CN103852181A - 一种测量mosfet器件峰值结温分布的方法 - Google Patents

一种测量mosfet器件峰值结温分布的方法 Download PDF

Info

Publication number
CN103852181A
CN103852181A CN201210524530.7A CN201210524530A CN103852181A CN 103852181 A CN103852181 A CN 103852181A CN 201210524530 A CN201210524530 A CN 201210524530A CN 103852181 A CN103852181 A CN 103852181A
Authority
CN
China
Prior art keywords
temperature
temperature sensitive
electric current
sensitive parameter
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210524530.7A
Other languages
English (en)
Inventor
朱阳军
陆江
董少华
田晓丽
王任卿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201210524530.7A priority Critical patent/CN103852181A/zh
Publication of CN103852181A publication Critical patent/CN103852181A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

本发明公开了一种测量MOSFET器件峰值结温分布的方法,属于MOSFET器件的技术领域。该方法包括在恒温装置里采集MOSFET器件的多阶梯恒流脉冲所对应的温敏参数,获得MOSFET器件的电流-温敏参数-温度三维曲线簇;选定基准电流,得到基准电流的序列;根据电流-温敏参数-温度三维曲线簇和基准电流的序列,得到电流-有效面积-温敏参数-温度曲线簇;通过多阶梯恒流重复脉冲测试MOSFET器件,得到零时刻温敏参数;根据零时刻温敏参数和电流-有效面积-温敏参数-温度曲线簇,得到不同有效面积所对应的结温。本发明通过测量器件有源区的相关参数,可以提供更准确可靠的信息,与实际的温度分布和峰值结温符合的较好。

Description

一种测量MOSFET器件峰值结温分布的方法
技术领域
本发明属于MOSFET器件的技术领域,特别涉及一种测量MOSFET器件峰值结温分布的方法。
背景技术
MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET),简称金氧半场效晶体管是一种可以广泛使用在模拟电路与数字电路的场效晶体管。金属氧化物半导体场效应管依照其“沟道”的极性不同,可分为电子占多数的N沟道型与空穴占多数的P沟道型。
MOSFET器件的结温高低以及均匀与否对其热学和电学性能、可靠性有至关重要的影响,而结温是半导体器件最重要最基本的物理参量之一。MOSFET器件发热均匀性和温度分布的均匀性,以及其对于器件的参数的稳定性、品质的可靠性以及器件、整片集成电路乃至整机和系统的寿命都有不可忽视甚至决定性的影响,其对于航空、军事等很多领域的重要性也是不可动摇的。MOSFET器件的温度均匀与否是影响其热学性能、电学性能、可靠性乃至寿命的重要因素。
研究MOSFET器件源漏结温度均匀与否的最好方法是摄取红外热像图。它是通过红外热像仪接收目标各部位辐射的红外能量,并将其转化为温度值,用不同的颜色标示不同的温度,最终以红外热像图方式在液晶屏上显示。该测试方法需要对器件内部管芯进行拍照,因此需要专门对器件进行加工后方可测试,例如对于塑封(塑料封装)器件需要使用化学方法(例如酸腐蚀)对其进行开帽操作,使得器件内部的管芯裸露出来,对于金属封装的器件需要将器件正面的金属盖板通过物理方法取掉,方可使器件内部的芯片裸露出来。即对器件进行了破坏,属于破坏性检测手段。甚至有时加工后的器件无法对其进行测试。
尽管红外热像图能直观的给出整个芯片各处的温度信息,以及整个区域的峰值温度,但是它没有突出显示整个有源区,温度分布状况。对于芯片或者器件而言,有源区才是表征体现芯片或器件热学性能可靠性最理想的区域。当前人们使用红外热像法获得器件的热像图来进行可靠性分析和判断,也仅仅是停留在感官上整个芯片的温度信息和温度分布状况,而没能专门针对于器件有源区,做出相应的定性和定量分析,给出有源区的温度分布,平均温度,以及平均温度与峰值结温的差值等等,此差值将关系到芯片使用的可靠性问题。
发明内容
本发明所要解决的技术问题是提供一种测量MOSFET器件峰值结温分布的方法,解决了现有技术中破坏性检测和有源区温度分布显示不准确的技术问题。
为解决上述技术问题,本发明提供了一种测量MOSFET器件峰值结温的方法,包括如下步骤:
在恒温装置内,采集MOSFET器件的多阶梯恒流脉冲所对应的温敏参数,获得所述MOSFET器件的电流-温敏参数-温度三维曲线簇;
设定所述MOSFET器件的有效面积,根据MQH算法,选定基准电流,得到所述基准电流的序列;
根据所述电流-温敏参数-温度三维曲线簇和所述基准电流的序列,得到电流-有效面积-温敏参数-温度曲线簇;
通过所述多阶梯恒流重复脉冲测试所述MOSFET器件,得到同一电流在不同时间的温敏参数,然后将所述同一电流在不同时间的温敏参数进行多项式拟合,得到零时刻温敏参数;
根据所述零时刻温敏参数和所述电流-有效面积-温敏参数-温度曲线簇,得到所述有效面积所对应的结温。
进一步地,所述电流-有效面积-温敏参数-温度曲线簇通过以所述基准电流的序列为参量,以所述温敏参数为自变量,以所述温度为应变量进行多项式拟合即得。
进一步地,所述得到同一电流在不同时间的温敏参数的方法具体包括如下步骤:
对所述MOSFET器件加一栅压,使所述MOSFET器件的沟道开启,然后在漏极和源极之间施加一加热电压,所述加热电压所产生的加热电流从所述漏极流向所述源极;
经加热后,关断所述栅压和所述加热电压,所述沟道关闭,分别在所述源极和所述漏极之间施加一测量电流,所述测量电流从所述源极流向所述漏极,立即测量所述MOSFET器件的温敏参数,通过多阶梯恒流重复脉冲测试所述MOSFET器件,得到同一电流在不同时间的温敏参数。
本发明提供的一种测量MOSFET器件峰值结温分布的方法,通过测量器件有源区的相关参数,结合相对应的数理模型计算出器件的温度分布,给出相应的温度和对应的有效面积,针对器件有源区进行定量分析,因此在对器件进行可靠性分析判断方面,热谱分析方法优于红外热像法,可以提供更准确可靠的信息,与实际的温度分布和峰值结温符合的较好。
附图说明
图1为现有技术提供的不同电流I下的V-T曲线簇示意图;
图2为现有技术提供的不同温度T下的V-I曲线簇示意图;
图3为现有技术提供的MOSFET场效应器件结温电学方法测试电路原理图;
图4为本发明实施例提供的多阶梯恒流重复脉冲测试波形图;
图5为本发明实施例提供的在不同基准电流下T-AE函数关系示意图;
图6为本发明实施例提供的电流序列在不同有效面积下的温度差值。
具体实施方式
名词解释:
多项式拟合:简单的说,就是选取一合适的函数,该函数能够同已知点进行较好的拟合;
温敏参数:对温度敏感的参数。即温度值与该参数值能有一一对应关系,一般选用pn结的正向压降。
有效面积AE:当晶体管结温分布不均匀时,绝大多数(我们选定为99%)电流流过的区域所占总有源区的比例。
MQH算法:已知流过结温分布均匀为T的半导体势垒的电流是I,流域面积为A0,如果在某时刻该势垒温度分布不再均匀,若要维持流过温度为T有效面积为AE(AE≤A0)的势垒的电流仍为I,那么该流域面积内的电流密度增加为
Figure BDA00002545845500041
此时的温敏参数电压则等于该势垒在相同温度T下,流域面积为A0情况下,电流为时所对应的电压值。
本发明实施例提供的一种测量MOSFET器件峰值结温分布的方法,包括如下步骤:
步骤101:在恒温装置内,采集MOSFET器件的多阶梯恒流脉冲所对应的温敏参数,获得MOSFET器件的电流-温敏参数-温度三维曲线簇;
具体为:在不同的温度下测试器件的电流电压特性,即I-V-T曲线簇。在温度可调的高精度恒温装置里,高速采集多阶梯恒流所对应的温敏参数,进而获得较宽温度区间内的I-V-T特性曲线簇,将这样的曲线簇称为三维本底数据库;得到这样一个数据库之后,结温任何分布的微分元,原理上都可以从本底数据库里找到一个像点,允许结温分布形式的多样化。本底数据库是半导体器件热谱分析的数据库,数据库中的数据精确度很高,温度可以精确到0.1℃,电压可以精确到10微伏量级。本底数据是包含了热导、热容、串联热阻、注入系数等分布参量的综合结果,有较高的可信度,具体参见图1和图2,其中,图1的纵坐标即为温敏参数VF,横坐标为恒温装置设定的不同的温度,测试电流I为参量,从图1可以看出随着温度的升高,VF线性下降,说明温敏参数VF具有负的温度特性,不同的测试电流下,温敏参数与温度的对应关系也不同。图2的纵坐标为测试电流I,横轴为温敏参数VF,温度T为参量。从图中可以看出随着温度的增加,同一电流对应的温敏参数VF减小,这也反映了温敏参数VF具有负的温度特性。
步骤102:设定MOSFET器件的有效面积,根据MQH算法,选定基准电流,得到所述基准电流的序列;
具体为:设定有效面积AE的序列为AE=(100%,99%,…,1%)共一百个元素,分别记为AE1,AE2,…,AE100,根据MQH算法,选定电流I1作为基准电流,分别得到电流序列
Figure BDA00002545845500051
简单标记为表示以电流I1作为基准电流的序列,即 B I 1 = ( I 1 A E 1 , I 1 A E 2 , . . . , I 1 A E 100 ) .
步骤103:根据电流-温敏参数-温度三维曲线簇和基准电流的序列,以基准电流的序列为参量,以温敏参数为自变量,以温度为应变量进行多项式拟合,得到电流-有效面积-温敏参数-温度曲线簇;
具体为:以温度T作为参量,以电流的自然对数lnI作为自变量,以温敏参数V作为应变量进行多项式拟合,得到以温度T为参量所对应的V-lnI关系,简单标记为fT(V,lnI)。因此,如果本底数据里采集了n个温度下的伏安特性的话,那么将得到n个关系,即
Figure BDA00002545845500054
用温敏参数电流关系fT(V,lnI),就可以计算得到以温度T为参量,电流序列为
Figure BDA00002545845500055
中所有电流所对应的温敏参数值,进而得到以温度T为参量的
Figure BDA00002545845500056
数据;
由n个温度T,共可以得到n组
Figure BDA00002545845500061
数据,此时提取电流作为参量,便可以得到相应的T-V关系。即分别以
Figure BDA00002545845500062
作为参量,以温敏参数V作为自变量,以温度T作为应变量进行多项式拟合,分别得到
Figure BDA00002545845500063
Figure BDA00002545845500064
共100组T-V关系,称之为以电流I1为基准的曲线簇。
重复以上步骤,分别得到以电流I2,I3,…,Im为基准电流的曲线簇,最后得到电流-有效面积-温敏参数-温度曲线簇;
至此,本底数据的处理工作全部完成,由原来三个变量的I-V-T曲线簇,在MQH算法的基础上经过数学物理方法处理,加入了新的变量——有效面积AE,使曲线簇变成了4维,即I-AE-V-T曲线簇。
步骤104:通过多阶梯恒流重复脉冲测试MOSFET器件,得到同一电流在不同时间的温敏参数,然后将同一电流在不同时间的温敏参数进行多项式拟合,得到零时刻温敏参数;
其中,得到同一电流在不同时间的温敏参数的方法具体包括如下步骤:
将MOSFET器件的第一开关和第二开关调整到加热位置,MOSFET器件被加热,MOSFET器件的结温升高,然后调整MOSFET器件的第一开关和第二开关至测量位置,MOSFET器件的沟道关闭,测量MOSFET器件的温敏参数,通过多阶梯恒流脉冲多次测试所述MOSFET器件,得到同一电流在不同时间的温敏参数;
具体为:参见图3,该电路由被测MOSFET器件、三个电压源、一个电流源和两个电子开关组成。在加热期间,电子开关S1和电子开关S2在位置1;调整VG和VD值,以达到PH加热条件的ID和VDS的要求值,其中,电子开关S1和电子开关S2分别置于1的位置是加热状态,置于2则用于器件初始值和加热后的测量状态;
步骤1041:将电子开关S1和电子开关S2分别置于1,被测MOSFET器件栅极电压为正值,当超过MOSFET器件阈值电压时,沟道开启,在漏极和源极之间加一加热电压对器件加热,加热电流从漏极流向源极,而MOSFET器件漏源极(DS)正偏,MOSFET器件开始加热,由于功率电流ID的自热效应,器件被加热,结温开始升高。此时的功率条件为PH=ID×VDS,加热时间T可以设定,而ID则与栅极电压VGS和VDS有关;
步骤1042:将电子开关S1和电子开关S2从1断开即断开功率,经微秒级延迟后(主要是大电流关断和测量阶梯波形建立时间),分别置于2,此时器件沟道关闭,分别在源极和漏极之间施加一测量电流,测量电流从所述源极流向所述漏极,测量电流IM再次穿过源漏结,测量加热后的温敏参数VSD2,得到同一电流在不同时间的温敏参数;
被测MOSFET器件在断开功率后,结温会迅速下降,因此当使用阶梯电流脉冲的时候,每阶电流的脉宽在满足准确测量的前提下应尽量小,以节省总的测量时间。阶梯恒流脉冲测得的温敏参数是对应不同时刻的VSD值;
步骤1043:但是由于MOSFET器件的电路测试实现上有一定的延迟时间,因此,需要通过模型和函数反推到零时刻(断开功率的瞬间时刻)。首先使用多阶梯恒流高速重复采集,热谱分析方法要求至少有两个以上的测量电流,因此在获取零时刻温敏参数的时候,采用了多阶梯恒流重复脉冲测试,以3阶恒流为例,测试原理波形图如图4所示,从图4中只展示了3阶梯恒流3个重复脉冲的测量情况,t 0表示断掉功率的时刻,即零时刻。因为需要同一电流在不同时刻的测量数据才可以使用数学物理方法进行拟和或者反推,因此需要对阶梯恒流进行重复脉冲测试,但是重复脉冲的次数也不是越多或者越少越好,需要一个恰到好处的适当值,多了则会由于降温太多而偏离零时刻太远,少了则由于拟和数据过少而对拟和函数的精度和结果造成影响;
步骤1044:使用多项式拟和函数,对于上面的重复脉冲下的阶梯恒流测量,电流I1对应的测量时刻分别是t11,t21,t31,将测得的对应时刻的温敏参数与时间进行多项式拟和,即得到电流I1对应的零时刻温敏参数V1,同理,拟和得到其他测量电流所对应的零时刻温敏参数Vi
步骤105:根据零时刻温敏参数和所述电流-有效面积-温敏参数-温度曲线簇,得到不同有效面积所对应的结温;
具体为:
步骤1051:将得到的零时刻伏安特性数据中的对应测量电流所对应的电压,分别带入基准电流对应的曲线簇中的各条曲线中计算出温度。即如果通过处理测试采集后的数据而得到的零时刻温敏参数为I1-V1,那么调用本底数据里己经处理好的对应于基准电流I1的曲线簇:I1-AE-V-T,由零时刻温敏参数V1带入函数关系
Figure BDA00002545845500081
步骤1052;分别计算得到不同有效面积对应的温度T,如图5所示,图5纵坐标是使用绝对温度单位的结温T,横坐标则是对数坐标系下的有效面积AE。测试阶梯恒流选择如图中右上角框内所示,分别是0.625mA,1.25mA,2.50mA,5.0mA,10.0mA,20.0mA,40.0mA。从图5可以看出不同有效面积同结温T的在不同基准电流下的对应关系。不同基准电流所对应的T-AE曲线都是相交的,两两相交的交点大致在93%附近。此交点所对应的纵轴值即为切断功率之后的峰值结温,横轴所对应的即为该峰值结温的分布面积。因此,每个测量电流就会得出一个有效面积跟温度T的对应关系,通过数学方法处理,即可以得到它们的函数方程,分别称为曲线1,曲线2,曲线m,其解析表达式分别为:
f I 1 ( T , A E ) = 0 , f I 2 ( T , A E ) = 0 , . . . , f I m ( T , A E ) = 0
其中,图5采用的是单对数坐标系,从图中可以看出,不同基准电流所对应的T-AE曲线都是相交的,两两相交的交点大致在93%附近。我们通过对这些曲线两两凑对做内差,即将上面所求的不同电流下的解析表达式,进行两两联立,得到以下方程组
f I 1 ( T , A E ) = 0 f I 2 ( T , A E ) = 0
如图6所示,其中,图6纵轴代表配对电流序列在相同有效面积下的温度差值,横轴对应的是有效面积,分别将基准电流序列的0.625-1.25,1.25-2.5,2.5-5.0,5.0-10.0,10.0-20.0,20.0-40.0进行两两联立共6条曲线,获得这6条曲线纵坐标即温度差为0的时候对应的横坐标,即是这些曲线联立所求解有效面积,然后带到上面的方程中,即可获得所对应的结温。至此便求出了器件的峰值结温及其分布。
热谱分析方法是一种使用纯电学方式探测芯片温度分布不均匀性和不均匀度的方法,它对器件的测量是无损伤的,既可以测量半成品也可以测量成品器件,同时它又具备了红外热像法的优点,即可以获取温度分布的不均匀性和不均匀度信息。而且热谱分析方法在探测温度分布信息方面还优于红外热像法,因为红外热像法虽然可以获得整个芯片的温度信息,对于温度分布情况一目了然,但是基于这种方法的可靠性判断只是局限于感观上、经验上的,而缺乏定量和定性的分析,尤其是针对器件的有源区。而热谱分析方法,通过测量器件有源区的相关参数,结合相对应的数理模型计算出器件的温度分布,给出相应的温度和对应的有效面积,这是专门针对器件有源区进行定量分析的结果。因此在对器件进行可靠性分析判断方面,热谱分析方法优于红外热像法,可以提供更准确可靠的信息。因此,本发明所呈现的热谱分析方法,作为一种使用纯电学方式探测结温分布不均匀性和不均匀度,测量峰值结温的全新方法,其分析结果与红外热像法测试结果基本吻合,与实际的温度分布和峰值结温符合的较好。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

1.一种测量MOSFET器件峰值结温分布的方法,其特征在于,包括如下步骤:
在恒温装置内,采集MOSFET器件的多阶梯恒流脉冲所对应的温敏参数,获得所述MOSFET器件的电流-温敏参数-温度三维曲线簇;
设定所述MOSFET器件的有效面积,根据MQH算法,选定基准电流,得到所述基准电流的序列;
根据所述电流-温敏参数-温度三维曲线簇和所述基准电流的序列,得到电流-有效面积-温敏参数-温度曲线簇;
通过所述多阶梯恒流重复脉冲测试所述MOSFET器件,得到同一电流在不同时间的温敏参数,然后将所述同一电流在不同时间的温敏参数进行多项式拟合,得到零时刻温敏参数;
根据所述零时刻温敏参数和所述电流-有效面积-温敏参数-温度曲线簇,得到所述有效面积所对应的结温。
2.根据权利要求1所述的方法,其特征在于,所述电流-有效面积-温敏参数-温度曲线簇通过以所述基准电流的序列为参量,以所述温敏参数为自变量,以所述温度为应变量进行多项式拟合即得。
3.根据权利要求1所述的方法,其特征在于,所述得到同一电流在不同时间的温敏参数的方法具体包括如下步骤:
对所述MOSFET器件加一栅压,使所述MOSFET器件的沟道开启,然后在漏极和源极之间施加一加热电压,所述加热电压所产生的加热电流从所述漏极流向所述源极;
经加热后,关断所述栅压和所述加热电压,所述沟道关闭,分别在所述源极和所述漏极之间施加一测量电流,所述测量电流从所述源极流向所述漏极,立即测量所述MOSFET器件的温敏参数,通过多阶梯恒流重复脉冲测试所述MOSFET器件,得到同一电流在不同时间的温敏参数。
CN201210524530.7A 2012-12-07 2012-12-07 一种测量mosfet器件峰值结温分布的方法 Pending CN103852181A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210524530.7A CN103852181A (zh) 2012-12-07 2012-12-07 一种测量mosfet器件峰值结温分布的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210524530.7A CN103852181A (zh) 2012-12-07 2012-12-07 一种测量mosfet器件峰值结温分布的方法

Publications (1)

Publication Number Publication Date
CN103852181A true CN103852181A (zh) 2014-06-11

Family

ID=50860106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210524530.7A Pending CN103852181A (zh) 2012-12-07 2012-12-07 一种测量mosfet器件峰值结温分布的方法

Country Status (1)

Country Link
CN (1) CN103852181A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142463A (zh) * 2014-07-16 2014-11-12 西安芯派电子科技有限公司 一种场效应晶体管tsp参数的提取方法
CN107422243A (zh) * 2017-08-28 2017-12-01 中国电子产品可靠性与环境试验研究所 氮化镓hemt器件结温测试装置、测试板、测试系统及其方法
CN108562840A (zh) * 2018-05-09 2018-09-21 中国科学院电工研究所 一种温度敏感电参数标定方法
CN111767655A (zh) * 2020-07-03 2020-10-13 衡水学院 一种基于电磁场和温度场的器件建模方法
CN113514747A (zh) * 2021-04-15 2021-10-19 华电(烟台)功率半导体技术研究院有限公司 一种测量电力电子器件温度分布的电学方法
CN114325286A (zh) * 2021-12-31 2022-04-12 浙江大学杭州国际科创中心 一种SiC MOSFET功率循环测试电路及其控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101926224A (zh) * 2008-01-28 2010-12-22 Nxp股份有限公司 Led驱动器电路及方法、估计发光二极管结温的系统和方法
CN103868612A (zh) * 2012-12-07 2014-06-18 中国科学院微电子研究所 一种测量双极性器件峰值结温分布的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101926224A (zh) * 2008-01-28 2010-12-22 Nxp股份有限公司 Led驱动器电路及方法、估计发光二极管结温的系统和方法
CN103868612A (zh) * 2012-12-07 2014-06-18 中国科学院微电子研究所 一种测量双极性器件峰值结温分布的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
朱阳军: "微电子器件热谱分析方法的研究", 《中国博士学位论文全文数据库 信息科技辑》 *
朱阳军等: "半导体功率器件结温的实时测量和在线测量", 《半导体学报》 *
温怀疆等: "脉冲法测量LED结温、热容的研究", 《光电工程》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142463A (zh) * 2014-07-16 2014-11-12 西安芯派电子科技有限公司 一种场效应晶体管tsp参数的提取方法
CN104142463B (zh) * 2014-07-16 2016-09-07 西安芯派电子科技有限公司 一种场效应晶体管tsp参数的提取方法
CN107422243A (zh) * 2017-08-28 2017-12-01 中国电子产品可靠性与环境试验研究所 氮化镓hemt器件结温测试装置、测试板、测试系统及其方法
CN107422243B (zh) * 2017-08-28 2020-09-29 中国电子产品可靠性与环境试验研究所 氮化镓hemt器件结温测试装置、测试板、测试系统及其方法
CN108562840A (zh) * 2018-05-09 2018-09-21 中国科学院电工研究所 一种温度敏感电参数标定方法
CN111767655A (zh) * 2020-07-03 2020-10-13 衡水学院 一种基于电磁场和温度场的器件建模方法
CN111767655B (zh) * 2020-07-03 2022-06-24 衡水学院 一种基于电磁场和温度场的器件建模方法
CN113514747A (zh) * 2021-04-15 2021-10-19 华电(烟台)功率半导体技术研究院有限公司 一种测量电力电子器件温度分布的电学方法
CN114325286A (zh) * 2021-12-31 2022-04-12 浙江大学杭州国际科创中心 一种SiC MOSFET功率循环测试电路及其控制方法

Similar Documents

Publication Publication Date Title
CN103852181A (zh) 一种测量mosfet器件峰值结温分布的方法
CN105910730B (zh) 一种大功率igbt模块运行结温的在线检测系统及其检测方法
CN101435727B (zh) 温度预测方法及装置
Baker et al. Online junction temperature measurement via internal gate resistance during turn-on
CN107621599B (zh) 一种测量igbt在高温反偏试验中结温变化的方法
Starzak et al. Behavioral approach to SiC MPS diode electrothermal model generation
CN103868612A (zh) 一种测量双极性器件峰值结温分布的方法
CN104601019B (zh) 智能功率模块、功率器件及其温度检测电路和方法
CN110376500A (zh) 一种功率mos器件开启过程中瞬态温升在线测量方法
CN108982998B (zh) 一种在线检测绑定线老化过程的检测电路及检测方法
CN105811944B (zh) 用于igbt结温估计的驱动装置及方法
Niu et al. Sensing power MOSFET junction temperature using circuit output current ringing decay
d’Alessandro et al. Analysis of the UIS behavior of power devices by means of SPICE-based electrothermal simulations
CN106483439A (zh) Ldmos晶体管的自热效应评价方法以及自热效应评价系统
CN111310395A (zh) SiC MOSFET非线性器件的等效电路模型及方法
CN104569049A (zh) 一种无冷板的大功率led器件固晶层散热性能快速评估方法
CN106482829A (zh) 单光子探测器的动态和静态联合测试系统及其测试方法
CN104036144A (zh) 一种脉冲式led电压-电流-结温特性建模方法
CN108153926A (zh) 基于经验公式的半导体器件的建立解析模型的方法
CN103823170A (zh) 一种功率型led集成模块热阻测试新方法
Baker et al. Experimental evaluation of IGBT junction temperature measurement via peak gate current
Herman et al. Optimisation of the I–V measurement scan time through dynamic modelling of solar cells
CN100561488C (zh) Mos管电阻的建模方法
CN107656185A (zh) 一种用于宽禁带半导体功率器件的测试装置
Cataldo et al. Measurements and analysis of current-voltage characteristic of a pn diode for an undergraduate physics laboratory

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140611

WD01 Invention patent application deemed withdrawn after publication