CN103870552B - Scrambling and recovery method for GIS (Geographic Information System) vector data line and plane graphic layer - Google Patents
Scrambling and recovery method for GIS (Geographic Information System) vector data line and plane graphic layer Download PDFInfo
- Publication number
- CN103870552B CN103870552B CN201410074613.XA CN201410074613A CN103870552B CN 103870552 B CN103870552 B CN 103870552B CN 201410074613 A CN201410074613 A CN 201410074613A CN 103870552 B CN103870552 B CN 103870552B
- Authority
- CN
- China
- Prior art keywords
- transformation
- point
- scrambling
- elements
- vector data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/29—Geographical information databases
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Remote Sensing (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
- Complex Calculations (AREA)
Abstract
Description
技术领域technical field
本发明属于地理信息安全领域,具体涉及一种基于有限整数域上拟仿射变换进行GIS矢量数据线面图层的置乱与还原的方法,能够实现地理信息系统领域矢量数据的安全传输与访问。The invention belongs to the field of geographic information security, and specifically relates to a method for scrambling and restoring GIS vector data line-surface layers based on quasi-affine transformation on a finite integer field, which can realize safe transmission and access of vector data in the field of geographic information systems .
背景技术Background technique
GIS矢量数据具有高精度、海量、易存储、自动化处理以及无损缩放等传统纸质地图无法比拟的优点,应用范围极其广泛,然而在网络存储和传输过程中,GIS矢量数据很容易被非法截取和篡改,因此,针对GIS矢量数据安全的研究至关重要。目前已有的加密方法主要是针对坐标精度的改变来实现加密的,且大多加密粒度层次较粗,没有考虑到要素间的拓扑关系,因此从优先破坏空间关系的角度着手,基于点序打乱的GIS矢量数据置乱方法是一种重要的信息加密技术和有效的安全增强手段,对于提高网络信息传输的安全性具有重要意义。GIS vector data has the incomparable advantages of traditional paper maps such as high precision, massive volume, easy storage, automatic processing, and lossless scaling, and has a wide range of applications. Tampering, therefore, the research on the security of GIS vector data is very important. The existing encryption methods are mainly aimed at the change of coordinate precision to achieve encryption, and most of the encryption granularity is relatively coarse, without considering the topological relationship between elements, so starting from the perspective of destroying the spatial relationship first, based on the point order The GIS vector data scrambling method is an important information encryption technology and an effective security enhancement method, which is of great significance for improving the security of network information transmission.
GIS矢量数据置乱的原理即是将点序号(x,y)置乱变换到点序号(x′,y′)处,即将原来点(x,y)处的属性值赋值给(x′,y′)处的点要素。Daubechies,I.(1996)阐述了由整数到整数的可逆变换思想,朱桂斌(2003)等给出了基于拟仿射变换的图像置乱算法。The principle of GIS vector data scrambling is to scramble the point number (x, y) to the point number (x′, y′), that is, assign the attribute value at the original point (x, y) to (x′, y′). Daubechies, I. (1996) expounded the idea of reversible transformation from integer to integer, and Zhu Guibin (2003) gave an image scrambling algorithm based on quasi-affine transformation.
整数提升变换可以实现整数到整数的可逆变换:Integer promotion transforms can implement reversible integer-to-integer transformations:
对于以下特殊形式的仿射变换:For affine transformations of the following special form:
可以构造他所对应的整数变换为The corresponding integer transformation can be constructed as
其中表示x的整数部分(符号表示取整运算),加入0.5以实现舍入。从公式(2)可以看出,如果输入x,y为整数,那么经过计算的到的x′,y′也必定为整数,其逆变换为:in represents the integer part of x (symbol Indicates a rounding operation), add 0.5 for rounding. It can be seen from the formula (2) that if the input x and y are integers, then the calculated x′ and y′ must also be integers, and the inverse transformation is:
公式(2)为公式(1)的整数提升变换,公式(3)为公式(1)的逆整数提升变换。除此以外,整数提升变换的级联也可以实现整数到整数的可逆变换。Formula (2) is the integer lifting transformation of formula (1), and formula (3) is the inverse integer lifting transformation of formula (1). In addition, the cascade of integer lifting transformations can also achieve reversible integer-to-integer transformations.
有限整数域上的提升变换也可以实现有限整数域到有限整数域的可逆变换:Lifting transformations over finite integer fields can also implement reversible transformations from finite integer fields to finite integer fields:
定义变换是离散点域{(x,y):0≤x<M,0≤y<N}到其自身的单映射和满映射。对于公式(1),当限定0≤x<M,0≤y<N时,可以构造相应的有限整数域上的提升变换如下:Definition Transforms are the single and full maps of the discrete point field {(x,y):0≤x<M,0≤y<N} to itself. For formula (1), when 0≤x<M, 0≤y<N, the lifting transformation on the corresponding finite integer field can be constructed as follows:
对应的逆变换为:The corresponding inverse transformation is:
同样,有限整数域上的提升变换的级联也可以实现有限整数域上到有限整数域的可逆变换。Likewise, the concatenation of lifting transformations over finite integer fields can also implement reversible transformations from finite integer fields to finite integer fields.
而GIS矢量数据的空间有限性和点线序号的整数变换要求与有限域上整数提升变换的特征基本一致,因此该变换方法能很好地应用到矢量数据置乱中来。但GIS矢量数据线面图层是由点要素个数不等的线要素组成,属于不饱和矩阵,不完全符合有限域的要求。因此,为了方便数据组织变换,提高数据处理效率,可将矢量数据“补充”成“方阵”形式,构建有限域置乱变换空间,进而实现GIS矢量数据要素类和要素之间的全局置乱。However, the space limitation of GIS vector data and the integer transformation requirements of point and line serial numbers are basically consistent with the characteristics of integer lifting transformation on finite fields, so this transformation method can be well applied to vector data scrambling. However, the line-surface layer of GIS vector data is composed of line elements with different numbers of point elements, which belongs to an unsaturated matrix and does not fully meet the requirements of finite fields. Therefore, in order to facilitate the transformation of data organization and improve the efficiency of data processing, the vector data can be "supplemented" into a "square matrix" form to construct a finite field scrambling transformation space, and then realize the global scrambling between GIS vector data feature classes and elements .
发明内容Contents of the invention
本发明的目的在于:基于优先破坏要素间拓扑关系的原则、有限整数域上的拟仿射变换方法及GIS矢量数据特点,提出一种针对线面类型GIS矢量数据的置乱与还原方法,从而为GIS矢量数据的安全传输、封装存储等提供技术支持。The object of the present invention is: based on the principle of preferentially destroying the topological relationship between elements, the quasi-affine transformation method on the finite integer domain and the characteristics of GIS vector data, a kind of scrambling and restoration method for line-surface type GIS vector data is proposed, thereby Provide technical support for the safe transmission, packaging and storage of GIS vector data.
为了实现上述目的,本发明采取的技术方案为:In order to achieve the above object, the technical scheme that the present invention takes is:
一种GIS矢量数据线面图层的置乱与还原方法,包括如下步骤:A method for scrambling and restoring a GIS vector data line surface layer, comprising the following steps:
(一)置乱过程(1) Shuffle process
步骤11:构造矢量数据有限域置乱变换空间Step 11: Construct vector data finite field scrambling transformation space
a)打开一个线面类型GIS矢量数据文件,依次读取各要素的空间数据,以及线面要素的总个数I和含有最多点数的线面的点要素个数J;a) Open a line-surface type GIS vector data file, and read the spatial data of each element in turn, as well as the total number I of line-surface elements and the number J of point elements of the line-surface with the largest number of points;
b)构造矢量数据有限域空间,确定置乱变换的离散点域{(x,y):0≤x<I,0≤y<J},其中x为矢量数据线面要素的序号,y为点要素的序号;b) Construct the vector data finite field space, and determine the discrete point field {(x,y):0≤x<I,0≤y<J} of the scrambling transformation, where x is the serial number of the line and surface elements of the vector data, and y is The serial number of the point element;
步骤12:确定置乱变换规则Step 12: Determine the scrambling transformation rules
仿射变换的一般形式为The general form of an affine transformation is
当系数满足
该变换是限定在离散点域{(x,y):0≤x<I,0≤y<J}上,将平移参数e,f融入最后一次整数提升变换中进行简单舍入取整,其他部分以整数提升变换实现,即可实现公式(1)在有限整数域上的拟仿射变换,最后一次整数提升变换如下:This transformation is limited to the discrete point domain {(x,y):0≤x<I,0≤y<J}, and the translation parameters e and f are integrated into the last integer lifting transformation for simple rounding and rounding, and other Part of it is realized by integer lifting transformation, which can realize the quasi-affine transformation of formula (1) on the finite integer field. The last integer lifting transformation is as follows:
其相应的逆变换为:Its corresponding inverse transform is:
其中,表示四舍五入取整运算,mod表示取余运算,各级整数提升变换中引入了非线性的舍入运算,使得最后的结果不再是传统意义上的仿射变换,这种整数拟仿射变换的逆变换一定存在,且是有限整数域上的一一变换;in, Indicates the rounding and rounding operation, and mod represents the remainder operation. The non-linear rounding operation is introduced in the integer promotion transformation at all levels, so that the final result is no longer the affine transformation in the traditional sense. The integer quasi-affine transformation of this kind The inverse transformation must exist, and it is a one-to-one transformation on the finite integer field;
步骤13:变换参数生成Step 13: Transform parameter generation
根据公式(2),需要生成整数提升变换的参数a1,a2,a3,及平移参数e,f;利用混沌系统,输入密钥文件迭代生成xn;对xn进行间隔取位,得到Logistic混沌系统的迭代次数n1,n2,n3,ne,nf;对Logistic混沌系统再分别迭代n1,n2,n3,ne,nf次,即可得到整数提升变换的参数a1,a2,a3及平移参数e,f;According to the formula (2), it is necessary to generate the parameters a 1 , a 2 , a 3 of the integer lifting transformation, and the translation parameters e, f; using the chaotic system , input the key file to iteratively generate x n ; take intervals for x n to get the number of iterations n 1 , n 2 , n 3 , n e , n f of the Logistic chaotic system; iterate n 1 , n f for the Logistic chaotic system respectively n 2 , n 3 , n e , n f times, the parameters a 1 , a 2 , a 3 and translation parameters e, f of the integer lifting transformation can be obtained;
步骤14:全局置乱Step 14: Global scrambling
a)根据步骤13中的变换参数、步骤12中的置乱变换规则以及公式(5),逐点进行点要素序号的拟仿射变换;a) According to the transformation parameters in step 13, the scrambling transformation rules in step 12 and the formula (5), perform quasi-affine transformation of point element serial numbers point by point;
b)逐点将(x,y)处的点要素移动到拟仿射变换后(x′,y′)处,即原来(x,y)处的点要素空间数据全部赋给(x′,y′)处的点要素;b) Move the point elements at (x, y) point by point to (x′, y′) after quasi-affine transformation, that is, all the spatial data of point elements at (x, y) are assigned to (x′, y′) at the point element;
步骤15:去除虚点并形成置乱后的矢量数据REStep 15: Remove virtual points and form scrambled vector data RE
在点要素序号置乱变换后,按线面要素的序号来组织点要素,将实点逐一添加到对应的线面要素;如果遇到虚点,将其之后的实点真实的点序号记入属性z,以保证置乱后的矢量数据点要素个数不变,从而形成置乱后的线面图层数据RE;After the sequence number scrambling of point elements, point elements are organized according to the sequence numbers of line and area elements, and real points are added to the corresponding line and area elements one by one; if a virtual point is encountered, record the real point sequence number of the subsequent solid point Attribute z, to ensure that the number of vector data point elements after scrambling remains unchanged, so as to form the line-surface layer data R E after scrambling;
步骤16:将逐点置乱后的数据,写入矢量数据RE,即形成置乱后的数据文件;Step 16: Write the data after point-by-point scrambling into the vector data RE to form a scrambled data file;
(二)还原过程(2) Restoration process
步骤21:还原变换参数生成Step 21: Revert Transform Parameter Generation
按照上述过程(一)中的步骤13的方法,输入密钥文件,生成变还原变换的参数a1,a2,a3及平移参数e,f;According to the method of step 13 in the above process (1), input the key file, and generate the parameters a1, a2, a3 and translation parameters e, f of variable-reduction transformation;
步骤22:全局反置乱Step 22: Global Descrambling
a)根据还原参数和逆变换规则,逐点进行拟仿射变换的逆变换;同时,还原时需先判断点要素属性z值是否为0;如果为0,则点要素序号y′参与逆运算;否则z值代替y′参与逆运算;a) According to the restoration parameters and inverse transformation rules, the inverse transformation of the quasi-affine transformation is performed point by point; at the same time, it is necessary to judge whether the z value of the point element attribute is 0; if it is 0, the point element serial number y′ participates in the inverse operation ;Otherwise z value replaces y' to participate in the inverse operation;
b)将(x′,y′)处点要素的空间数据全部赋给(x,y)处的点要素;b) All the spatial data of the point elements at (x′,y′) are assigned to the point elements at (x, y);
步骤23:逆变换后,按线面要素的序号来组织点要素,将点要素逐一添加到对应的线面要素中,形成置乱后的线面图层数据RD并显示。Step 23: After the inverse transformation, organize the point elements according to the serial numbers of the line-area elements, and add the point elements to the corresponding line-area elements one by one to form and display the scrambled line-area layer data RD .
本发明基于优先破坏要素间拓扑关系的原则、有限整数域上的拟仿射变换方法及GIS矢量数据的特点,针对线面类型GIS矢量数据,进行线面要素的置乱与还原,该方法具有随机性、可逆性等特点,能为地理空间数据的安全传输、封装存储提供有效的技术手段。Based on the principle of preferentially destroying the topological relationship between elements, the quasi-affine transformation method on the finite integer field and the characteristics of GIS vector data, the present invention performs scrambling and restoration of line-surface elements for line-surface type GIS vector data. The method has the advantages of Randomness, reversibility and other characteristics can provide effective technical means for the safe transmission, packaging and storage of geospatial data.
附图说明Description of drawings
图1是本发明方法中数据置乱流程图;Fig. 1 is a flow chart of data scrambling in the method of the present invention;
图2是本发明方法中数据还原流程图;Fig. 2 is a flow chart of data restoration in the method of the present invention;
图3是本发明方法中有限域下处理虚点的示意图;Fig. 3 is a schematic diagram of processing virtual points under finite fields in the method of the present invention;
图4是本发明实施例采用的实验数据;Fig. 4 is the experimental data that the embodiment of the present invention adopts;
图5是本发明实施例中矢量数据的置乱效果图;Fig. 5 is a scrambling effect diagram of vector data in an embodiment of the present invention;
图6是本发明实施例中置乱矢量数据的还原效果图。Fig. 6 is an effect diagram of restoring scrambled vector data in the embodiment of the present invention.
具体实施方式detailed description
下面结合附图和实施例,做进一步详细说明。Further details will be given below in conjunction with the accompanying drawings and embodiments.
本实施例选择一典型的shp线图层数据R,针对变换参数的生成,矢量数据的置乱与还原的整个过程(面图层数据可采取同样的方法),进一步详细说明本发明。本实施例选择shp格式矢量数据中国1:400万省界线图层(如图4)作为实验数据。In this embodiment, a typical shp line layer data R is selected, and the whole process of generating transformation parameters, scrambling and restoring vector data (the same method can be used for surface layer data) is further described in detail. In this embodiment, the vector data in shp format is selected as the 1:4 million provincial boundary layer of China (as shown in FIG. 4 ) as the experimental data.
(一)针对线图层数据的置乱过程(1) Scrambling process for line layer data
步骤11:构造有限域置乱变换空间Step 11: Construct a finite field scrambling transformation space
a)打开shp线图层数据,依次读取线图层数据中各线要素所含点要素的信息,本实施例中,线要素的总个数I为1785,含有最多点数的线的点要素个数J为500;a) Open the shp line layer data, and sequentially read the information of point elements contained in each line element in the line layer data. In this embodiment, the total number I of line elements is 1785, and the line point elements containing the most points The number J is 500;
b)构造矢量数据有限域空间,确定置乱变换的离散点域{(x,y):0≤x<1785,0≤y<500},其中x为矢量数据线要素的序号,y为点要素的序号。b) Construct the vector data finite field space, and determine the discrete point field {(x,y):0≤x<1785,0≤y<500} of the scrambling transformation, where x is the serial number of the vector data line element, and y is the point The ordinal number of the element.
步骤12:确定置乱变换规则Step 12: Determine the scrambling transformation rules
仿射变换的一般形式为The general form of an affine transformation is
其中
对于公式(1)定义的一般仿射变换,当系数满足
可简化记为:It can be simplified as:
该变换是限定在离散点域{(x,y):0≤x<I,0≤y<J}上,将平移参数e,f融入最后一次整数提升变换中进行简单舍入取整,其他部分以整数提升变换实现,即可实现公式(1)在有限整数域上的拟仿射变换。最后一次整数提升变换如下:This transformation is limited to the discrete point domain {(x,y):0≤x<I,0≤y<J}, and the translation parameters e and f are integrated into the last integer lifting transformation for simple rounding and rounding, and other Part of it is realized by integer lifting transformation, which can realize the quasi-affine transformation of formula (1) on the finite integer field. The final integer promotion transformation is as follows:
其相应的逆变换为:Its corresponding inverse transform is:
其中,表示四舍五入取整运算,mod表示取余运算,各级整数提升变换中引入了非线性的舍入运算,使得最后的结果不再是传统意义上的仿射变换。这种整数拟仿射变换的逆变换一定存在,且是有限整数域上的一一变换。in, Indicates rounding and rounding operations, and mod represents remainder operations. Non-linear rounding operations are introduced in integer promotion transformations at all levels, so that the final result is no longer an affine transformation in the traditional sense. The inverse transformation of this integer quasi-affine transformation must exist, and it is a one-to-one transformation on the finite integer field.
步骤13:生成变换参数Step 13: Generate Transform Parameters
输入密钥文件,利用混沌系统迭代生成xn;对xn进行间隔取位,得到Logistic混沌系统的迭代次数n1,n2,n3,ne,nf;对Logistic混沌系统再分别迭代n1,n2,n3,ne,nf次,定位取值并扩大处理得到整数提升变换的参数a1=0.13,a2=0.47,a3=0.88,以及平移参数e=10.26,f=5.65。Enter the key file, use the chaos system Generate x n iteratively; take intervals for x n to get the iteration times n 1 , n 2 , n 3 , n e , n f of the Logistic chaotic system; iterate n 1 , n 2 , n 3 respectively for the Logistic chaotic system , n e , n f times, positioning and enlarging the values to obtain the parameters a 1 =0.13, a 2 =0.47, a 3 =0.88 of the integer lifting transformation, and the translation parameters e=10.26, f=5.65.
这5个变换参数的随机性,大大方便了密钥的选择,增加了系统的安全性,且参数的选择一定程度上决定了数据置乱度的大小。The randomness of these five transformation parameters greatly facilitates the selection of keys and increases the security of the system, and the selection of parameters determines the degree of data scrambling to a certain extent.
步骤14:全局置乱Step 14: Global scrambling
a)该变换是限定在离散点域{(x,y):0≤x<1785,0≤y<500}上,将平移参数e,f融入最后一次整数提升变换中进行简单舍入取整,其他部分以整数提升变换实现,具体变换过程如下:a) The transformation is limited to the discrete point domain {(x,y):0≤x<1785,0≤y<500}, and the translation parameters e, f are integrated into the last integer lifting transformation for simple rounding , and other parts are realized by integer promotion transformation, the specific transformation process is as follows:
所以变换公式如下:So the transformation formula is as follows:
b)代入变换参数,逐点进行点要素序号的拟仿射变换,并将原来(x,y)处点要素的空间数据全部赋给(x′,y′)处的点要素。b) Substituting the transformation parameters, performing the quasi-affine transformation of the point element serial number point by point, and assigning all the spatial data of the original point element at (x, y) to the point element at (x′,y′).
如第一条线的第一个点要素,即(0,0)处的点要素,经过上述变换公式拟仿射变换到(11,6)处,即第12条线的第7个点,也就是将(0,0)处的点要素的所有空间信息都赋给(11,6)处的点要素。For example, the first point element of the first line, that is, the point element at (0,0), is quasi-affine transformed to (11,6) through the above transformation formula, that is, the seventh point of the 12th line, That is to assign all the spatial information of the point feature at (0,0) to the point feature at (11,6).
步骤15:去除虚点并形成置乱后的矢量数据RE Step 15: Remove virtual points and form scrambled vector data R E
经过上述方法置乱变换后,按线要素序号来组织点要素,将实点逐一添加到对应的线要素中。由于每个线要素所含点要素个数不一致,属于不饱和矩阵,变换后的所在线要素的点要素个数不确定,会在实点之前出现虚点,如图3所示,如果(0,4)处的实点变换到(4,7)处的实点,但(4,4)(4,5)(4,6)处不存在点,即为虚点。为了保证置乱后的矢量数据点要素个数不变,需去除虚点,并将虚点之后的实点真实的点序号记入属性z。如置乱变换后,第一条线要素的前69个点要素都为虚点,需去除虚点并将虚点之后的实点真实的点序号记入属性z,此时第一个实点的序号为(0,0),其z值为69。依据此方法将实点逐一读入对应线要素,形成置乱后的矢量数据RE。图中(0,4)处的点要素经置乱变换后到序号(4,3)处,其属性z值为7。After the scrambling transformation by the above method, the point elements are organized according to the serial numbers of the line elements, and the real points are added to the corresponding line elements one by one. Since the number of point elements contained in each line element is inconsistent and belongs to an unsaturated matrix, the number of point elements of the transformed line element is uncertain, and a virtual point will appear before the real point, as shown in Figure 3. If (0 , The real point at 4) is transformed into the real point at (4, 7), but there is no point at (4, 4) (4, 5) (4, 6), which is a virtual point. In order to ensure that the number of vector data point elements after scrambling remains unchanged, it is necessary to remove the virtual points, and record the real point numbers of the real points after the virtual points into the attribute z. If after the scrambling transformation, the first 69 point elements of the first line element are all virtual points, the virtual points need to be removed and the real point numbers of the real points after the virtual points should be recorded in the attribute z. At this time, the first real point The serial number of is (0, 0), and its z-value is 69. According to this method, the real points are read into the corresponding line elements one by one to form the scrambled vector data R E . The point element at (0,4) in the figure is scrambled and transformed to the serial number (4,3), and its attribute z value is 7.
步骤16:逐点处理完毕后,形成置乱后的矢量数据RE。Step 16: After point-by-point processing is completed, scrambled vector data RE is formed.
(二)针对线图层数据的还原过程(2) Restoration process for line layer data
步骤21:还原变换参数生成Step 21: Revert Transform Parameter Generation
按照上述过程(一)中的步骤13的方法,输入密钥文件,生成变还原变换的参数a1,a2,a3及平移参数e,f。According to the method of step 13 in the above process (1), input the key file, and generate the parameters a 1 , a 2 , a 3 and the translation parameters e, f of the variable reduction transformation.
步骤22:全局反置乱Step 22: Global Descrambling
a)有限整数域上的提升变换的级联可以实现有限整数域上到有限整数域的可逆变换,具体逆变换过程如下:a) The concatenation of the lifting transformation on the finite integer field can realize the reversible transformation from the finite integer field to the finite integer field. The specific inverse transformation process is as follows:
令
则 but
所以, so,
b)代入还原参数,逐点进行点要素序号的逆变换。同时,逆变换时需首先判断点要素属性z值是否为0。如果为0,则y′参与逆运算;否则z值代替y′参与逆运算。逆变换后将(x′,y′)处点要素的空间信息以及属性值赋给(x,y)处的点要素。b) Substituting the restoration parameters and performing the inverse transformation of the serial numbers of point elements point by point. At the same time, in the inverse transformation, it is first necessary to determine whether the z value of the point element attribute is 0. If it is 0, then y' participates in the inverse operation; otherwise z value replaces y' in the inverse operation. After the inverse transformation, the spatial information and attribute values of the point elements at (x′, y′) are assigned to the point elements at (x, y).
步骤23:逆变换后,按线要素序号来组织点要素,将点要素逐一添加到对应的线要素中,形成置乱后的shp线面图层数据RD。Step 23: After the inverse transformation, organize the point elements according to the serial numbers of the line elements, and add the point elements to the corresponding line elements one by one to form the scrambled shp line-surface layer data R D .
(三)实验分析(3) Experimental analysis
由上述实施例(图4、5、6)可知:本发明基于优先破坏要素间拓扑关系的原则、有限整数域上拟仿射变换方法及GIS矢量数据的特点,针对shp线图层数据,进行线要素的置乱与还原。本发明中其还原变换有简洁的解析表达式,无需进行周期次数的迭代即可恢复,且置乱处理后的数据与原始数据具有相同或相近的组织结构和数据格式,从而具有较高的处理效率、较好的安全性,可有效保障地理空间数据在数据传输、封装存储中的安全性。It can be seen from the above embodiments (Figs. 4, 5, 6) that the present invention is based on the principle of preferentially destroying the topological relationship between elements, the quasi-affine transformation method on the finite integer field and the characteristics of GIS vector data, aiming at shp line layer data, Scrambling and restoration of line elements. In the present invention, its restoration transformation has a concise analytical expression, which can be restored without iteration of the number of cycles, and the data after the scrambling process has the same or similar organizational structure and data format as the original data, thus having higher processing efficiency. Efficiency and better security can effectively guarantee the security of geospatial data in data transmission, packaging and storage.
本发明实施例仅以shp格式的线图层数据进行置乱与还原处理,而面要素可以看成是封闭的线,该方法也适用于面图层数据;同时也适用于GML、E00、MIF等其他格式GIS矢量数据的置乱与还原处理。In the embodiment of the present invention, only the line layer data in shp format is used for scrambling and restoration processing, while the surface element can be regarded as a closed line. This method is also applicable to surface layer data; it is also applicable to GML, E00, MIF Scrambling and restoration processing of GIS vector data in other formats.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410074613.XA CN103870552B (en) | 2014-03-03 | 2014-03-03 | Scrambling and recovery method for GIS (Geographic Information System) vector data line and plane graphic layer |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410074613.XA CN103870552B (en) | 2014-03-03 | 2014-03-03 | Scrambling and recovery method for GIS (Geographic Information System) vector data line and plane graphic layer |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN103870552A CN103870552A (en) | 2014-06-18 |
| CN103870552B true CN103870552B (en) | 2017-01-18 |
Family
ID=50909082
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410074613.XA Expired - Fee Related CN103870552B (en) | 2014-03-03 | 2014-03-03 | Scrambling and recovery method for GIS (Geographic Information System) vector data line and plane graphic layer |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103870552B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105389770B (en) * | 2015-11-09 | 2018-10-26 | 河南师范大学 | Embedded, extracting method and device based on BP and the image watermark of RBF neural |
| CN106650343B (en) * | 2016-10-19 | 2019-02-01 | 南京师范大学 | A DEM scrambling encryption and restoration method |
| CN116150158A (en) * | 2023-02-28 | 2023-05-23 | 西安东方宏业科技股份有限公司 | A database management method for oil and gas field internet of things |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7089113B1 (en) * | 2003-12-23 | 2006-08-08 | Trimble Navigation Limited | Subscription system for GPS information |
| CN101739695A (en) * | 2009-11-26 | 2010-06-16 | 西北工业大学 | Three-dimensional Arnold mapping-based image grouping encryption method |
| CN103077211A (en) * | 2012-12-28 | 2013-05-01 | 南京师范大学 | Method for scrambling and reducing GIS (Geographic Information system) vector line Thiessen data |
| CN103559678A (en) * | 2013-10-30 | 2014-02-05 | 南京师范大学 | Scrambling and restoring method of shp line-face layer data |
-
2014
- 2014-03-03 CN CN201410074613.XA patent/CN103870552B/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7089113B1 (en) * | 2003-12-23 | 2006-08-08 | Trimble Navigation Limited | Subscription system for GPS information |
| CN101739695A (en) * | 2009-11-26 | 2010-06-16 | 西北工业大学 | Three-dimensional Arnold mapping-based image grouping encryption method |
| CN103077211A (en) * | 2012-12-28 | 2013-05-01 | 南京师范大学 | Method for scrambling and reducing GIS (Geographic Information system) vector line Thiessen data |
| CN103559678A (en) * | 2013-10-30 | 2014-02-05 | 南京师范大学 | Scrambling and restoring method of shp line-face layer data |
Non-Patent Citations (2)
| Title |
|---|
| Digital Image Scrambling Technology Based on the;YANG Ya-li,etc;《Journal of Beijing Institute of Technology》;20060228;第15卷(第2期);第216-220页 * |
| 基于仿射变换的数字图像置乱加密算法;朱桂斌等;《计算机辅助设计与图形学学报》;20030630;第15卷(第6期);第711-715页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103870552A (en) | 2014-06-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103473733A (en) | Image encryption algorithm based on DNA encoding and chaotic mapping | |
| CN103248854B (en) | Based on the medical image encryption method of even scramble and chaotic maps | |
| CN112153238B (en) | Image encryption method based on Tent mapping and composite chaotic mapping | |
| CN103870552B (en) | Scrambling and recovery method for GIS (Geographic Information System) vector data line and plane graphic layer | |
| CN102110281A (en) | Method for embedding and extracting watermarks by adopting difference expansion aiming at shape point map layer data | |
| Qadir et al. | Digital image scrambling based on two dimensional cellular automata | |
| Mizher et al. | A simple flexible cryptosystem for meshed 3D objects and images | |
| CN110148189A (en) | A kind of light field image encryption method based on DNA sequence dna and chaos system | |
| CN106373082A (en) | Cellular automata and chaotic mapping-based digital image encryption method and decryption method thereof | |
| CN103606126A (en) | Image duel scrambling method based on three-dimensional Logistic mapping | |
| CN103559678B (en) | A kind of scramble and method of reducing of shp line face figure layer data | |
| CN101840473B (en) | Copyright Protection Method of Vector Map Based on Nonlinear Transformation | |
| CN116305211A (en) | Image encryption processing method and device | |
| CN102243700B (en) | A data camouflage and restoration method of shp line surface layer based on chaotic transformation | |
| CN107862212A (en) | A kind of image scrambling method based on pixel position | |
| CN105023236B (en) | A kind of dual-color image blind watermarking method based on LU Decomposition | |
| CN102456114A (en) | Two-dimensional CAD engineering drawing content variable-strength encryption method and device | |
| CN104778689B (en) | Image summarization method based on mean secondary image and local preserving projection | |
| CN107833174A (en) | A kind of image encryption method based on Logistic chaos system algorithms | |
| CN104143174B (en) | Image disguising and reconstructing method based on Tangram algorithm and two-dimensional double-scale rectangular mapping | |
| CN105118017A (en) | Gray image encryption method based on two-dimension Henon mapping | |
| CN113779611B (en) | Vector geographic data encryption method and decryption method based on three-dimensional Arnold transformation | |
| CN103971320A (en) | Image scrambling and restoring method based on Henon mapping | |
| CN102722856B (en) | Digital image encryption method of DCT domain based on three dimensional Lorenz chaotic mapping | |
| CN105046639A (en) | Grayscale image scrambling method based on one-dimensional cellular automaton |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170118 Termination date: 20190303 |