CN103862380A - 光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统 - Google Patents

光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统 Download PDF

Info

Publication number
CN103862380A
CN103862380A CN201410115102.8A CN201410115102A CN103862380A CN 103862380 A CN103862380 A CN 103862380A CN 201410115102 A CN201410115102 A CN 201410115102A CN 103862380 A CN103862380 A CN 103862380A
Authority
CN
China
Prior art keywords
error
grinding
emery wheel
module
cambered surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410115102.8A
Other languages
English (en)
Other versions
CN103862380B (zh
Inventor
殷跃红
姜振华
徐勇
洪海波
王乾人
孙立剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201410115102.8A priority Critical patent/CN103862380B/zh
Publication of CN103862380A publication Critical patent/CN103862380A/zh
Application granted granted Critical
Publication of CN103862380B publication Critical patent/CN103862380B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

本发明公开了一种光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统,包括少轴磨削倾斜弧面砂轮误差源确定模块、少轴磨削机床构型与磨削方式选择模块、砂轮理想运动包络面构造模块、砂轮坐标系、直径、切削半径确定模块、对刀操作平移量确定模块、倾斜弧面砂轮综合误差模型构造模块、镜面误差检测与处理模块、弧面砂轮误差分量分离模块、倾斜弧面砂轮误差补偿模块等。与现有的方法相比,本发明的误差分析与补偿系统能够在多种机床构型与磨削方式组合下,对大型复杂光学镜面少轴磨削倾斜弧面砂轮误差引起的面形误差进行预测、分离与补偿,具有系统性、完整性、直观性。一次检测即可用于任意曲面、任意口径镜面加工过程的误差补偿,具有简单高效性。

Description

光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统
技术领域
本发明涉及一种砂轮误差的分析与补偿系统,尤其涉及一种大型复杂光学镜面的少轴磨削倾斜弧面砂轮误差的分析与补偿系统。
背景技术
近年来,随着对地、对空观测对大型望远镜需求的不断增加,制造大尺寸、高面形精度、低亚表面损伤的光学镜面成为迫切的要求。离轴非球面是当前光学镜面的主要形式。对于超精密大型光学镜面磨削来说,一般光学镜面的口径要在1m以上,加工后光学镜面的面形精度要好于10微米。
目前,区别于传统的五轴固定接触点磨削,采用倾斜弧面砂轮的少轴磨削已经被证实是一种加工大型复杂光学镜面的高效精密的方式。少轴磨削通过改变磨削点在弧面砂轮曲面上的位置来适应镜面不同点处对法向量的要求,从而获得在三轴机床加工复杂曲面的能力。少轴磨削方法减少了复杂曲面磨削过程参与的机床轴数,但是对倾斜弧面砂轮的安装与制造提出了更高的要求。弧面砂轮的轴倾角与面形误差将直接影响到加工后镜面面形精度。由于机床与砂轮制造、安装精度的限制(砂轮使用过程中的磨损也可能导致面形精度的降低),砂轮的轴倾角与面形不可避免的存在误差。因此,对大型复杂光学镜面少轴磨削过程中倾斜弧面砂轮的误差进行分析与补偿是获得高镜面面形精度的必要途径。
经文献检索发现,陈逢军在其博士论文《非球面超精密在位测量与误差补偿磨削及抛光技术研究》(湖南大学,2010.4)描述了一种采用少轴磨削方式、主要针对微小曲面的在位测量与误差补偿方法。该方法限制于RT2构型的机床(指包含两个移动轴、一个旋转轴的机床),对T3构型的机床(指包含两个移动轴)并不适用。该方法中虽有涉及轴倾角、砂轮半径误差分析的内容,但主要针对直角砂轮,无法系统完整地描述弧面砂轮的误差。其补偿方法的基础是要检测经过磨削的工件,这种方法推广到光学复杂大镜磨削时有两个缺点,一是检测的误差中含有其他误差分量的成分(如系统弹性变形引起的误差,与工艺参数有关),二是检测结果不能推广,即检测A工件的结果只能用于A工件加工中的补偿,对于异于A工件的B工件(指口径、面形与A工件不同)的加工过程不能使用,对于大口径镜面的加工非常耗时。华南理工大学J.Xie等人在《针对精密自由曲面的离散砂轮轮廓》(Xie J,Zheng J H,Zhou R M,et al.Dispersed grinding wheel profiles for accurate freeform surfaces[J].International Journal of Machine Tools and Manufacture,2011,51(6):536-542)一文中通过直接测量炭块上印记以及必要的数据处理,获得砂轮的实际轮廓。然后将砂轮曲面与工件曲面均离散成点云,将两曲面之间的接触问题转换为两组点云之间的接触问题。这种方法虽然可以补偿砂轮的误差,但计算复杂。
因此,本领域的技术人员致力于开发一种用于少轴磨削方法的倾斜弧面砂轮的误差分析与补偿系统,以适应大型复杂光学镜面对面形精度的要求。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统。
为实现上述目的,本发明提供了一种大型复杂光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统,其特征在于,包括倾斜弧面砂轮理想参数输入模块、少轴磨削倾斜弧面砂轮误差源确定模块、少轴磨削机床构型与磨削方式选择模块、砂轮理想运动包络面构造模块、砂轮坐标系、直径、切削半径确定模块、对刀操作平移量确定模块、倾斜弧面砂轮综合误差模型构造模块、弧面砂轮制造及装配约束构造模块、目标镜面输入模块、镜面误差检测与处理模块、弧面砂轮误差分量分离模块、弧面砂轮实际曲面恢复模块、理想NC代码输入模块和倾斜弧面砂轮误差补偿模块。
其中,
倾斜弧面砂轮理想参数输入模块,其作用是接受倾斜弧面砂轮理想参数的输入,包括轴倾角、边界角、砂轮直径、切削半径。砂轮直径指弧面砂轮处于安装位置时最低点处的回转直径。理想参数下,弧面砂轮的母线为圆弧。切削半径为圆弧母线的半径。边界角包含左右两个角度,分别指过母线圆弧左端点、母线圆弧圆心的直线与竖直方向的夹角,过母线圆弧右端点、母线圆弧圆心的直线与竖直方向的夹角。所述轴倾角指砂轮回转轴与竖直方向的夹角。
少轴磨削倾斜弧面砂轮误差源确定模块,其作用是确定导致倾斜弧面砂轮误差的全部误差分量。误差分量包括砂轮直径误差、切削半径误差、轴倾角误差以及砂轮坐标系原点沿Z轴的误差。理想参数下,砂轮坐标系原点位于弧面砂轮处于安装位置时最低点处的回转中心,Z轴沿砂轮回转轴线向上,X轴指向砂轮处于安装位置时最低点。
少轴磨削机床构型与磨削方式选择模块,其作用是确定少轴磨削方式下可行的机床构型与磨削方式并提供给用户选择。利用商运动学对三轴机床构型空间的分类并结合实际的商用机床,将少轴磨削机床构型分为两大类,一类是T3构型(机床包含三个移动轴),另一类是RT2构型(包含两移动轴与一旋转轴)。每一类构型下又包含两种磨削方式,平行磨削(指砂轮线速度与进给速度的方向相同)与横向磨削(指砂轮线速度与进给速度方向垂直)。用户选择其中的一种构型与磨削方式的组合。
砂轮理想运动包络面构造模块,其作用是根据机床三轴的运动构造出砂轮相对工件的运动包络面。该模块的作用等同于建立控制点与磨削点之间的函数关系。所述控制点指加工代码中的编程点,由机床三个轴的机械坐标构成。磨削点是指砂轮运动包络面上的一点,也是磨削过程中砂轮曲面与工件曲面的理论接触点。控制点与磨削点之间的函数关系中包含了砂轮坐标系,砂轮直径,切削半径,轴倾角等信息,为倾斜弧面砂轮综合误差模型构造模块提供了分析基础。
砂轮坐标系、直径、切削半径确定模块,其作用是针对实际砂轮曲面上的一点,确定该点处对应的砂轮坐标系、直径与切削半径。该模块分两个方面:一方面是确定非圆母线对应的砂轮坐标系原点沿Z轴的偏移量、直径、切削半径,在非圆母线的指定点处,计算该点处的曲率,获得经过该点的一个曲率圆,该曲率圆最低点的回转中心与理论砂轮坐标系原点的偏差即为砂轮坐标系原点沿Z轴的偏移量,回转直径即为实际砂轮直径,曲率半径记为切削半径;另一方面是确定实际轴倾角误差对应的砂轮坐标系变化,轴倾角的误差相当于对理想参数下的砂轮坐标系施加一旋转作用,并且沿新坐标系Z轴偏移一个与理论轴倾角、轴倾角误差及切削半径有关的偏移量。以上两方面的偏移量直接叠加,加上轴倾角误差产生的旋转作用就可以获得砂轮曲面上一点处实际的砂轮坐标系。
对刀操作平移量确定模块,其作用是确定磨削前的对刀操作使砂轮运动包络面产生的平移量。所述对刀操作指磨削前使砂轮的最低点对准工件的最低点(凹面)或最高点(凸面)。通过计算砂轮曲面实际对刀点与其理论对刀点的偏差,就可以获得平移量。
倾斜弧面砂轮综合误差模型构造模块,其作用是综合所述砂轮理想运动包络面构造模块,砂轮坐标系、直径、切削半径确定模块以及对刀操作平移量确定模块,构造出砂轮实际运动包络面函数,在所述砂轮实际运动包络面函数中求所述磨削点坐标关于砂轮坐标系原点沿Z轴偏移量,砂轮直径,切削半径,轴倾角这几个量的全微分,将该全微分与所述对刀操作平移量的矢量和向砂轮曲面点处的法向量进行投影,生成与砂轮坐标系原点沿Z轴偏移量,砂轮直径,切削半径,轴倾角误差相关的综合法向误差。
弧面砂轮制造及装配约束构造模块,其作用是根据给定的目标镜面允许的综合误差上下限,确定弧面砂轮制造及装配允许的误差范围(即制造及装配约束)。根据给定的目标镜面误差上下限,以及砂轮直径误差、切削半径误差、轴倾角误差在制造中可能的变动范围,在以砂轮直径误差、切削半径误差、轴倾角误差构成的三维笛卡尔空间中确定八个边界平面。所述八个边界平面就是所述弧面砂轮制造及装配所允许的误差范围。位于所述边界平面内的点代表允许的弧面砂轮制造及装配误差。
目标镜面输入模块,其作用是构建任意轴对称目标镜面参数化模型,根据用户输入的参数,在模块内部将目标镜面的模型具体化,供其他模块使用。
镜面误差检测与处理模块,其作用是根据三坐标测量机对目标检测镜面的检测结果与目标镜面进行比对,结合目标镜面的法向量,获得目标镜面上均匀分布点处的法向误差。所述目标检测镜面的基体材料为石墨块等易磨削材料,所述目标检测镜面的口径与面形不一定要与目标加工镜面相同。
弧面砂轮误差分量分离模块,其作用是根据镜面上多点处的综合法向误差,获得对应的全部所述误差分量,包括砂轮坐标系原点沿Z轴误差(偏移量)、直径误差、切削半径误差、轴倾角误差。采用平行磨削轨迹规划方法,在目标检测镜面上生成一系列均匀的轨迹,通过插补获得这些轨迹上均匀分布的点的误差。所述均匀分布的点称为误差评估点。利用相邻三条轨迹Ti-1,Ti,Ti+1上所有误差评估点构成的误差方程组,通过最小二乘法获得Ti对应的砂轮母线上点的误差分量。针对目标检测镜面上的不同轨迹重复以上步骤,获得一系列误差分量的离散值。对所述离散值进行插补,获得完整的误差分量曲线。
弧面砂轮实际曲面恢复模块,其作用是根据砂轮母线各点处所述误差分量构造出实际的砂轮母线。首先利用所述砂轮实际运动包络面函数,并固定所述控制点坐标,根据所述弧面砂轮误差分量分离模块获得的全部所述误差分量,确定对应的砂轮母线上的点;然后用样条曲线拟合获得的离散点以构成连续的砂轮母线。获得的实际砂轮母线可以用于砂轮磨损的分析。
理想NC代码输入模块,其作用是接受在理想倾斜弧面砂轮参数下的NC加工代码。NC代码中指定了运动过程中的控制点坐标。
倾斜弧面砂轮误差补偿模块,其作用是在指定控制点处对控制点坐标进行补偿以抵消所述误差分量对面形精度的影响。通过所述弧面砂轮误差分量分离模块可以获得控制点处全部所述误差分量,在所述砂轮实际运动包络面函数的基础上,通过微分,可直接获得控制点补偿量关于所述误差分量的函数。将所述误差分量代入该函数,即可获得相应的控制点补偿值。从而修正NC代码中的控制点坐标或者直接修正数控系统的各轴的插补值。
在本发明的一个较佳实施方式中,倾斜弧面砂轮理想参数输入模块接受倾斜弧面砂轮理想参数的输入,在其基础上少轴磨削倾斜弧面砂轮误差源确定模块提供导致倾斜弧面砂轮误差的全部误差分量,用户通过少轴磨削机床构型与磨削方式选择模块选择具体的机床构型与磨削方式后,在砂轮理想运动包络面构造模块中构造具体的理想砂轮参数下的砂轮运动包络面模型,在砂轮坐标系、直径、切削半径确定模块中确定实际砂轮曲面上的一点处对应的砂轮坐标系、直径与切削半径,在对刀操作平移量确定模块中确定磨削前的对刀操作使砂轮运动包络面产生的平移量,砂轮运动包络面构造模块结合砂轮坐标系、直径、切削半径确定模块与对刀操作平移量确定模块获得实际砂轮运动包络面模型,在倾斜弧面砂轮综合误差模型构造模块中对所述实际砂轮运动包络面模型按所述误差分量分别进行偏微分处理,结合砂轮曲面的法向量构造出倾斜弧面砂轮综合误差模型,在弧面砂轮制造及装配约束构造模块中利用倾斜弧面砂轮综合误差模型构造模块的结果,根据用户给定的倾斜弧面砂轮允许的综合误差上下限,确定弧面砂轮制造及装配分别允许的误差范围,目标镜面输入模块根据用户输入的参数,构建任意轴对称目标镜面参数化模型供镜面误差检测与处理模块使用,在镜面误差检测与处理模块中,根据三坐标测量机对目标检测镜面的检测结果与目标镜面进行比对,经过处理后获得目标镜面上均匀分布点处的法向误差,弧面砂轮误差分量分离模块根据镜面上点的法向误差,获得对应的全部所述误差分量,弧面砂轮实际曲面恢复模块,其作用是根据砂轮母线各点处的所述误差分量构造出实际的砂轮母线,理想NC代码输入模块,其作用是接受在理想倾斜弧面砂轮参数下的NC加工代码,NC代码中指定了运动过程中的控制点坐标,在倾斜弧面砂轮误差补偿模块中,修正NC代码中的控制点坐标或者直接修正数控系统的各轴的插补值以补偿所述误差分量对面形精度的影响。
本发明的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统,可以在多种机床构型与磨削方式组合下,对大型复杂光学镜面少轴磨削倾斜弧面砂轮的误差进行分析与补偿。与现有的方法相比,本发明不仅可以预测倾斜弧面砂轮各误差分量对综合误差的影响,也可以逆向从综合误差中分离出所有与倾斜弧面砂轮有关的误差分量,具有系统性、完整性、直观性。本发明一次检测结果可用于任意曲面、任意口径镜面加工过程的误差补偿,具有简单高效性。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统的示意图;
图2是本发明的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统的由于非圆轮廓导致误差时,少轴磨削倾斜弧面砂轮误差源确定模块中确定的全部误差分量以及砂轮坐标系、直径、切削半径确定模块中确定的砂轮坐标系、直径、切削半径的示意图;
图3是本发明的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统在轴倾角产生误差时,少轴磨削倾斜弧面砂轮误差源确定模块中确定的全部误差分量以及砂轮坐标系、直径、切削半径确定模块中确定的砂轮坐标系、直径、切削半径的示意图;
图4本发明的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统中选择使用的T3型机床构型的结构示意图;
图5是是本发明的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统中选择使用的RT2型机床构型的结构示意图。
具体实施方式
下面结合附图对本发明的实施例作详细说明,本实施例在以本发明技术方案前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
下面结合附图对本发明的实施例作详细说明,本实施例在以本发明技术方案前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
图1是本发明的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统的示意框图,本发明的分析与补偿系统包括倾斜弧面砂轮理想参数输入模块、少轴磨削倾斜弧面砂轮误差源确定模块、少轴磨削机床构型与磨削方式选择模块、砂轮理想运动包络面构造模块、砂轮坐标系、直径、切削半径确定模块、对刀操作平移量确定模块、倾斜弧面砂轮综合误差模型构造模块、弧面砂轮制造及装配约束构造模块、目标镜面输入模块、镜面误差检测与处理模块、弧面砂轮误差分量分离模块、弧面砂轮实际曲面恢复模块、理想NC代码输入模块和倾斜弧面砂轮误差补偿模块。
本发明的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统是按照如下步骤实现的:
步骤一,通过倾斜弧面砂轮理想参数输入模块接受倾斜弧面砂轮理想参数的输入,包括轴倾角、边界角、砂轮直径、切削半径。其中,砂轮直径指弧面砂轮处于安装位置时最低点处的回转直径。理想参数下,弧面砂轮的母线为圆弧。切削半径为圆弧母线的半径。边界角包含左右两个角度,分别指过母线圆弧左端点、母线圆弧圆心的直线与竖直方向的夹角,过母线圆弧右端点、母线圆弧圆心的直线与竖直方向的夹角。轴倾角指砂轮回转轴与竖直方向的夹角。
步骤二,在少轴磨削倾斜弧面砂轮误差源确定模块中确定导致倾斜弧面砂轮误差的全部误差分量。误差分量包括砂轮直径误差、切削半径误差、轴倾角误差以及砂轮坐标系原点沿Z轴的误差。理想参数下砂轮坐标系原点位于弧面砂轮处于安装位置时最低点处的回转中心,Z轴沿砂轮回转轴线向上,X轴指向砂轮处于安装位置时最低点。
步骤三,在少轴磨削机床构型与磨削方式选择模块中,确定少轴磨削方式下可行的机床构型与磨削方式并提供给用户选择;根据商运动学对三轴机床构型空间的分类并结合实际的商用机床,将少轴磨削机床构型分为两大类,一类是T3构型:机床包含三个移动轴;另一类是RT2构型:包含两移动轴与一旋转轴。每一类构型下又包含两种磨削方式:1.平行磨削:指砂轮线速度与进给速度的方向相同;2.横向磨削:指砂轮线速度与进给速度方向垂直。用户选择其中的一种构型与磨削方式的组合。
步骤四,在砂轮理想运动包络面构造模块中根据机床三轴的运动构造出砂轮相对工件的运动包络面,该模块的作用等同于建立控制点与磨削点之间的函数关系:控制点指加工代码中的编程点,由机床三个轴的机械坐标构成;磨削点是指砂轮运动包络面上的一点,也是磨削过程中砂轮曲面与工件曲面的理论接触点。控制点与磨削点之间的函数关系中包含了砂轮坐标系,砂轮直径,切削半径,轴倾角等信息,为倾斜弧面砂轮综合误差模型构造模块提供了分析基础。
步骤五,在砂轮坐标系、直径、切削半径确定模块中针对实际砂轮曲面上的一点,确定该点处对应的砂轮坐标系、直径与切削半径。该模块分两个方面:一方面是确定非圆母线对应的砂轮坐标系原点沿Z轴的偏移量、直径、切削半径,在非圆母线的指定点处,计算该点处的曲率,获得经过该点的一个曲率圆,该曲率圆最低点的回转中心与理论砂轮坐标系原点的偏差即为砂轮坐标系原点沿Z轴的偏移量,回转直径即为实际砂轮直径,曲率半径记为切削半径;另一方面是确定实际轴倾角误差对应的砂轮坐标系变化,轴倾角的误差相当于对理想参数下的砂轮坐标系施加一旋转作用,并且沿新坐标系Z轴偏移一个与理论轴倾角、轴倾角误差及切削半径有关的偏移量。以上两方面的偏移量直接叠加,加上轴倾角误差产生的旋转作用就可以获得砂轮曲面上一点处实际的砂轮坐标系。
步骤六,在对刀操作平移量确定模块中确定磨削前的对刀操作使砂轮运动包络面产生的平移量。其中,对刀操作指磨削前使砂轮的最低点对对准工件的最低点(凹面)或最高点(凸面)。通过计算砂轮曲面实际对刀点与其理论对刀点的偏差,获得平移量。
步骤七,在倾斜弧面砂轮综合误差模型构造模块中综合砂轮理想运动包络面构造模块、砂轮坐标系、直径、切削半径确定模块以及对刀操作平移量确定模块的信息,构造出砂轮实际运动包络面函数,在砂轮实际运动包络面函数中求磨削点坐标关于砂轮坐标系原点沿Z轴偏移量,砂轮直径,切削半径,轴倾角这几个量的全微分,将该全微分与对刀操作平移量的矢量和向砂轮曲面点处的法向量进行投影,生成与砂轮坐标系原点沿Z轴偏移量,砂轮直径,切削半径,轴倾角误差相关的综合法向误差。
步骤八,在弧面砂轮制造及装配约束构造模块中根据给定的目标镜面允许的综合误差上下限,确定弧面砂轮制造及装配允许的误差范围(即制造及装配约束)。根据给定的目标镜面的误差上下限,以及砂轮直径误差、切削半径误差、轴倾角误差在制造中可能的变动范围,在以砂轮直径误差、切削半径误差、轴倾角误差构成的三维笛卡尔空间中确定八个边界平面。边界内的点代表允许的弧面砂轮制造及装配误差。
步骤九,在目标镜面输入模块中构建任意轴对称目标镜面参数化模型,根据用户输入的参数,在模块内部将目标镜面的模型具体化,供其他模块使用。
步骤十,在镜面误差检测与处理模块中根据三坐标测量机对目标检测镜面的检测结果与目标镜面进行比对,结合目标镜面的法向量,获得目标镜面上均匀分布点处的法向误差。目标检测镜面的基体材料为石墨块等易磨削材料,目标检测镜面的口径与面形不一定要与目标加工镜面相同。
步骤十一,在弧面砂轮误差分量分离模块中根据镜面上多点处的综合法向误差,获得对应的全部误差分量,包括砂轮坐标系原点沿Z轴误差(偏移量)、直径误差、切削半径误差、轴倾角误差。采用平行磨削轨迹规划方法,在目标检测镜面上生成一系列均匀的轨迹,通过插补获得这些轨迹上均匀分布的点的误差。均匀分布的点称为误差评估点。利用相邻三条轨迹Ti-1,Ti,Ti+1上所有误差评估点构成的误差方程组,通过最小二乘法获得Ti对应的砂轮母线上点的误差分量。针对目标检测镜面上的不同轨迹重复以上步骤,获得一系列误差分量的离散值。对离散值进行插补,获得完整的误差分量曲线。
步骤十二,在弧面砂轮实际曲面恢复模块中根据砂轮母线各点处误差分量构造出实际的砂轮母线。首先利用砂轮实际运动包络面函数,并固定控制点坐标,根据弧面砂轮误差分量分离模块获得的全部误差分量,确定对应的砂轮母线上的点,然后用样条曲线拟合获得的离散点以构成连续的砂轮母线。获得的实际砂轮母线可以用于砂轮磨损的分析。
步骤十三,在理想NC代码输入模块中接受在理想倾斜弧面砂轮参数下的NC加工代码。NC代码中指定了运动过程中的控制点坐标。
步骤十四,倾斜弧面砂轮误差补偿模块中在指定控制点处对控制点坐标进行补偿以抵消误差分量对面形精度的影响。通过弧面砂轮误差分量分离模块可以获得控制点处全部误差分量,在砂轮实际运动包络面函数的基础上,通过微分,可直接获得控制点补偿量关于误差分量的函数。将误差分量代入该函数,即可获得相应的控制点补偿值。从而修正NC代码中的控制点坐标或者直接修正数控系统的各轴的插补值。
图2和图3是本发明中少轴磨削倾斜弧面砂轮误差源确定模块中确定的全部误差分量以及砂轮坐标系、直径、切削半径确定模块中确定的砂轮坐标系、直径、切削半径。图2中由于非圆轮廓导致砂轮坐标系由{Os-ZsXs}变为{Os1-Zs1Xs1}。图2中OsA0为理想砂轮直径、Os1A1为砂轮母线上p点处的实际砂轮直径,Os1A1与OsA0的差为砂轮直径误差,Rc0为理想切削半径,Rc1为p点处实际切削半径,Rc1与Rc0的差为切削半径偏差,Os1Os即为砂轮坐标系原点沿Z轴误差。图2中,Ab点为实际砂轮最点,为方便描述实际砂轮母线,该点处固连一个坐标系{Ab-ZbXb}。图3中由于轴倾角的误差导致砂轮坐标系由{Os1-Zs1Xs1}变为{Os2-Zs2Xs2}。图3中A1点为理想轴倾角下,实际砂轮的最低点。轴倾角发生误差后,其对应点为A1’,实际砂轮最低点变为A2。A2’是A2在理想轴倾角下的对应点。Os1A0为理想砂轮直径、Os2A2为砂轮母线上A2点处的实际砂轮直径,Os2A2与Os1A0的差为砂轮直径误差,Rc0为理想切削半径,Rc2为A2点处实际切削半径,Rc1为A1点处实际切削半径,可认为与Rc2近似相等,Rc2与Rc0的差为切削半径偏差,Os2Os1即为砂轮坐标系原点沿Z轴误差。
图4是本发明中少轴磨削机床构型与磨削方式选择模块中提供的两种典型的机床构型。图4为T3构型中的一种,其中1、2、3分别表示工件、弧面砂轮、倾斜砂轮主轴,4、5、6分别表示沿不同方向运动的三个移动轴。图4中机床可进行平行磨削与横行磨削。图5为RT2构型中的一种,其中1、2、3分别表示工件、弧面砂轮、倾斜砂轮主轴,4、5表示移动轴,6表示旋转轴。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿模块,其特征在于,包括倾斜弧面砂轮理想参数输入模块、少轴磨削倾斜弧面砂轮误差源确定模块、少轴磨削机床构型与磨削方式选择模块、砂轮理想运动包络面构造模块、砂轮坐标系、直径、切削半径确定模块、对刀操作平移量确定模块、倾斜弧面砂轮综合误差模型构造模块、弧面砂轮制造及装配约束构造模块、目标镜面输入模块、镜面误差检测与处理模块、砂轮误差分量分离模块、弧面砂轮实际曲面恢复模块、理想NC代码输入模块和倾斜弧面砂轮误差补偿模块;
所述倾斜弧面砂轮理想参数输入模块,用于输入所述弧面砂轮的理想参数;
所述少轴磨削倾斜弧面砂轮误差源确定模块,用于确定导致弧面砂轮误差的全部误差分量;
所述少轴磨削机床构型与磨削方式选择模块,用于选择少轴磨削方式下的机床构型与磨削方式;
所述砂轮理想运动包络面构造模块,用于构造所述弧面砂轮相对工件的运动包络面;
所述砂轮坐标系、直径、切削半径确定模块,用于确定实际所述弧面砂轮某一点所对应的砂轮坐标系、直径与切削半径;
所述对刀操作平移量确定模块,用于确定磨削前的对刀操作使砂轮运动包络面产生的平移量;
所述倾斜弧面砂轮综合误差模型构造模块,用于构造包含所有所述误差分量的镜面法向误差模型;
所述弧面砂轮制造及装配约束构造模块,用于根据给定的目标镜面误差上下限,确定所述弧面砂轮制造和装配时所允许的误差范围;
所述目标镜面输入模块,用于输入目标镜面参数,构建目标镜面参数化模型;
所述镜面误差检测与处理模块,用于对目标检测镜面与所述目标镜面进行比较,获得所述目标镜面上均匀分布点处的法向误差;
所述弧面砂轮误差分量分离模块,用于根据所述目标检测镜面上多点处的误差,获得完整的误差分量曲线;
所述弧面砂轮实际曲面恢复模块,用于根据所述砂轮母线各点处所述误差分量恢复出实际的所述砂轮母线;
所述理想NC代码输入模块,用于输入理想弧面砂轮参数下的NC加工代码;
所述倾斜弧面砂轮误差补偿模块,用于在指定控制点处对控制点坐标进行补偿和抵消所述误差分量。
2.如权利要求1所述的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统,其特征在于,所述误差分量包括砂轮坐标系原点沿Z轴的偏移量、砂轮直径误差、切削半径误差和轴倾角误差。
3.如权利要求2所述的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统,其特征在于,在所述少轴磨削机床构型与磨削方式选择模块中,少轴磨削机床构型包括T3构型和RT2构型;所述磨削方式包括平行磨削和横向磨削。
4.如权利要求3所述的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统,其特征在于,所述对刀操作平移量确定模块是通过计算所述弧面砂轮曲面的实际对刀点与其理论对刀点的偏差获得所述平移量。
5.如权利要求4所述的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统,其特征在于,所述倾斜弧面砂轮综合误差模型构造模块构造以所述误差分量为自变量的砂轮实际运动包络面函数,并将所述砂轮实际运动包络面函数的全微分与所述对刀操作平移量的矢量和向局部法方向进行投影,获得综合误差。
6.如权利要求5所述的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统,其特征在于,所述弧面砂轮误差分量分离模块采用平行磨削轨迹规划方法,在目标检测镜面上生成一系列均匀的轨迹,通过插补获得这些轨迹上误差评估点的误差分量;利用相邻三条轨迹Ti-1,Ti,Ti+1上的所有误差评估点构成误差方程组,通过最小二乘法获得Ti对应的砂轮母线上点的误差分量;针对目标检测镜面上的不同轨迹重复以上步骤,获得一系列误差分量的离散值;对所述离散值进行插补,获得完整的误差分量曲线。
7.如权利要求6所述的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统,其特征在于,所述倾斜弧面砂轮制造及装配约束构造模块根据给定的目标镜面误差上下限,以及砂轮直径误差、切削半径误差、轴倾角误差在制造中可能的变动范围,在以砂轮直径误差、切削半径误差、轴倾角误差构成的三维笛卡尔空间中确定八个边界平面;所述八个边界平面围成的空间就是所述弧面砂轮制造及装配所允许的误差范围。
8.如权利要求7所述的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统,其特征在于,所述目标检测镜面的基体材料为石墨块或其他易磨材料,所述目标检测镜面的口径和面形与目标加工镜面相同或不同。
9.如权利要求8所述的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统,其特征在于,所述倾斜弧面砂轮实际曲面恢复模块利用所述砂轮实际运动包络面函数,并固定所述控制点坐标,根据所述弧面砂轮误差分量分离模块获得的全部所述误差分量,确定对应的砂轮母线上的点,然后用样条曲线拟合获得的离散点以构成连续的砂轮母线,最终获得实际的砂轮母线。
10.如权利要求9所述的光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统,其特征在于,所述倾斜弧面砂轮误差补偿模块通过所述弧面砂轮误差分量分离模块获得所述控制点处的全部所述误差分量;并在所述砂轮实际运动包络面函数的基础上,获得所述控制点的补偿量关于所述误差分量的函数;将所述控制点处的所述误差分量代入所述函数,获得对应的控制点的补偿值;从而修正NC代码中的控制点坐标或者直接修正数控系统的各轴的插补值。
CN201410115102.8A 2014-03-26 2014-03-26 光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统 Active CN103862380B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410115102.8A CN103862380B (zh) 2014-03-26 2014-03-26 光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410115102.8A CN103862380B (zh) 2014-03-26 2014-03-26 光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统

Publications (2)

Publication Number Publication Date
CN103862380A true CN103862380A (zh) 2014-06-18
CN103862380B CN103862380B (zh) 2016-06-01

Family

ID=50901715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410115102.8A Active CN103862380B (zh) 2014-03-26 2014-03-26 光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统

Country Status (1)

Country Link
CN (1) CN103862380B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104385083A (zh) * 2014-10-15 2015-03-04 天津大学 杯形砂轮可变定位基圆凸曲面工件磨削加工方法
CN107378687A (zh) * 2017-08-09 2017-11-24 哈尔滨理工大学 一种基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法
CN108098515A (zh) * 2017-12-12 2018-06-01 科德数控股份有限公司 一种使用多种成型砂轮加工钻头槽型的方法
WO2019047683A1 (zh) * 2017-09-11 2019-03-14 南宁宇立仪器有限公司 一种智能打磨方法
CN109669395A (zh) * 2018-12-04 2019-04-23 天津津航技术物理研究所 一种轴对称非球面的变半径圆弧插补方法
CN109773435A (zh) * 2019-01-15 2019-05-21 常德市中天精密工具有限公司 一种制作刀具圆盘的磨切方法
CN109834551A (zh) * 2019-01-28 2019-06-04 湖北工业大学 一种圆弧砂轮磨削圆弧直槽的方法
CN111251164A (zh) * 2020-01-10 2020-06-09 杭州开维科技有限公司 一种基于cad建模的保温杯抛光方法
CN111638682A (zh) * 2020-05-26 2020-09-08 四川新迎顺信息技术股份有限公司 一种使用磨损砂轮磨削周齿螺旋刃后刀面的补偿方法
CN112775723A (zh) * 2020-12-30 2021-05-11 四川龙天精工科技有限公司 超硬功能陶瓷加工参数的获取方法及加工方法、应用
CN113894806A (zh) * 2021-10-20 2022-01-07 武汉理工大学 一种盘式打磨头-工件接触界面角偏差估计及补偿方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190617A (ja) * 2006-01-17 2007-08-02 Micron Seimitsu Kk 液冷式インプロセス・センタレス研削方法、および、同センタレス研削装置
CN101972963A (zh) * 2010-11-18 2011-02-16 上海交通大学 大型特种曲面精密磨削方法及其磨削装备
CN102009388A (zh) * 2010-10-15 2011-04-13 上海交通大学 金属基微型砂轮在位电解电火花修整装置及其修整方法
CN102059653A (zh) * 2010-07-20 2011-05-18 上海交通大学 球面数控精密磨削过程自适应控制方法
CN102172864A (zh) * 2011-03-02 2011-09-07 上海交通大学 高硬大型球面双砂轮精密磨削方法与装备
CN102756316A (zh) * 2012-07-13 2012-10-31 上海交通大学 大口径光学镜面超精密加工集成平台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190617A (ja) * 2006-01-17 2007-08-02 Micron Seimitsu Kk 液冷式インプロセス・センタレス研削方法、および、同センタレス研削装置
CN102059653A (zh) * 2010-07-20 2011-05-18 上海交通大学 球面数控精密磨削过程自适应控制方法
CN102009388A (zh) * 2010-10-15 2011-04-13 上海交通大学 金属基微型砂轮在位电解电火花修整装置及其修整方法
CN101972963A (zh) * 2010-11-18 2011-02-16 上海交通大学 大型特种曲面精密磨削方法及其磨削装备
CN102172864A (zh) * 2011-03-02 2011-09-07 上海交通大学 高硬大型球面双砂轮精密磨削方法与装备
CN102756316A (zh) * 2012-07-13 2012-10-31 上海交通大学 大口径光学镜面超精密加工集成平台

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104385083A (zh) * 2014-10-15 2015-03-04 天津大学 杯形砂轮可变定位基圆凸曲面工件磨削加工方法
CN107378687A (zh) * 2017-08-09 2017-11-24 哈尔滨理工大学 一种基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法
WO2019047683A1 (zh) * 2017-09-11 2019-03-14 南宁宇立仪器有限公司 一种智能打磨方法
CN108098515A (zh) * 2017-12-12 2018-06-01 科德数控股份有限公司 一种使用多种成型砂轮加工钻头槽型的方法
CN109669395A (zh) * 2018-12-04 2019-04-23 天津津航技术物理研究所 一种轴对称非球面的变半径圆弧插补方法
CN109669395B (zh) * 2018-12-04 2021-08-06 天津津航技术物理研究所 一种轴对称非球面的变半径圆弧插补方法
CN109773435A (zh) * 2019-01-15 2019-05-21 常德市中天精密工具有限公司 一种制作刀具圆盘的磨切方法
CN109773435B (zh) * 2019-01-15 2022-05-17 常德市中天精密工具有限公司 一种制作刀具圆盘的磨切方法
CN109834551B (zh) * 2019-01-28 2020-08-07 湖北工业大学 一种圆弧砂轮磨削圆弧直槽的方法
CN109834551A (zh) * 2019-01-28 2019-06-04 湖北工业大学 一种圆弧砂轮磨削圆弧直槽的方法
CN111251164A (zh) * 2020-01-10 2020-06-09 杭州开维科技有限公司 一种基于cad建模的保温杯抛光方法
CN111638682A (zh) * 2020-05-26 2020-09-08 四川新迎顺信息技术股份有限公司 一种使用磨损砂轮磨削周齿螺旋刃后刀面的补偿方法
CN111638682B (zh) * 2020-05-26 2023-04-28 四川新迎顺信息技术股份有限公司 一种使用磨损砂轮磨削周齿螺旋刃后刀面的补偿方法
CN112775723A (zh) * 2020-12-30 2021-05-11 四川龙天精工科技有限公司 超硬功能陶瓷加工参数的获取方法及加工方法、应用
CN112775723B (zh) * 2020-12-30 2022-08-05 四川龙天精工科技有限公司 超硬功能陶瓷加工参数的获取方法及加工方法、应用
CN113894806A (zh) * 2021-10-20 2022-01-07 武汉理工大学 一种盘式打磨头-工件接触界面角偏差估计及补偿方法

Also Published As

Publication number Publication date
CN103862380B (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
CN103862380A (zh) 光学镜面少轴磨削倾斜弧面砂轮误差分析与补偿系统
CN102794688B (zh) 可重构少轴超精密大型光学镜面磨削系统
CN100400225C (zh) 非球面光学零件复合加工、检测机床
CN102756316B (zh) 大口径光学镜面超精密加工集成平台
CN101983838B (zh) 基于智能数控平台的铣磨抛光装置
CN102319921B (zh) 可倾斜主轴数控铣床的分层加工方法
CN107378687B (zh) 基于砂轮磨损预测的大口径反射镜迭代预补偿磨削方法
CN105014503A (zh) 大口径轴对称非球面的精密磨削方法
CN110500969B (zh) 一种高陡度复杂曲面在位测量规划方法
CN110297462A (zh) 一种考虑机床几何误差影响的磨齿精度预测建模方法
CN105643394A (zh) 一种中大口径非球面光学元件高效高精度先进制造技术工艺流程
CN103522348B (zh) 对刀方法及其真圆加工方法与菲涅尔透镜加工方法
CN106078359A (zh) 一种龙门式多主轴制孔组合机床的零点定义与标定方法
CN103991025A (zh) 一种偏心式变曲率沟槽加工高精度球体的方法
CN104714475B (zh) 一种高效曲面直接数控加工方法
CN105522484A (zh) 一种玻璃雕铣机的控制加工方法
CN115032945B (zh) 复杂曲面零件慢刀伺服磨削加工刀具轨迹规划方法
Li et al. A novel path generation method of onsite 5-axis surface inspection using the dual-cubic NURBS representation
CN104536385A (zh) 一种数控机床加工程序的修正方法
CN108098515B (zh) 一种使用多种成型砂轮加工钻头槽型的方法
CN107942942A (zh) 一种机床设备应用于相交倾斜面的倾斜坐标系建立方法
CN104385084B (zh) 可变成型基圆平面包络凸曲面工件五轴磨削加工方法
CN102350522B (zh) 可倾斜主轴数控铣床的加工方法
CN103995979A (zh) 非球面平行磨削加工的磨削力计算方法
CN105116840A (zh) 一种空间曲线一次插补缓变误差补偿方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant