CN103868389A - Independent fused salt heat storage power plant - Google Patents
Independent fused salt heat storage power plant Download PDFInfo
- Publication number
- CN103868389A CN103868389A CN201410093254.2A CN201410093254A CN103868389A CN 103868389 A CN103868389 A CN 103868389A CN 201410093254 A CN201410093254 A CN 201410093254A CN 103868389 A CN103868389 A CN 103868389A
- Authority
- CN
- China
- Prior art keywords
- salt
- molten salt
- tank
- temperature
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000003839 salts Chemical class 0.000 title claims abstract description 225
- 238000005338 heat storage Methods 0.000 title claims abstract description 31
- 239000012267 brine Substances 0.000 claims abstract description 29
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims abstract description 29
- 238000010248 power generation Methods 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 230000005611 electricity Effects 0.000 claims abstract description 15
- 238000004146 energy storage Methods 0.000 claims abstract description 12
- 238000012544 monitoring process Methods 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 11
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims description 5
- 238000000034 method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 241000270295 Serpentes Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009422 external insulation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
- Photovoltaic Devices (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种独立蓄热电站系统,特别是涉及采用混合熔盐作为蓄热工质的独立蓄热电站系统,属于储能技术领域。The invention relates to an independent heat storage power station system, in particular to an independent heat storage power station system using mixed molten salt as a heat storage working fluid, and belongs to the technical field of energy storage.
背景技术Background technique
根据我国《可再生能源发展“十二五”规划》,到2020年,风电和太阳能并网装机分别达到2亿kW和5000万kW。但风能和太阳能等可再生能源固有的间歇性和波动性,对电网的冲击很大,导致我国风电和光伏发电未并网比例高,弃风/光严重。例如:2011年我国风电未并网率达到28%;光伏未并网率达到29%;三北地区平均弃风率约为16%,而2012年的全国总弃风量达200亿kwh,为2011年的一倍,平均弃风率为20%,局部地区达40%。如果不解决风能和太阳能的大规模接入问题,到2015年和2020年,每年将分别损失3300万吨和7000万吨标准煤。此外,为了满足电力负荷的要求,当前的发电装机容量与电网容量是按最大需求建设,随着电网峰谷差日趋增大,必然导致非用电高峰时发电机组的停机或低负荷运行,以及电网容量的浪费。2011年全国常规燃煤发电机组发电总负荷系数仅为51.8%,电网负荷利用系数也小于55%。而采用熔盐作为蓄热介质的独立熔盐蓄热电站,可以将这些不稳定或多余的电能转化为热能储存于高温熔盐中,在需要用电时再将其转化为电能。它可以实现可再生能源平滑波动、跟踪调度输出、调峰调频等,使可再生能源发电稳定控输出,满足可再生能源电力的大规模接入并网的要求。也可以大幅提高火电机组实际运行效率,增强电网的输电能力。According to my country's "12th Five-Year Plan for Renewable Energy Development", by 2020, the installed capacity of wind power and solar energy will reach 200 million kW and 50 million kW respectively. However, the inherent intermittency and volatility of renewable energy such as wind energy and solar energy have a great impact on the power grid, resulting in a high proportion of wind power and photovoltaic power generation not connected to the grid in my country, and severe wind/solar abandonment. For example: in 2011, the unconnected rate of wind power in my country reached 28%; the unconnected rate of photovoltaic power reached 29%; The average rate of wind abandonment is 20%, reaching 40% in some areas. If the problem of large-scale access to wind and solar energy is not resolved, by 2015 and 2020, 33 million tons and 70 million tons of standard coal will be lost each year, respectively. In addition, in order to meet the requirements of power load, the current installed capacity of power generation and grid capacity are built according to the maximum demand. As the peak-to-valley difference of the power grid increases day by day, it will inevitably lead to the shutdown or low-load operation of generator sets during off-peak power consumption, and Waste of grid capacity. In 2011, the total load factor of conventional coal-fired generating units nationwide was only 51.8%, and the load utilization factor of the power grid was also less than 55%. The independent molten salt heat storage power station using molten salt as heat storage medium can convert these unstable or redundant electric energy into thermal energy and store it in high temperature molten salt, and then convert it into electric energy when electricity is needed. It can realize the smooth fluctuation of renewable energy, tracking and dispatching output, peak regulation and frequency regulation, etc., so that the output of renewable energy power generation can be stabilized and controlled, and meet the requirements of large-scale access and grid connection of renewable energy power. It can also greatly improve the actual operating efficiency of thermal power units and enhance the power transmission capacity of the power grid.
发明内容Contents of the invention
鉴于现有技术存在的不足,本发明提供了一种采用风电、光伏电、低谷电等电力品质不稳定或多余的电能加热高温熔盐,变为高温热能储存在高温熔盐中。需要用电时,再利用高温熔盐储存的高温热能加热水产生水蒸汽,从而驱动蒸汽轮机发电,实现能量释放的独立熔盐蓄热电站系统。In view of the deficiencies in the prior art, the present invention provides a method of heating high-temperature molten salt by using wind power, photovoltaic power, low-peak power and other power quality unstable or redundant electric energy, and the high-temperature heat energy is stored in the high-temperature molten salt. When electricity is needed, the high-temperature thermal energy stored in high-temperature molten salt is used to heat water to generate water vapor, thereby driving a steam turbine to generate electricity and realizing energy release. An independent molten salt heat storage power station system.
独立熔盐蓄热电站,其特征在于,包括电源1、熔盐电加热器2、高温的热盐罐3、低温的冷盐罐4、第一熔盐泵5、第二盐泵6、盐水换热器(蒸汽发生器)7、发电岛8;电源1与熔盐电加热器2进行电路连接,电加热器2的出口通过管路依次与高温的热盐罐3、盐水换热器(或蒸汽发生器)7、低温的冷盐罐4连接,然后冷盐罐4与熔盐电加热器2的进口连接,在电加热器2的出口与高温的热盐罐3之间的管路上设有熔盐加热器出口温度传感器12、热盐管路压力传感器20、热盐管路温度传感器22、热盐管路流量传感器24,在高温的热盐罐3和盐水换热器(蒸汽发生器)7之间的管路上设有第二盐泵6,熔盐电加热器2与低温的冷盐罐4之间的管路上设有第一熔盐泵5、熔盐加热器进口温度传感器13、冷盐管路压力传感器21、冷盐管路温度传感器23、冷盐管路流量传感器25;熔盐电加热器2、高温的热盐罐3、低温的冷盐罐4、第一熔盐泵5、第二盐泵6、盐水换热器(蒸汽发生器)7组成熔盐回路系统;盐水换热器7通过管路与发电岛8组成水-蒸气回路,驱动蒸汽轮机发电。The independent molten salt thermal storage power station is characterized in that it includes a power supply 1, a molten salt
所述电源1可以是风力发电电站、光伏发电电站、智能电网储能电站或其他电力不稳定的发电电站。The power source 1 may be a wind power station, a photovoltaic power station, a smart grid energy storage station or other power stations with unstable power.
所述的蓄热电站采用混合熔盐作为蓄热工质,将各种不同形式电站产生的多余电能或不稳定电能转化为高温热能储存于高温熔盐中。The thermal storage power station uses mixed molten salt as the thermal storage working medium, and converts excess electric energy or unstable electric energy generated by various power stations into high-temperature heat energy and stores it in the high-temperature molten salt.
所述的蓄热电站可以与城市供热相结合,利用发电后的废气加热市政用水实现热电联供。熔盐电加热器2采用蛇形圆管11作为加热元件,蛇形圆管11的外面有壳层,壳层上分别设有出口和进口,其中熔盐加热器出口温度传感器12、熔盐加热器进口温度传感器13用来监测加热熔盐出口和进口的温度。The thermal storage power station can be combined with urban heating, and the exhaust gas after power generation can be used to heat municipal water to realize combined heat and power supply. The molten salt
热盐罐3上安装有热盐罐温度传感器15,热盐罐3上部设有热盐罐液位监测口17,下部设有热盐罐排盐口19;冷盐罐4上安装有冷盐罐温度传感器14,冷盐罐4上部设有冷盐罐液位监测口16,下部设有冷盐罐排盐口18。The hot salt tank 3 is equipped with a hot salt
优选冷盐罐4、热盐罐3顶部分别安装有为熔盐提供动力的第一熔盐泵5、第二熔盐泵6,每个罐子顶部安装有两台熔盐泵,一用一备;罐子上安装有用于监测温度的温度传感器14、15,用于监测液位的监测口16、17,及用于排空熔盐的排盐口18、19。The first
熔盐回路系统(大虚线框),包含所有用于承载熔盐的管路系统,以及管路系统上安装的压力传感器20,21,温度传感器22,23,流量传感器24,25。The molten salt circuit system (large dashed box) includes all piping systems for carrying molten salt, as well as
盐水换热器7采用管壳式结构,熔盐处于管程系统中,水处于壳程系统中,二者采用强制对流换热形式进行换热。The brine heat exchanger 7 adopts a shell-and-tube structure, the molten salt is in the tube-side system, and the water is in the shell-side system, and the two adopt the form of forced convection heat exchange for heat exchange.
常规发电岛8采用蒸汽轮机发电,其原理与组成与现有主流技术一致。Conventional power generation island 8 adopts steam turbine to generate electricity, and its principle and composition are consistent with existing mainstream technology.
在盐水换热器7与发电岛8组成水-蒸气回路中还设有城市供热系统,发电岛8的出水管路中连接一换热系统,换热系统与城市供热系统9相连。此处的城市供热系统9的原理与组成与现有主流技术一致。An urban heating system is also provided in the water-steam circuit formed by the brine heat exchanger 7 and the power generation island 8 . The principle and composition of the urban heating system 9 here are consistent with the existing mainstream technology.
水-蒸汽回路系统(小虚线框),包含所有用于承载水或蒸汽的管路系统,以及管路系统上安装的各种传感器,如压力、温度、流量传感器等。The water-steam loop system (small dotted line box), includes all piping systems used to carry water or steam, and various sensors installed on the piping systems, such as pressure, temperature, flow sensors, etc.
还包括智能控制系统10,智能控制系统10分别与电源、各感器等相连。It also includes an
本发明的有益效果是:独立熔盐蓄热电站将不稳定或多余的电能转化成热能储存于高温熔盐中,在需要用电时,再利用高温熔盐储存的高温热能加热水产生水蒸汽,从而驱动蒸汽轮机发电,实现能量释放。与压缩空气储能和抽水蓄能电站相比,独立熔盐储热电站具有占地面积小,不受地理条件限制,可建在城市内部等优点,另外建在城市的大规模高温蓄热电站还可与城市供热相结合,建成大规模的高温蓄热电联供电站,实现热电联供后可将蓄热电站的效率由原来的30%提高到70%以上,这一效率与目前抽水蓄能电站效率相当,但成本要比抽水蓄能和压缩空气蓄能电站低。因此高温蓄热电站是一种具有广阔发展前景的大规模物理蓄能技术。独立熔盐蓄热电站既可用于光伏和风力电站的能量储存,解决风力发电和光伏发电的弃风和弃光问题。独立熔盐蓄热电站也可用于智能电网储能电站,实现发电和用电的时空解耦,延缓和减少电源电网建设,提高能源利用效率和电网整体资产利用率。The beneficial effects of the present invention are: the independent molten salt heat storage power station converts unstable or redundant electric energy into thermal energy and stores it in the high-temperature molten salt, and when electricity is needed, the high-temperature thermal energy stored in the high-temperature molten salt is used to heat water to generate steam , so as to drive the steam turbine to generate electricity and realize energy release. Compared with compressed air energy storage and pumped storage power stations, independent molten salt heat storage power stations have the advantages of small footprint, are not restricted by geographical conditions, and can be built inside cities. In addition, large-scale high-temperature heat storage power stations built in cities It can also be combined with urban heating to build a large-scale high-temperature heat storage power station. After realizing combined heat and power supply, the efficiency of the heat storage power station can be increased from the original 30% to more than 70%. This efficiency is different from the current pumped storage Energy-saving power plants have the same efficiency, but the cost is lower than that of pumped hydro storage and compressed air storage power plants. Therefore, high temperature heat storage power station is a large-scale physical energy storage technology with broad development prospects. The independent molten salt heat storage power station can be used for energy storage of photovoltaic and wind power stations, and solve the problems of wind and light abandonment in wind power generation and photovoltaic power generation. Independent molten salt heat storage power stations can also be used in smart grid energy storage power stations to realize the time-space decoupling of power generation and power consumption, delay and reduce the construction of power grids, and improve energy utilization efficiency and overall asset utilization of the grid.
所谓独立熔盐蓄热电站就是利用光伏电、风电、低谷电等不稳定或多余的电能储能时,电能通过电加热器加热高温熔盐,变为高温热能储存在高温熔盐中。需要用电时,再利用高温熔盐储存的高温热能加热水产生水蒸汽,从而驱动蒸汽轮机发电,实现能量释放。其特征在于,它包括电源,熔盐电加热器,高温的热盐罐,低温的冷盐罐,熔盐泵,熔盐回路系统,盐水换热器(蒸汽发生器),常规发电岛,水-蒸汽回路系统及智能控制系统。另外建在城市的大规模高温蓄热电站还可与城市供热相结合,建成大规模的高温蓄热热电联供电站。独立熔盐蓄热电站既可用于光伏和风力电站的能量储存,解决风力发电和光伏发电的弃风和弃光问题。独立熔盐蓄热电站也可用于智能电网储能电站,实现发电和用电的时空解耦,用于电网调峰,延缓和减少电源电网建设,提高能源利用效率和电网整体资产利用率。The so-called independent molten salt heat storage power station is to use photovoltaic power, wind power, low-peak power and other unstable or redundant electric energy to store energy. When electricity is needed, the high-temperature heat energy stored in the high-temperature molten salt is used to heat water to generate water vapor, thereby driving the steam turbine to generate electricity and realizing energy release. It is characterized in that it includes power supply, molten salt electric heater, high temperature hot salt tank, low temperature cold salt tank, molten salt pump, molten salt loop system, brine heat exchanger (steam generator), conventional power generation island, water -Steam circuit system and intelligent control system. In addition, large-scale high-temperature heat storage power stations built in cities can also be combined with urban heating to build large-scale high-temperature heat storage cogeneration power stations. The independent molten salt heat storage power station can be used for energy storage of photovoltaic and wind power stations, and solve the problems of wind and light abandonment in wind power generation and photovoltaic power generation. The independent molten salt heat storage power station can also be used in the smart grid energy storage power station to realize the time-space decoupling of power generation and power consumption, and it can be used for power grid peak regulation, delay and reduce the construction of power grid, and improve energy utilization efficiency and overall asset utilization of the power grid.
附图说明Description of drawings
图1为本发明的结构示意图。Fig. 1 is a structural schematic diagram of the present invention.
图中:1、电源,2、熔盐电加热器,3、高温的热盐罐,4、低温的冷盐罐,5、第一熔盐泵,6、第二熔盐泵,大虚线框为熔盐回路系统,7、盐水换热器(蒸汽发生器),8、常规发电岛,9、城市供热系统,小虚线框为水-蒸汽回路系统,10、智能控制系统,11、蛇形加热圆管,12、熔盐加热器出口温度传感器,13、熔盐加热器进口温度传感器,14、冷盐罐温度传感器,15、热盐罐温度传感器,16、冷盐罐液位监测口,17、热盐罐液位监测口,18、冷盐罐排盐口,19、热盐罐排盐口,20、热盐管路压力传感器,21、冷盐管路压力传感器,22、热盐管路温度传感器,23、冷盐管路压力传感器,24、热盐管路流量传感器,25、冷盐管路流量传感器。In the figure: 1. Power supply, 2. Molten salt electric heater, 3. High temperature hot salt tank, 4. Low temperature cold salt tank, 5. The first molten salt pump, 6. The second molten salt pump, big dashed box is the molten salt circuit system, 7. brine heat exchanger (steam generator), 8. conventional power generation island, 9. urban heating system, the small dashed box is the water-steam circuit system, 10. intelligent control system, 11.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with the examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
实施例1Example 1
如图1所示,一种采用熔盐作为蓄热工质的独立蓄热电站,包括提供电能的电源,熔盐加热系统,熔盐储热系统,熔盐换热系统和发电岛及城市供热系统,具体结构如下:As shown in Figure 1, an independent thermal storage power station using molten salt as the thermal storage medium includes a power supply for providing electric energy, a molten salt heating system, a molten salt heat storage system, a molten salt heat exchange system, a power generation island and an urban power supply system. The thermal system, the specific structure is as follows:
所述的电源可以是风力发电电站,光伏发电电站,智能电网储能电站或其他电力不稳定的发电电站,也可以是城市低谷电。蓄热电站采用混合熔盐作为蓄热工质,混合熔盐具有热容量大,热稳定性好,粘度低,蒸汽压小,液态温度范围宽,成本低等诸多优点,可以通过加热熔盐将各种不同形式电站产生的多余电能或不稳定电能转化为高温热能储存于高温熔盐中。所述的熔盐电加热器2采用蛇形圆管11作为加热元件,所受热应力限制较小,启动速度更快,适合电源频繁启停和变负荷运行需求。所述的熔盐储热系统采用双罐式布置结构,其包括用于储存低温熔盐的冷盐罐4和用于储存高温熔盐的热盐罐3,二者均为圆柱形结构,采用不锈钢材质,穹顶盖,外部保温,垂直放置。冷盐罐4用于储存系统启动初期或运行期间经换热系统放热后的低温熔盐,热盐罐3用于储存经熔盐加热器加热升温后的高温熔盐;在冷盐罐4和热盐罐3顶部分别安装有两台低温熔盐泵5和两台高温熔盐泵6,均采用一用一备的形式,防止由于熔盐泵故障而造成整个系统的意外事故发生。熔盐泵均为长轴液下泵,采用顶部立式安装。冷盐罐4,热盐罐3上均设有液位监测口16,17,通过液位传感器可以反馈熔盐的安全液位。二者均安装有温度传感器14,15,用于监测二者的温度。盐罐底部均设计有熔盐的排盐口18,19,用于事故或常规检修时将熔盐排空。The power source can be a wind power station, a photovoltaic power station, a smart grid energy storage station or other power stations with unstable power, or urban low-peak electricity. The thermal storage power station uses mixed molten salt as the thermal storage medium. The mixed molten salt has many advantages such as large heat capacity, good thermal stability, low viscosity, low vapor pressure, wide liquid temperature range, and low cost. The excess electric energy or unstable electric energy generated by different forms of power stations is converted into high-temperature heat energy and stored in high-temperature molten salt. The molten salt
所述的熔盐回路系统,包含热盐管路,冷盐管路,及管路上的压力传感器20,21,温度传感器22,23,流量传感器24,25。这些传感器将信号传递给控制器10,控制器10则综合这些信号来不断调节高温熔盐泵6和低温熔盐泵5的频率来满足不同的运行工况。The molten salt loop system includes a hot salt pipeline, a cold salt pipeline, and
水-蒸汽回路系统,包含发电岛和城市供热系统中的所有管路及管路上的压力传感器,温度传感器,流量传感器等。The water-steam loop system includes all pipelines in power generation islands and urban heating systems and pressure sensors, temperature sensors, flow sensors, etc. on the pipelines.
所述的蓄热电站可以与城市供热相结合,利用发电后的乏汽加热市政用水实现热电联供。从而提高整个电站的效率。The thermal storage power station can be combined with urban heat supply, and the waste steam after power generation can be used to heat municipal water to realize cogeneration of heat and power. Thereby improving the efficiency of the whole power station.
另外,熔盐换热设备均采用熔盐走壳侧,高压水/蒸汽走管侧的布置方式,从而大大减薄壳壁,节约成本,同时也利于系统事故或常规检修时将熔盐排空。In addition, the molten salt heat exchange equipment adopts the arrangement of the molten salt on the shell side and the high-pressure water/steam on the pipe side, thereby greatly reducing the shell wall and saving costs. It is also conducive to emptying the molten salt during system accidents or routine maintenance .
本发明的工作原理和实现过程如下:Working principle and realization process of the present invention are as follows:
当电源有电力输出需要储能时,熔盐电加热器启动,利用不稳定电能或低谷电将由低温熔盐泵从低温罐抽出的低温熔盐(约为200℃左右)加热至高温(约为500℃左右),然后将高温的熔盐储存在热盐罐中,此过程实现了电能向热能的转化。当需要用电或用电高峰期时,热盐罐顶部的熔盐泵启动,将高温熔盐不断输送到盐水换热器即蒸汽发生器中加热水产生蒸汽推动蒸汽轮机发电,此过程实现了热能向电能的转化,而高温熔盐则不断放热变为低温熔盐回到冷盐罐中,完成一次循环。此外,经蒸汽轮机发电后的乏汽可以进入城市供热换热系统中,加热市政用水后变为低温的水进入盐水换热器中进行下一次的热交换。When the power supply has power output and needs energy storage, the molten salt electric heater is started, and the low-temperature molten salt (about 200°C) drawn from the low-temperature tank by the low-temperature molten salt pump is heated to a high temperature (about 500°C), and then store the high-temperature molten salt in the hot salt tank, which realizes the conversion of electrical energy into heat energy. When electricity is needed or during the peak period of electricity consumption, the molten salt pump on the top of the hot salt tank is started, and the high-temperature molten salt is continuously transported to the brine heat exchanger, that is, the steam generator heats water to generate steam to drive the steam turbine to generate electricity. This process realizes The conversion of thermal energy into electrical energy, while the high-temperature molten salt continuously releases heat and turns into low-temperature molten salt and returns to the cold salt tank to complete a cycle. In addition, the exhaust steam generated by the steam turbine can enter the urban heat supply and heat exchange system, and the water that becomes low temperature after heating the municipal water enters the brine heat exchanger for the next heat exchange.
整个系统都是通过微电脑控制器即10智能控制实现的。该微电脑控制器通过温度传感器、流量传感器等反馈的信号来智能调节熔盐电加热器的启停及加热功率,调节冷、热盐罐中熔盐泵的频率来控制熔盐的流量来满足用户端的不同需求。The whole system is realized through the microcomputer controller namely 10 intelligent control. The microcomputer controller intelligently adjusts the start-stop and heating power of the molten salt electric heater through the feedback signals of the temperature sensor and the flow sensor, and adjusts the frequency of the molten salt pump in the cold and hot salt tanks to control the flow of the molten salt to meet the needs of users. end different needs.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410093254.2A CN103868389A (en) | 2014-03-13 | 2014-03-13 | Independent fused salt heat storage power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410093254.2A CN103868389A (en) | 2014-03-13 | 2014-03-13 | Independent fused salt heat storage power plant |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103868389A true CN103868389A (en) | 2014-06-18 |
Family
ID=50907181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410093254.2A Pending CN103868389A (en) | 2014-03-13 | 2014-03-13 | Independent fused salt heat storage power plant |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103868389A (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104329132A (en) * | 2014-11-07 | 2015-02-04 | 辽宁中联能源科技有限公司 | Electric heat energy storage power generating system |
CN104406152A (en) * | 2014-11-05 | 2015-03-11 | 江苏太阳宝新能源有限公司 | Method for modifying thermal power station by storing energy through fused salt and device of method |
CN104806454A (en) * | 2014-12-31 | 2015-07-29 | 深圳市爱能森科技有限公司 | Wind power, photo-thermal and medium heat storage combined energy supply system |
CN104807205A (en) * | 2014-12-31 | 2015-07-29 | 深圳市爱能森科技有限公司 | Photovoltaic, photo-thermal and medium heat storage combined energy supply system |
WO2016106726A1 (en) * | 2014-12-31 | 2016-07-07 | 深圳市爱能森科技有限公司 | Combined energy supply system of wind, photovoltaic, solar thermal power and medium-based heat storage |
CN105890169A (en) * | 2014-10-29 | 2016-08-24 | 辽宁绿暖科技有限公司 | Off-peak electricity energy storage heat source system |
CN106052160A (en) * | 2016-07-11 | 2016-10-26 | 江苏爱能森科技有限公司 | Intelligent molten salt heating system |
CN106090853A (en) * | 2016-06-27 | 2016-11-09 | 杭州锅炉集团股份有限公司 | The fused salt heat reservoir of wind problem is abandoned in a kind of reply |
CN106677990A (en) * | 2017-01-24 | 2017-05-17 | 思安新能源股份有限公司 | Photothermal power generation system |
CN106786760A (en) * | 2017-01-10 | 2017-05-31 | 刘春晓 | A kind of distributed electrical thermal coupling storing energy and supplying hot system |
CN107906489A (en) * | 2017-11-30 | 2018-04-13 | 武汉都市环保工程技术股份有限公司 | A kind of energy-storage system for island network |
CN108204349A (en) * | 2018-01-15 | 2018-06-26 | 中国科学院理化技术研究所 | Independent molten salt heat storage power station |
CN108266791A (en) * | 2016-12-30 | 2018-07-10 | 百吉瑞(天津)新能源有限公司 | A kind of molten salt energy-storage and electric boiler complementation heating system |
CN108679585A (en) * | 2018-06-15 | 2018-10-19 | 大连华锐重工集团股份有限公司 | A kind of combined type industry hot gas co-generation system and its control method |
CN109029036A (en) * | 2018-06-27 | 2018-12-18 | 芜湖盘云石磨新能源科技有限公司 | A kind of molten salt energy-storage heat-exchanger rig of low-energy-consumption high-efficiency |
CN109114647A (en) * | 2018-08-21 | 2019-01-01 | 镇江裕太防爆电加热器有限公司 | A kind of power plant heat accumulation power generation heating system |
CN109595045A (en) * | 2018-11-28 | 2019-04-09 | 华北电力大学 | For ultra supercritical double reheat power generation sets to be efficient and the energy-storage system of flexible heat supply |
CN104807204B (en) * | 2014-12-31 | 2019-06-11 | 深圳市爱能森科技有限公司 | Wind-powered electricity generation, photovoltaic, photo-thermal and medium heat accumulation combine energy supplying system |
CN109883230A (en) * | 2017-12-06 | 2019-06-14 | 中国科学院上海应用物理研究所 | Molten salt thermal storage power generation system and energy storage power station including the same |
CN110337576A (en) * | 2017-02-27 | 2019-10-15 | J·阿霍拉 | Method and system for controlling energy flow |
CN111023228A (en) * | 2019-12-20 | 2020-04-17 | 北京工业大学 | A wind-solar hybrid clean heating system integrating molten salt thermal storage and high-efficiency air source heat pump |
CN111853749A (en) * | 2020-07-24 | 2020-10-30 | 哈尔滨锅炉厂有限责任公司 | Heat storage system and heat storage method for meeting deep peak regulation requirements of power plant units |
CN112050177A (en) * | 2020-09-18 | 2020-12-08 | 常州大学 | A steam storage regulation system for high temperature molten salt heat storage |
CN112113197A (en) * | 2020-10-24 | 2020-12-22 | 西拓能源集团有限公司 | System for utilize electrical heating fused salt to carry out light and heat power station degree of depth peak shaving |
CN113833541A (en) * | 2021-08-27 | 2021-12-24 | 北京工业大学 | A fast peak shaving system for auxiliary coal-fired units that absorbs abandoned wind and abandoned light |
CN113945105A (en) * | 2021-11-17 | 2022-01-18 | 湖南合汇光伏科技有限公司 | Rock energy storage power generation system |
CN113945107A (en) * | 2021-11-30 | 2022-01-18 | 北京工大环能科技有限公司 | High-pressure high-heat-flow molten salt energy storage, adjustment and utilization system |
CN114198730A (en) * | 2020-09-02 | 2022-03-18 | 电力规划总院有限公司 | Biomass coupling molten salt energy storage power generation system |
CN114543059A (en) * | 2022-02-07 | 2022-05-27 | 北京工大环能科技有限公司 | Process route for modifying shutdown coal-fired unit and formed new system |
WO2023221244A1 (en) * | 2022-05-18 | 2023-11-23 | 西安热工研究院有限公司 | Molten salt steam heat storage operating system and method for cylinder cutting unit |
CN114739006B (en) * | 2022-03-28 | 2024-03-22 | 江苏联储能源科技有限公司 | Molten salt eutectic furnace and molten salt eutectic furnace salt-melting energy-storage peak-shaving system for power generation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040118449A1 (en) * | 2002-12-20 | 2004-06-24 | Murphy Terrence H. | Solar dish concentrator with a molten salt receiver incorporating thermal energy storage |
CN102852742A (en) * | 2012-08-30 | 2013-01-02 | 中国科学院电工研究所 | Tower type solar thermal power generation system for heat absorber of vacuum heat absorption pipes |
CN103277272A (en) * | 2013-05-08 | 2013-09-04 | 哈尔滨工业大学 | Wind energy and groove-type solar all-in-one power generating system |
CN203394692U (en) * | 2013-08-28 | 2014-01-15 | 中国电力工程顾问集团华北电力设计院工程有限公司 | Tower-type solar power generation system adopting two different molten salts |
CN203772087U (en) * | 2014-03-13 | 2014-08-13 | 北京工业大学 | Independent fused salt heat storage power plant |
-
2014
- 2014-03-13 CN CN201410093254.2A patent/CN103868389A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040118449A1 (en) * | 2002-12-20 | 2004-06-24 | Murphy Terrence H. | Solar dish concentrator with a molten salt receiver incorporating thermal energy storage |
CN102852742A (en) * | 2012-08-30 | 2013-01-02 | 中国科学院电工研究所 | Tower type solar thermal power generation system for heat absorber of vacuum heat absorption pipes |
CN103277272A (en) * | 2013-05-08 | 2013-09-04 | 哈尔滨工业大学 | Wind energy and groove-type solar all-in-one power generating system |
CN203394692U (en) * | 2013-08-28 | 2014-01-15 | 中国电力工程顾问集团华北电力设计院工程有限公司 | Tower-type solar power generation system adopting two different molten salts |
CN203772087U (en) * | 2014-03-13 | 2014-08-13 | 北京工业大学 | Independent fused salt heat storage power plant |
Non-Patent Citations (2)
Title |
---|
吴玉庭等: "熔融盐传热蓄热及其在太阳能热发电中的应用", 《新材料产业》 * |
吴玉庭等: "熔融盐显热蓄热技术的研究与应用进展", 《储能科学与技术》 * |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105890169A (en) * | 2014-10-29 | 2016-08-24 | 辽宁绿暖科技有限公司 | Off-peak electricity energy storage heat source system |
CN104406152A (en) * | 2014-11-05 | 2015-03-11 | 江苏太阳宝新能源有限公司 | Method for modifying thermal power station by storing energy through fused salt and device of method |
CN104329132A (en) * | 2014-11-07 | 2015-02-04 | 辽宁中联能源科技有限公司 | Electric heat energy storage power generating system |
CN104807205A (en) * | 2014-12-31 | 2015-07-29 | 深圳市爱能森科技有限公司 | Photovoltaic, photo-thermal and medium heat storage combined energy supply system |
WO2016106726A1 (en) * | 2014-12-31 | 2016-07-07 | 深圳市爱能森科技有限公司 | Combined energy supply system of wind, photovoltaic, solar thermal power and medium-based heat storage |
US11009012B2 (en) | 2014-12-31 | 2021-05-18 | Shenzhen Enesoon Science & Technology Co., Ltd | Combined energy supply system of wind, photovoltaic, solar thermal power and medium-based heat storage |
CN104806454A (en) * | 2014-12-31 | 2015-07-29 | 深圳市爱能森科技有限公司 | Wind power, photo-thermal and medium heat storage combined energy supply system |
CN104807204B (en) * | 2014-12-31 | 2019-06-11 | 深圳市爱能森科技有限公司 | Wind-powered electricity generation, photovoltaic, photo-thermal and medium heat accumulation combine energy supplying system |
CN104807205B (en) * | 2014-12-31 | 2019-01-15 | 深圳市爱能森科技有限公司 | Photovoltaic, photo-thermal and medium heat accumulation combine energy supplying system |
CN106090853A (en) * | 2016-06-27 | 2016-11-09 | 杭州锅炉集团股份有限公司 | The fused salt heat reservoir of wind problem is abandoned in a kind of reply |
CN106052160A (en) * | 2016-07-11 | 2016-10-26 | 江苏爱能森科技有限公司 | Intelligent molten salt heating system |
CN106052160B (en) * | 2016-07-11 | 2018-05-15 | 江苏爱能森科技有限公司 | A kind of intelligence Molten salt heating system |
CN108266791A (en) * | 2016-12-30 | 2018-07-10 | 百吉瑞(天津)新能源有限公司 | A kind of molten salt energy-storage and electric boiler complementation heating system |
CN106786760A (en) * | 2017-01-10 | 2017-05-31 | 刘春晓 | A kind of distributed electrical thermal coupling storing energy and supplying hot system |
CN106677990A (en) * | 2017-01-24 | 2017-05-17 | 思安新能源股份有限公司 | Photothermal power generation system |
CN110337576A (en) * | 2017-02-27 | 2019-10-15 | J·阿霍拉 | Method and system for controlling energy flow |
CN107906489B (en) * | 2017-11-30 | 2024-03-19 | 中冶南方都市环保工程技术股份有限公司 | Energy storage system for isolated power grid |
CN107906489A (en) * | 2017-11-30 | 2018-04-13 | 武汉都市环保工程技术股份有限公司 | A kind of energy-storage system for island network |
CN109883230A (en) * | 2017-12-06 | 2019-06-14 | 中国科学院上海应用物理研究所 | Molten salt thermal storage power generation system and energy storage power station including the same |
CN108204349A (en) * | 2018-01-15 | 2018-06-26 | 中国科学院理化技术研究所 | Independent molten salt heat storage power station |
CN108679585A (en) * | 2018-06-15 | 2018-10-19 | 大连华锐重工集团股份有限公司 | A kind of combined type industry hot gas co-generation system and its control method |
CN108679585B (en) * | 2018-06-15 | 2023-08-01 | 大连华锐重工集团股份有限公司 | Combined type industrial hot gas co-production system and control method thereof |
CN109029036A (en) * | 2018-06-27 | 2018-12-18 | 芜湖盘云石磨新能源科技有限公司 | A kind of molten salt energy-storage heat-exchanger rig of low-energy-consumption high-efficiency |
CN109114647A (en) * | 2018-08-21 | 2019-01-01 | 镇江裕太防爆电加热器有限公司 | A kind of power plant heat accumulation power generation heating system |
CN109595045B (en) * | 2018-11-28 | 2020-11-13 | 华北电力大学 | Energy storage system for efficient and flexible heat supply of ultra-supercritical secondary reheating unit |
CN109595045A (en) * | 2018-11-28 | 2019-04-09 | 华北电力大学 | For ultra supercritical double reheat power generation sets to be efficient and the energy-storage system of flexible heat supply |
CN111023228A (en) * | 2019-12-20 | 2020-04-17 | 北京工业大学 | A wind-solar hybrid clean heating system integrating molten salt thermal storage and high-efficiency air source heat pump |
CN111853749A (en) * | 2020-07-24 | 2020-10-30 | 哈尔滨锅炉厂有限责任公司 | Heat storage system and heat storage method for meeting deep peak regulation requirements of power plant units |
CN114198730A (en) * | 2020-09-02 | 2022-03-18 | 电力规划总院有限公司 | Biomass coupling molten salt energy storage power generation system |
CN112050177A (en) * | 2020-09-18 | 2020-12-08 | 常州大学 | A steam storage regulation system for high temperature molten salt heat storage |
CN112113197A (en) * | 2020-10-24 | 2020-12-22 | 西拓能源集团有限公司 | System for utilize electrical heating fused salt to carry out light and heat power station degree of depth peak shaving |
CN113833541A (en) * | 2021-08-27 | 2021-12-24 | 北京工业大学 | A fast peak shaving system for auxiliary coal-fired units that absorbs abandoned wind and abandoned light |
CN113945105A (en) * | 2021-11-17 | 2022-01-18 | 湖南合汇光伏科技有限公司 | Rock energy storage power generation system |
CN113945107A (en) * | 2021-11-30 | 2022-01-18 | 北京工大环能科技有限公司 | High-pressure high-heat-flow molten salt energy storage, adjustment and utilization system |
CN114543059A (en) * | 2022-02-07 | 2022-05-27 | 北京工大环能科技有限公司 | Process route for modifying shutdown coal-fired unit and formed new system |
CN114739006B (en) * | 2022-03-28 | 2024-03-22 | 江苏联储能源科技有限公司 | Molten salt eutectic furnace and molten salt eutectic furnace salt-melting energy-storage peak-shaving system for power generation |
WO2023221244A1 (en) * | 2022-05-18 | 2023-11-23 | 西安热工研究院有限公司 | Molten salt steam heat storage operating system and method for cylinder cutting unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103868389A (en) | Independent fused salt heat storage power plant | |
CN104603570B (en) | Device for energy production | |
CN103836703A (en) | Molten salt heat storage type electric heating central heating system | |
CN108612634A (en) | Solar energy is provided multiple forms of energy to complement each other thermal electric generator | |
CN203772087U (en) | Independent fused salt heat storage power plant | |
CN107246289B (en) | Device for realizing peak regulation of power station by utilizing fused salt heat storage and working method thereof | |
CN207943899U (en) | A kind of MVR seawater desalination systems | |
CN109883230A (en) | Molten salt thermal storage power generation system and energy storage power station including the same | |
CN112963212A (en) | Low-carbon energy utilization system for oil field steam-electricity cogeneration | |
CN102252303A (en) | Solar steam power device | |
CN112050177A (en) | A steam storage regulation system for high temperature molten salt heat storage | |
US11761711B1 (en) | Heat storage and heat release system for molten salt with steam heating | |
CN106352312A (en) | Fused salt thermocline heat storage and steam generation integrated device and method | |
CN103790792A (en) | Condensation solar energy water heat storage power generation system | |
CN102278285A (en) | High-temperature heat-accumulating-type new energy utilizing system | |
CN204084540U (en) | Fused salt regenerative electrochemical heating central heating system | |
CN215256355U (en) | Low-carbon energy utilization system for oil field steam-electricity cogeneration | |
CN111365698A (en) | A trough solar energy and heating unit complementary heat and power cogeneration system | |
CN108275738A (en) | MVR seawater desalination systems based on generation of electricity by new energy | |
CN207262395U (en) | Disc type solar energy electricity generation system | |
CN114776543A (en) | A solar-assisted coal-fired power generation system with deep peak regulation and its control method | |
CN103216807A (en) | High-frequency boiler process | |
CN201679659U (en) | Efficient solar power generation device | |
KR101418818B1 (en) | Cogeneration Assisted Hydro Power System | |
CN102655331A (en) | Surface solar energy and hydropower combined power generation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: ZHONGTOU YIXING NEW ENERGY INVESTMENT CO., LTD. Free format text: FORMER OWNER: BEIJING INDUSTRY UNIVERSITY Effective date: 20150612 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20150612 Address after: 100000 Beijing, East Third Ring Road, Chaoyang District, No. 19, building -2, No. 15, layer, layer 101, No. 1410, fourteen Applicant after: Zhong Touyixing new forms of energy Investment Co., Ltd Address before: 100124 Chaoyang District, Beijing Ping Park, No. 100 Applicant before: Beijing University of Technology |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140618 |