (zh) 反射型可调光延迟线
CN104267462A (zh) 环形腔结构太赫兹波光子晶体滤波器
CN103688203A (zh) 波向量匹配的谐振器及总线波导系统
CN205212162U (zh) 基于波导结构的内调制太赫兹源
CN103955078B (zh) 基于交叉偏振调制的光控微波调相器
CN104865715A (zh) 复式晶格光子晶体多波长太赫兹波光开关
CN1972043A (zh) 光子晶体激光器与光子晶体波导耦合输出方法及输出器
CN101521349A (zh) 一种白光量子点光纤激光器
CN202094471U (zh) 一种白光量子点光纤激光器
CN209560136U (zh) 一种基于光子晶体的八通道波分复用器
Ji et al. Design and performance analysis of a multi wavelength terahertz modulator based on triple-lattice photonic crystals
Hsiao et al. Design of silicon photonic crystal waveguides for high gain Raman amplification using two symmetric transvers-electric-like slow-light modes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant