CN103871034A - 一种自适应的图像椒盐噪声滤除方法 - Google Patents

一种自适应的图像椒盐噪声滤除方法 Download PDF

Info

Publication number
CN103871034A
CN103871034A CN201410109229.9A CN201410109229A CN103871034A CN 103871034 A CN103871034 A CN 103871034A CN 201410109229 A CN201410109229 A CN 201410109229A CN 103871034 A CN103871034 A CN 103871034A
Authority
CN
China
Prior art keywords
noise
pixel
filtering
image
noise spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410109229.9A
Other languages
English (en)
Other versions
CN103871034B (zh
Inventor
李天翼
周家文
党晓强
徐富刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201410109229.9A priority Critical patent/CN103871034B/zh
Publication of CN103871034A publication Critical patent/CN103871034A/zh
Application granted granted Critical
Publication of CN103871034B publication Critical patent/CN103871034B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)

Abstract

本发明公开了一种自适应的图像椒盐噪声滤除方法,步骤1,对图像的噪声密度进行计算,根据图像噪声密度检测出具有灰度极值的前K个像素;步骤2,从前面K个像素点中选取出L个噪声点,我们采用检测点做为中心点,其灰度值与其3×3邻域中其余八个点的灰度均值之差的绝对值作为相关性ρ,按照ρ值从大到小排序,选取前L个像素点作为最终确定的噪声点;步骤3,对步骤2得到的L个噪声点按照它们的3×3邻域中包含的噪声点数目从小到大进行排序,然后按照排序的顺序进行滤波,得到滤波后的图像。本发明的有益效果是相比现有方法的滤波效果好。

Description

一种自适应的图像椒盐噪声滤除方法
技术领域
本发明属于图像处理技术领域,涉及一种自适应的图像椒盐噪声滤除方法。
背景技术
成像过程中短暂停留引入的椒盐噪声是图像中一种典型的噪声源。该噪声不仅严重干扰人类对图像的认知,并且经常影响后续的图像处理,导致不正确的结果。因此对椒盐噪声的滤除是图像处理中一个重要的环节,往往决定着最终结果的成败。
最典型的椒盐噪声滤除方法是中值滤波。但该方法存在两个明显的弊端,一是执行全局滤波,在滤噪的同时必然会破坏图像的真实信息;二是采用中值输出,往往并不能很好地还原滤波像素的值。该方法在噪声密度较小时效果很好,但随着噪声增多,其性能急剧下降。为此,众多学者提出了各种改进算法,如加权中值滤波、自适应中值滤波、开关中值滤波、递进开关中值滤波、基于相似度函数的滤波、基于统计信息的滤波、大范围相关滤波,等等。这些算法主要从两个方面进行改进,一是采取某种策略对噪声点进行检测,从而执行有针对性的滤波,保护图像原有信息;二是在滤波输出上,选取能够尽可能逼近滤波像素真实值的方法,如加权中值输出、加权均值输出、基于相关性滤波、模糊滤波等。相对于传统中值滤波,这些算法都有明显的性能改善。然而,由于事先并不知道图像中噪声的多少,因此在执行滤波时,带有很大的盲目性,无论是对噪声点的检测还是滤波输出方面,都无法根据实际情况自适应地选择最佳的方式,因而其滤噪性能有限。特别是其中一些算法随着噪声密度增大,又退化成传统的中值滤波,不能胜任高椒盐噪声的滤除。
发明内容
本发明的目的在提供一种自适应的图像椒盐噪声滤除方法,解决了现有方法滤波性能有限,对于高椒盐噪声的滤除效果不是很好的问题。
本发明采用的技术方案是按照以下步骤进行:
步骤1,对图像的噪声密度进行计算,根据图像噪声密度检测出具有灰度极值的前K个像素;
步骤2,从前面K个像素点中选取出L个噪声点。我们采用检测点做为中心点,其灰度值与其3×3邻域中其余八个点的灰度均值之差的绝对值作为相关性ρ,按照ρ值从大到小排序,选取前L个像素点作为最终确定的噪声点;
步骤3,对步骤2得到的L个噪声点按照它们的3×3邻域中包含的噪声点数目从小到大进行排序,然后按照排序的顺序进行滤波,得到滤波后的图像。
本发明的特点还在于步骤1中,对图像的噪声密度进行计算是采用《基于小波域的图像椒盐噪声密度估计》(北京航空航天大学学报2012年第38卷第2期)一文中提出的方法,对图像中噪声密度进行计算,从而判断出图像中总的噪声点数量;所述K个像素的选取是我们在图像全局范围内检测具有极大值与极小值的前L个像素。
步骤2中,选取L个像素点作为最终确定的噪声点的过程为采用将这K个检测点做为中心点,每个检测点的灰度值与其3×3邻域中其余八个点的灰度均值之差的绝对值来代表这种相关性ρ,公式:
ρ = abs ( f ( m , n ) - 1 8 Σ ( x , y ) ∈ Ω f ( x , y ) ) ,
式中abs(·)表示取绝对值,(m,n)为中心像素,f(m,n)代表中心像素的灰度值,f(x,y)代表像素(x,y)的灰度值,而Ω代表像素(m,n)的3×3邻域中其余八个像素组成的集合,ρ取值越小,则表示检测点与其邻域的相关性越大,反之,则相关性越小,K个像素分别计算它们与其邻域的相关性ρ,然后按计算出的ρ值将它们从大到小排序,选取排名前L的像素点作为最终确定的噪声点。
步骤3中,对L个噪声点滤波的过程为:将L个噪声点,分别计算它们的3×3邻域中包含的噪声点数目。然后,我们将这些噪声点,按照它们的邻域中噪声点的多少从小到大排序,如果噪声点数目相等,则排列顺序为行数小的排在前,行数大的排在后,处于同一行的,则列数小的排在前,列数大的排在后,然后按从前至后的排列顺序依次对这些噪声点进行滤波输出;
当噪声密度小于等于40%时,并且3×3邻域中除中心像素外噪声点数量小于5时,仅利用剩余的非噪声点计算滤波输出,否则,扩展至在这之前已经滤波的噪声点像素一起计算滤波输出;
当噪声密度小于等于80%且大于40%时,且3×3邻域中除中心像素外噪声点数量小于7时,仅利用剩余的非噪声点计算滤波输出,否则,扩展至在这之前已经滤波的噪声点像素一起计算滤波输出;
当噪声密度大于80%且小于100%时,且当3×3邻域中除中心像素外噪声点数量小于8时,仅利用剩余的非噪声点计算滤波输出,否则,扩展至在这之前已经滤波的噪声点像素一起计算滤波输出。
仅利用剩余的非噪声点计算滤波输出的步骤为:令g代表含噪图像像素的灰度值,r代表滤波输出值,设待滤波的像素为(m,n),我们取其3×3邻域,并在该邻域除中心像素以外的八个像素中选取不是噪声点的像素,令Θ为选取出的非噪声像素集合,γ为该集合元素个数,我们计算Θ中元素的灰度均值:
g ‾ ( Θ ) = 1 γ Σ ( x , y ) ∈ Θ g ( x , y ) ,
这里g(x,y)代表含噪图像中像素(x,y)的灰度值。于是,我们将Θ中像素值与该均值之间的差距作为自变量定义相应的权值,最佳的权值定义为:
w ( x , y ) = exp ( - abs ( g ( x , y ) - g ‾ ( Θ ) ) 0.3 ) ,
式中abs(·)表示取绝对值,(x,y)为Θ中元素。于是,滤波像素(m,n)的滤波输出值为:
r ( m , n ) = Σ ( x , y ) ∈ Θ w ( x , y ) × g ( x , y ) / Σ ( x , y ) ∈ Θ w ( x , y ) .
扩展至在这之前已经滤波的噪声点像素一起计算滤波输出的步骤为:对于待滤波像素(m,n),一旦确定需要利用其邻域中已滤波的噪声点时,其滤波输出计算如下:
r ( m , n ) = ( Σ ( s , t ) ∈ Θ w ( s , t ) × g ( s , t ) + Σ ( p , q ) ∈ ψ w ( p , q ) × r ( p , q ) ) / ( Σ ( s , t ) ∈ Θ w ( s , t ) + Σ ( p , q ) ∈ ψ w ( p , q ) )
w(·)表示权值,g(·)表示含噪图像中相应像素的灰度值,而r(·)表示相应像素滤波后的值;式中Θ表示3×3邻域中非噪声点组成的集合,而Ψ表示该邻域中已滤波噪声点组成的集合。对于已滤波噪声点,利用的是它们已滤波以后的像素值。对于权值,非噪声点按下式计算:
w ( s , t ) = exp ( - abs ( g ( s , t ) - g ‾ ( Θ , ψ ) ) 0.3 ) ,
已滤波的噪声点按下式计算:
w ( p , q ) = exp ( - abs ( r ( p , q ) - g ‾ ( Θ , ψ ) ) 0.3 ) ,
式中均值
Figure BDA0000480708790000054
的定义如下:
g ‾ ( Θ , ψ ) = 1 γ 1 + γ 2 ( Σ ( s , t ) ∈ Θ g ( s , t ) + Σ ( p , q ) ∈ ψ r ( p , q ) ) ,
式中γ1和γ2分别表示Θ和Ψ中元素个数。
本发明的有益效果是相比现有方法的滤波效果好。
附图说明
图1是Lena原图及原图的含噪图像;
图2是Lena原图的20%含噪图像的四种滤波图;
图3是Lena原图的50%含噪图像的四种滤波图;
图4是Lena原图的80%含噪图像的四种滤波图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
为进一步提高图像椒盐噪声滤除的性能,这里我们提出一种自适应于噪声密度的滤除方法。仿真结果已经表明,我们提出的方法能够很好地滤除图像中的椒盐噪声,性能明显优于现有的其它方法。下面,我们首先阐述该方法的基本思想,然后在此基础上,进一步介绍该方法的具体步骤。
对图像椒盐噪声的滤除,如果事先能够计算出图像中噪声的密度,则可以充分利用这一先验知识,用于指导对噪声点的选择和滤波输出,从而根据图像中噪声的多少自适应地执行相应的滤波操作,达到提升性能的目的。在该方法中,我们正是利用已有的成果(该方法的发明者在《基于小波域的图像椒盐噪声密度估计》(北京航空航天大学学报2012年第38卷第2期)一文中提出的方法)首先对图像中椒盐噪声进行计算,在此基础上执行滤波。本方法包括两个方面的主要内容,一是对噪声点的选择,二是对噪声像素的滤波输出。
本发明方法按照以下步骤进行:
步骤1:在对噪声点的选取方面,我们采取的策略是,在计算出图像中噪声密度(假定为d%)后,我们可以判断图像中总的噪声点数量L=M×N×d%,(设定图像具有M行,N列),于是我们在图像全局范围内检测具有灰度极值(极大值与极小值)的前L个像素。不过,由于许多图像本身就包含一定数量的极值像素,其灰度值与噪声点灰度值相当,因此通常会有超过L个像素,假定为K个满足条件,为在满足条件的这些像素里找出真正的噪声点,我们进一步检测这些像素与其邻域的相关性。一般说来,由于噪声是外来的无意义的内容,因而噪声点与其邻域相关性很小;反之,对于图像本身的像素,即使其具有极值,仍然与其周围像素具有较高的相关性,因此很大程度上可以通过这种相关性将真正的噪声点检测出来。
步骤2:从前面K个像素点中选取出L个噪声点:我们采用将这K个检测点分别做为中心点,每个检测点的灰度值与其3×3邻域中其余八个点的灰度均值之差的绝对值来代表这种相关性,如式(1)所示:
ρ = abs ( f ( m , n ) - 1 8 Σ ( x , y ) ∈ Ω f ( x , y ) ) - - - ( 1 )
式中abs(·)表示取绝对值,(m,n)为中心像素,f(m,n)代表中心像素的灰度值,类似地,f(x,y)代表像素(x,y)的灰度值。而Ω代表像素(m,n)的3×3邻域中其余八个像素组成的集合。按照式(1)定义的相关性,ρ取值越小,则表示检测点与其邻域的相关性越大,反之,则相关性越小。我们通过式(1)对先前满足条件的K个像素分别计算它们与其邻域的相关性,然后按计算出的ρ值将它们从大到小排序,选取排名前L的像素点作为最终确定的噪声点,如果第L个像素点的ρ值有重复的,则随机在重复的像素点中选取一个。我们的滤波将只针对选取的这L个像素进行,从而很大程度上保护了图像本身的信息不受破坏,由于这种方法能够有效检测出图像中的噪声点,所以又能最大限度地滤除噪声。当然,考虑到对噪声密度的计算会有一定的误差,为避免漏掉少量的噪声点,可以在初始计算出的密度值上再添加一到两个百分点。
步骤3:在确定出图像中的噪声点后,就可以对这些像素执行滤波了。首先,我们对前面选取出的L个噪声点,分别计算它们的3×3邻域中包含的噪声点数目。然后,我们将这些噪声点,按照它们的邻域中噪声点的多少从小到大排序,如果噪声点数目相等,则排列顺序为行数小的排在前,行数大的排在后,处于同一行的,则列数小的排在前,列数大的排在后。接下来,我们就按从前至后的排列顺序依次对这些噪声点进行滤波输出。这意味着,在滤波输出时,我们首先是对其邻域中所含噪声点最少的像素执行滤波,换句话说,也就是对可用信息最多的像素最先执行滤波,这种方式能够最大化地利用图像的原始信息。在滤波输出的计算上,我们采取的是一种3×3的加权均值滤波方式。令g代表含噪图像像素的灰度值,r代表滤波输出值。设待滤波的像素为(m,n),我们取其3×3邻域,并在该邻域除中心像素以外的八个像素中选取不是噪声点的像素(即代表可用信息的像素),令Θ为选取出的非噪声像素集合,γ为该集合元素个数。我们计算Θ中元素的灰度均值:
g ‾ ( Θ ) = 1 γ Σ ( x , y ) ∈ Θ g ( x , y ) - - - ( 2 )
这里g(x,y)代表含噪图像中像素(x,y)的灰度值。
根据图像的相关特性,该均值很大程度上体现了中心像素的真实值。于是,我们将Θ中像素值与该均值之间的差距作为自变量定义相应的权值,差距越小,权值越大,反之,则权值越小。以滤噪后图像的SNR值作为准则,我们通过大量的实验数据,确定最佳的权值定义为:
w ( x , y ) = exp ( - abs ( g ( x , y ) - g ‾ ( Θ ) ) 0.3 ) - - - ( 3 )
式中abs(·)表示取绝对值,(x,y)为Θ中元素。于是,滤波像素(m,n)的输出值为:
r ( m , n ) = Σ ( x , y ) ∈ Θ w ( x , y ) × g ( x , y ) / Σ ( x , y ) ∈ Θ w ( x , y ) - - - ( 4 )
当噪声密度较大时,对于有的滤波像素,其邻域中会聚集较多的噪声点,如果依靠仅剩不多的非噪声点计算输出值,容易产生较大的偏差,为利用尽可能多的信息,此时可以考虑将邻域中本来是噪声点但已经过滤波的像素作为可用像素参与中心像素的输出计算,因为它们虽然是噪声点,但经过滤波后,其像素值已接近真实图像的值,因而在一定程度上是可用的。但这些像素毕竟不如非噪声点像素那样更具可靠性,在引入的同时也会带来一定的误差。因此,这里必须确定一个合适的阈值,用以判断当3×3邻域中噪声点超过多少时,才利用那些在这之前经过了滤波的噪声像素。我们以最终滤噪效果为准则,经过大量的实验和统计分析,发现这个最佳阈值的确定和噪声密度有关。我们最终的阈值确定原则如表1所示。
表1阈值确定原则
Figure BDA0000480708790000092
如前所述,在滤波时,是先对邻域中噪声点数量较小的像素滤波。因此,在对某中心像素滤波时,其邻域中的某些噪声点很可能已经执行了滤波,执行了滤波的这些噪声点已经获得了滤波后的值,这些值虽然不一定准确地体现原图像中相应像素的值,但有参考价值,因此在中心像素邻域中噪声点数量超过阈值时,可以利用这些滤波后的噪声点的值参加计算。
于是,对于待滤波像素(m,n),一旦确定需要利用其邻域中已滤波的噪声点时,其滤波输出计算如下:
r ( m , n ) = ( Σ ( s , t ) ∈ Θ w ( s , t ) × g ( s , t ) + Σ ( p , q ) ∈ ψ w ( p , q ) × r ( p , q ) ) / ( Σ ( s , t ) ∈ Θ w ( s , t ) + Σ ( p , q ) ∈ ψ w ( p , q ) ) ( 5 )
w(·)表示权值,g(·)表示含噪图像中相应像素的灰度值,而r(·)表示相应像素滤波后的值。
式中Θ表示3×3邻域中非噪声点组成的集合,而Ψ表示该邻域中已滤波噪声点组成的集合,注意对于已滤波噪声点,利用的是它们已滤波以后的像素值。对于权值,非噪声点和已滤波的噪声点分别按式(6)和式(7)计算:
Figure BDA0000480708790000111
Figure BDA0000480708790000112
上两式中均值的定义如下:
Figure BDA0000480708790000114
式中γ1和γ2分别表示Θ和Ψ中元素个数。
在执行滤波时,我们始终采用3×3小邻域,目的是避免大邻域带来的误差,并有效防止图像模糊。由于我们首先对邻域中噪声点最少的像素执行滤波,所以虽然是小邻域,但对于邻域中噪声点不多的中心像素,能够保证利用足够多的信息计算输出。而对于邻域中噪声点较多的像素,由于在滤波顺序上较后,也总是能够利用先前已经滤波的噪声点,所以也能够保证间接地获取足够的可用信息。因此,我们的处理方式能够保证所有噪声点都能得到有效的滤波。
下面列举具体实施例来进行说明:
实施例1:
为表明本方法的性能,我们在Matlab中进行仿真实验。我们选取图像Lena作为实验图像,分别添加密度为10%、20%、30%、40%、50%、60%、70%、80%的椒盐噪声,然后对各含噪图像分别采用标准中值滤波、自适应中值滤波、基于相似度函数的滤波以及本方法进行滤噪,滤噪后图像的信噪比SNR值列于表2。同时,我们列出在噪声密度为20%、50%和80%情况下,采用各方法滤噪后的图像,如图1至图4所示。图1所示,(a)为原图,(b)为20%含噪图像,(c)50%含噪图像,(d)80%含噪图像。
图2为对20%含噪图像进行四种滤波后的图像,即(a)标准中值滤波,(b)自适应中值滤波,(c)相似度函数滤波,(d)本发明方法。
图3为对50%含噪图像进行四种滤波后的图像,即(a)标准中值滤波,(b)自适应中值滤波,(c)相似度函数滤波,(d)本发明方法。
图4为对80%含噪图像进行四种滤波后的图像,即(a)标准中值滤波,(b)自适应中值滤波,(c)相似度函数滤波,(d)本发明方法。
实验数据如下表2所示为滤噪后图像的SNR值:
表2
噪声密度 10% 20% 30% 40% 50% 60% 70% 80%
标准中值滤波 24.96 21.77 17.06 13.04 9.42 6.62 4.28 2.42
自适应中值滤波 29.25 26.79 24.91 23.24 21.51 19.21 15.03 9.64
相似度函数滤波 29.33 26.66 25.30 23.91 22.69 21.49 19.71 17.96
本方法 34.38 30.35 28.06 26.54 24.89 23.57 21.98 20.16
客观数据和结果图像都表明,本方法的性能明显优于现有其它方法。

Claims (6)

1.一种自适应的图像椒盐噪声滤除方法,其特征在于按照以下步骤进行:
步骤1,对图像的噪声密度进行计算,根据图像噪声密度检测出具有灰度极值的前K个像素;
步骤2,从前面K个像素点中选取出L个噪声点。我们采用检测点做为中心点,其灰度值与其3×3邻域中其余八个点的灰度均值之差的绝对值作为相关性ρ,按照ρ值从大到小排序,选取前L个像素点作为最终确定的噪声点;
步骤3,对步骤2得到的L个噪声点按照它们的3×3邻域中包含的噪声点数目从小到大进行排序,然后按照排序的顺序进行滤波,得到滤波后的图像。
2.按照权利要求1所述一种自适应的图像椒盐噪声滤除方法,其特征在于:所述步骤1中,对图像的噪声密度进行计算是采用《基于小波域的图像椒盐噪声密度估计》(北京航空航天大学学报2012年第38卷第2期)一文中提出的方法,对图像中噪声密度进行计算,从而判断出图像中总的噪声点数量;所述K个像素的选取是我们在图像全局范围内检测具有极大值与极小值的前L个像素。
3.按照权利要求1所述一种自适应的图像椒盐噪声滤除方法,其特征在于:所述步骤2中,选取前L个像素点作为最终确定的噪声点的过程为采用将这K个检测点做为中心点,每个检测点的灰度值与其3×3邻域中其余八个点的灰度均值之差的绝对值来代表这种相关性ρ,公式:
ρ = abs ( f ( m , n ) - 1 8 Σ ( x , y ) ∈ Ω f ( x , y ) ) ,
式中abs(·)表示取绝对值,(m,n)为中心像素,f(m,n)代表中心像素的灰度值,f(x,y)代表像素(x,y)的灰度值,而Ω代表像素(m,n)的3×3邻域中其余八个像素组成的集合,ρ取值越小,则表示检测点与其邻域的相关性越大,反之,则相关性越小,K个像素分别计算它们与其邻域的相关性ρ,然后按计算出的ρ值将它们从大到小排序,选取排名前L的像素点作为最终确定的噪声点。
4.按照权利要求1所述一种自适应的图像椒盐噪声滤除方法,其特征在于:所述步骤3中,对L个噪声点滤波的过程为:将L个噪声点,分别计算它们的3×3邻域中包含的噪声点数目,然后,我们将这些噪声点,按照它们的邻域中噪声点的多少从小到大排序,如果噪声点数目相等,则排列顺序为行数小的排在前,行数大的排在后,处于同一行的,则列数小的排在前,列数大的排在后,然后按从前至后的排列顺序依次对这些噪声点进行滤波输出;
当噪声密度小于等于40%时,并且3×3邻域中除中心像素外噪声点数量小于5时,仅利用剩余的非噪声点计算滤波输出,否则,扩展至在这之前已经滤波的噪声点像素一起计算滤波输出;
当噪声密度小于等于80%且大于40%时,且3×3邻域中除中心像素外噪声点数量小于7时,仅利用剩余的非噪声点计算滤波输出,否则,扩展至在这之前已经滤波的噪声点像素一起计算滤波输出;
当噪声密度大于80%且小于100%时,且当3×3邻域中除中心像素外噪声点数量小于8时,仅利用剩余的非噪声点计算滤波输出,否则,扩展至在这之前已经滤波的噪声点像素一起计算滤波输出。
5.按照权利要求4所述一种自适应的图像椒盐噪声滤除方法,其特征在于:所述仅利用剩余的非噪声点计算滤波输出的步骤为:令g代表含噪图像像素的灰度值,r代表滤波输出值,设待滤波的像素为(m,n),我们取其3×3邻域,并在该邻域除中心像素以外的八个像素中选取不是噪声点的像素,令Θ为选取出的非噪声像素集合,γ为该集合元素个数,我们计算Θ中元素的灰度均值:
g ‾ ( Θ ) = 1 γ Σ ( x , y ) ∈ Θ g ( x , y ) ,
这里g(x,y)代表含噪图像中像素(x,y)的灰度值,于是,我们将Θ中像素值与该均值之间的差距作为自变量定义相应的权值,最佳的权值定义为:
w ( x , y ) = exp ( - abs ( g ( x , y ) - g ‾ ( Θ ) ) 0.3 ) ,
式中abs(·)表示取绝对值,(x,y)为Θ中元素。于是,滤波像素(m,n)的滤波输出值为:
r ( m , n ) = Σ ( x , y ) ∈ Θ w ( x , y ) × g ( x , y ) / Σ ( x , y ) ∈ Θ w ( x , y ) .
6.按照权利要求4所述一种自适应的图像椒盐噪声滤除方法,其特征在于:所述扩展至在这之前已经滤波的噪声点像素一起计算滤波输出的步骤为:对于待滤波像素(m,n),一旦确定需要利用其邻域中已滤波的噪声点时,其滤波输出计算如下:
r ( m , n ) = ( Σ ( s , t ) ∈ Θ w ( s , t ) × g ( s , t ) + Σ ( p , q ) ∈ ψ w ( p , q ) × r ( p , q ) ) / ( Σ ( s , t ) ∈ Θ w ( s , t ) + Σ ( p , q ) ∈ ψ w ( p , q ) )
w(·)表示权值,g(·)表示含噪图像中相应像素的灰度值,而r(·)表示相应像素滤波后的值;式中Θ表示3×3邻域中非噪声点组成的集合,而Ψ表示该邻域中已滤波噪声点组成的集合,对于已滤波噪声点,利用的是它们已滤波以后的像素值,对于权值,非噪声点按下式计算:
w ( s , t ) = exp ( - abs ( g ( s , t ) - g ‾ ( Θ , ψ ) ) 0.3 ) ,
已滤波的噪声点按下式计算:
w ( p , q ) = exp ( - abs ( r ( p , q ) - g ‾ ( Θ , ψ ) ) 0.3 ) ,
式中均值
Figure FDA0000480708780000044
的定义如下:
g ‾ ( Θ , ψ ) = 1 γ 1 + γ 2 ( Σ ( s , t ) ∈ Θ g ( s , t ) + Σ ( p , q ) ∈ ψ r ( p , q ) ) ,
式中γ1和γ2分别表示Θ和Ψ中元素个数。
CN201410109229.9A 2014-03-22 2014-03-22 一种自适应的图像椒盐噪声滤除方法 Expired - Fee Related CN103871034B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410109229.9A CN103871034B (zh) 2014-03-22 2014-03-22 一种自适应的图像椒盐噪声滤除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410109229.9A CN103871034B (zh) 2014-03-22 2014-03-22 一种自适应的图像椒盐噪声滤除方法

Publications (2)

Publication Number Publication Date
CN103871034A true CN103871034A (zh) 2014-06-18
CN103871034B CN103871034B (zh) 2017-03-22

Family

ID=50909543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410109229.9A Expired - Fee Related CN103871034B (zh) 2014-03-22 2014-03-22 一种自适应的图像椒盐噪声滤除方法

Country Status (1)

Country Link
CN (1) CN103871034B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167005A (zh) * 2014-07-07 2014-11-26 浙江大学 一种基于相似度函数的自适应加权椒盐噪声滤波方法
CN104978715A (zh) * 2015-05-11 2015-10-14 中国科学院光电技术研究所 一种基于滤波窗口及参数自适应的非局部均值图像去噪方法
CN107358580A (zh) * 2017-06-16 2017-11-17 广东欧珀移动通信有限公司 高光区域的消除方法、装置及终端
CN108109136A (zh) * 2017-12-12 2018-06-01 武汉精测电子集团股份有限公司 一种面板检测中表面灰尘快速过滤方法及装置
CN108320269A (zh) * 2017-01-18 2018-07-24 重庆邮电大学 一种高效消除高密度椒盐噪声的方法
CN109920113A (zh) * 2019-03-13 2019-06-21 苏州华盖信息科技有限公司 智能锁系统的控制方法及智能锁系统
CN110893109A (zh) * 2019-10-18 2020-03-20 深圳北芯生命科技有限公司 血管内超声系统的图像降噪方法
CN111414922A (zh) * 2019-01-07 2020-07-14 阿里巴巴集团控股有限公司 特征提取方法、图像处理方法、模型训练方法及装置
CN115063302A (zh) * 2022-05-10 2022-09-16 华南理工大学 针对指纹图像椒盐噪声的有效去除方法
CN115661135A (zh) * 2022-12-09 2023-01-31 山东第一医科大学附属省立医院(山东省立医院) 一种心脑血管造影的病灶区域分割方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7167281B1 (en) * 1999-11-26 2007-01-23 Fujitsu Limited Image processing apparatus and method for binarizing a multilevel image
KR100785972B1 (ko) * 2006-11-17 2007-12-14 주식회사 대우일렉트로닉스 영상 처리 장치
CN102256048A (zh) * 2011-07-19 2011-11-23 南京信息工程大学 一种自适应密度的图像椒盐噪声开关滤波方法
CN102663705A (zh) * 2012-04-20 2012-09-12 成都市知用科技有限公司 一种滤除图像椒盐噪声的方法
CN103093443A (zh) * 2012-12-26 2013-05-08 南京信息工程大学 基于ga-bp神经网络的图像椒盐噪声自适应滤波方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7167281B1 (en) * 1999-11-26 2007-01-23 Fujitsu Limited Image processing apparatus and method for binarizing a multilevel image
KR100785972B1 (ko) * 2006-11-17 2007-12-14 주식회사 대우일렉트로닉스 영상 처리 장치
CN102256048A (zh) * 2011-07-19 2011-11-23 南京信息工程大学 一种自适应密度的图像椒盐噪声开关滤波方法
CN102663705A (zh) * 2012-04-20 2012-09-12 成都市知用科技有限公司 一种滤除图像椒盐噪声的方法
CN103093443A (zh) * 2012-12-26 2013-05-08 南京信息工程大学 基于ga-bp神经网络的图像椒盐噪声自适应滤波方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MU-HSIEN HSIEH 等: "Fast and efficient median filter for removing 1–99% levels of salt-and-pepper noise in images", 《ENGINEERING APPLICATIONS OF ARTIfiCIAL INTELLIGENCE》, vol. 26, no. 4, 30 April 2013 (2013-04-30) *
YU JIANG 等: "A Filtering Algorithm for Removing Salt and Pepper Noise and Preserving Details of Images", 《2010 IEEE WICOM》, 25 September 2010 (2010-09-25) *
李天翼 等: "图像高椒盐噪声的迭代滤除算法", 《北京工业大学学报》, vol. 38, no. 5, 10 May 2012 (2012-05-10) *
李天翼 等: "基于小波域的图像椒盐噪声密度估计", 《北京航空航天大学学报》, vol. 38, no. 2, 21 February 2012 (2012-02-21) *
陈从平 等: "高密度椒盐噪声图像开关自适应滤波算法", 《激光与红外》, vol. 41, no. 7, 20 July 2011 (2011-07-20) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167005A (zh) * 2014-07-07 2014-11-26 浙江大学 一种基于相似度函数的自适应加权椒盐噪声滤波方法
CN104978715A (zh) * 2015-05-11 2015-10-14 中国科学院光电技术研究所 一种基于滤波窗口及参数自适应的非局部均值图像去噪方法
CN104978715B (zh) * 2015-05-11 2017-08-11 中国科学院光电技术研究所 一种基于滤波窗口及参数自适应的非局部均值图像去噪方法
CN108320269A (zh) * 2017-01-18 2018-07-24 重庆邮电大学 一种高效消除高密度椒盐噪声的方法
CN107358580A (zh) * 2017-06-16 2017-11-17 广东欧珀移动通信有限公司 高光区域的消除方法、装置及终端
CN108109136A (zh) * 2017-12-12 2018-06-01 武汉精测电子集团股份有限公司 一种面板检测中表面灰尘快速过滤方法及装置
CN111414922A (zh) * 2019-01-07 2020-07-14 阿里巴巴集团控股有限公司 特征提取方法、图像处理方法、模型训练方法及装置
CN111414922B (zh) * 2019-01-07 2022-11-15 阿里巴巴集团控股有限公司 特征提取方法、图像处理方法、模型训练方法及装置
CN109920113A (zh) * 2019-03-13 2019-06-21 苏州华盖信息科技有限公司 智能锁系统的控制方法及智能锁系统
CN110893109A (zh) * 2019-10-18 2020-03-20 深圳北芯生命科技有限公司 血管内超声系统的图像降噪方法
CN115063302A (zh) * 2022-05-10 2022-09-16 华南理工大学 针对指纹图像椒盐噪声的有效去除方法
CN115063302B (zh) * 2022-05-10 2024-03-29 华南理工大学 针对指纹图像椒盐噪声的有效去除方法
CN115661135A (zh) * 2022-12-09 2023-01-31 山东第一医科大学附属省立医院(山东省立医院) 一种心脑血管造影的病灶区域分割方法

Also Published As

Publication number Publication date
CN103871034B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN103871034A (zh) 一种自适应的图像椒盐噪声滤除方法
CN110378844B (zh) 基于循环多尺度生成对抗网络的图像盲去运动模糊方法
CN103606137B (zh) 保持背景和细节信息的直方图均衡化方法
Jourabloo et al. New algorithms for recovering highly corrupted images with impulse noise
CN103198480B (zh) 基于区域和Kmeans聚类的遥感图像变化检测方法
CN106169181B (zh) 一种图像处理方法及系统
CN102256048B (zh) 一种自适应密度的图像椒盐噪声开关滤波方法
CN102567973B (zh) 基于改进的形状自适应窗口的图像去噪方法
CN105590301B (zh) 自适应正斜双十字窗均值滤波的脉冲噪声消除方法
CN103279931A (zh) 基于透射率的去雾图像去噪方法
Horng et al. Using sorted switching median filter to remove high-density impulse noises
CN103093443B (zh) 基于ga-bp神经网络的图像椒盐噪声自适应滤波方法
CN103226820A (zh) 改进的二维最大熵分割夜视图像融合目标检测算法
CN102930508B (zh) 基于图像残余信号的非局部均值图像去噪方法
CN103886563A (zh) 基于非局部平均和异质性测量的sar图像斑点噪声抑制方法
CN103020918A (zh) 基于形状自适应邻域均值的非局部均值去噪方法
CN114004754B (zh) 一种基于深度学习的场景深度补全系统及方法
CN103337053A (zh) 一种基于开关非局部全变分的椒盐噪声污染图像滤波方法
CN106709497A (zh) 一种基于pcnn的红外运动弱小目标检测方法
CN107230214A (zh) 基于递归otsu算法的sar图像水域自动检测方法
CN102750700A (zh) 一种结合邻域信息的快速鲁棒模糊c均值图像分割方法
CN102081799B (zh) 基于邻域相似性及双窗口滤波的sar图像变化检测方法
US9135685B2 (en) Image processing method and image processing device
CN102663705B (zh) 一种滤除图像椒盐噪声的方法
Ramadan Salt-and-pepper noise removal and detail preservation using convolution kernels and pixel neighborhood

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170322

Termination date: 20180322

CF01 Termination of patent right due to non-payment of annual fee