CN103852067B - 调整飞行时间(tof)测量系统的操作参数的方法 - Google Patents

调整飞行时间(tof)测量系统的操作参数的方法 Download PDF

Info

Publication number
CN103852067B
CN103852067B CN201310646288.5A CN201310646288A CN103852067B CN 103852067 B CN103852067 B CN 103852067B CN 201310646288 A CN201310646288 A CN 201310646288A CN 103852067 B CN103852067 B CN 103852067B
Authority
CN
China
Prior art keywords
tof
flight time
time tof
speed
measuring systems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310646288.5A
Other languages
English (en)
Other versions
CN103852067A (zh
Inventor
东翼·古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CN103852067A publication Critical patent/CN103852067A/zh
Application granted granted Critical
Publication of CN103852067B publication Critical patent/CN103852067B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

本申请案涉及一种调整飞行时间TOF测量系统的操作参数的方法。本发明揭示一种用于与飞行时间测量系统的移动速度及周围光等级成比例地调整所述TOF系统的IR照明的调制频率及强度,因此取决于速度而调整所述系统的视觉范围的方法。在替代实施例中,周期性地调整TOF测量系统的所述调制频率以覆盖所述TOF的较大视觉范围。

Description

调整飞行时间(TOF)测量系统的操作参数的方法
技术领域
本发明的技术领域为飞行时间传感器系统。
背景技术
从真实环境采集3D几何信息是计算机绘图中的许多应用的基本任务。例如虚拟及增广的环境以及人机交互(例如,针对游戏)的突出实例清楚地受益于用于实时范围图像采集的简单且准确装置。然而,甚至针对静态场景,不存在实时提供全范围、高分辨率距离信息的低价现成系统。激光三角测量技术(其仅借助单个激光装置逐行对场景取样)相当耗时且因此针对动态场景不实用。立体视觉摄像机系统不具有匹配同质对象区域中的对应物的能力。
在用于高精确度距离测量的LIDAR(光检测与测距)扫描仪中使用基于测量照明单元所发射的光行进到对象且返回到检测器所需的时间的飞行时间(ToF)技术。最近,此原理已成为开发在标准CMOS或CCD技术中实现的新的范围感测装置(所谓的ToF摄像机)的基础;在摄影测量法的背景中,ToF摄像机也称为范围成像(RIM)传感器。不同于其它3D系统,ToF摄像机为已实现实时距离采集所期望的大多数上文所述的特征的非常紧凑装置。当前在ToF技术中采用两种主要方法。第一种方法利用经调制非相干光且基于相位测量。第二种方法基于首先用于摄影棚用摄像机且稍后针对小型摄像机开发的光学快门技术。
在近三年内,在ToF摄像机的背景中研究活动的数目已急剧增加。尽管初始研究集中于更基本问题(如传感器特性及用于采集静态场景的ToF摄像机的应用),但最近其它应用领域已成为焦点,例如,人机交互及监控。
可通过可感测并分析车辆内部及外部的动态3D环境的数字信号处理器启用各种安全性增强的汽车特征。安全特征可包含碰撞警告与避免、智能空气囊部署、障碍物检测(例如倒车警告)及停车辅助。对这些应用来说,共同的是需要检测、隔离、测量、定位、识别及追踪对象(例如人、交通及路边特征)。
经常提出使用常规2D成像传感器及分析软件执行这些任务,但在所有车辆使用情境期间实现成本效益及可靠性能为可怕挑战。对象在2D图像中的显现取决于照明条件、表面材料及对象定向极大地变化。图像的这些变化使软件必须解释场景的任务复杂化。另一方面,对象的3D形状不随那些混淆效应变化。
基于立体视觉的3D恢复在计算上为复杂的且在未经图案化表面上失败。类似地提出RADAR、超声波、扫描LADAR及其它测距技术,但其由于有限时间或角度分辨率而具有辨别对象上的困难;此外,每一安全功能对专门传感器的需要造成系统集成挑战。单个高帧速率焦点平面阵列3D传感器为合意的,这是因为其可同时提供多个安全且便利功能,从而允许应用联合利用动态场景中的形状及外观信息。传感器的输出应为2D像素值阵列序列,其中每一像素值描述亮度及场景的表面上的3D点的笛卡尔X、Y、Z坐标。
不断成长的政府立法、增加的责任关注度及对改进的安全性的必然消费者期望使得引入新的安全特征成为汽车制造商的高度优先选择。当今,各种感测技术在以下方面发挥关键作用:提供这些特征、在如停车辅助等应用中检测车辆内部及外部两者的条件、自适应巡航控制及预撞击碰撞减轻。这些应用中的每一者由通常提供测距功能或对象识别功能的独特定制技术(例如,超声波、RADAR、LADAR、数字图像感测等)表征。
对在多种不同技术中投资的需要使得视需要尽快或尽可能广泛地部署个别安全特征具挑战性。
未来应用造成甚至更多困难,这是因为必须在单个车辆中提供多个特征。此外,事实上对汽车制造商的路标(例如,在欧洲及日本计划的行人检测)的所有新的感测应用需要测距及对象识别功能两者。组合两种不一致技术来实现此任务(例如RADAR及数字图像感测)为昂贵的、难以实施且造成额外无效开发问题。
使用视觉通过提供静态或动态乘员分类及位置感测而对空气囊系统赋予添加的辨别等级。此外,在机舱内部添加视觉系统实现其它增值应用,例如被遗弃的婴儿/宠物检测、个性化及安全性。车外部的基于视觉的感测的应用为盲点检测、车辆车道偏离、后视安全性、围绕车辆的其它车辆的接近以及离开路面及重设备接近感测。视觉传感器的益处为两倍的。其提供增强的视觉反馈以帮助驾驶员操作车辆。但更重要的是,当视觉传感器还提供范围数据时,其提供先进算法所必需的信息以实现更高级辨别及对对象运动动态的更准确分析。举例来说,借助此些传感器,系统可使用坐在前座中的人与大箱子的形状差异来部署空气囊或不部署空气囊。
除深度值之外,ToF摄像机还提供表示从特定点往回发送的光的量的强度值。
由于调制信号的周期性,ToF摄像机具有经定义不模糊范围。在此范围内,可独特地计算距离。所述范围取决于摄像机的定义所发射信号的波长的调制频率。如图1中所展示,为计算距离,摄像机评估参考(所发射)信号101与所接收信号102之间的相移。所述相移与距离d成比例。
当前,多数ToF摄像机针对游戏、TV控制手势及数字标牌等以约20MHz的调制频率操作。那么,单个波长为15米,且这些ToF摄像机的独特范围为大约7.5米。可针对其中车以60英里/时或更快移动的汽车使用改变此频率以获得较长范围覆盖。可通过取决于汽车的速度调整有源照明的调制频率而调整所述范围。
发明内容
深度传感器技术为尖端新技术。尚未主要考虑来自经调制照明的TOF传感器的交叉干扰,这是因为尚未在很大程度上采用多个TOF摄像机。因此,人工地重新配置TOF调制频率。然而,举例来说,如果TOF技术广泛应用于汽车应用(例如,用于前场景及后场景分析),那么几乎不可能针对每一传感器产品个别地指派单独TOF调制频率。给定技术允许通过检测其它TOF传感器的调制频率而动态改变TOF调制频率。因此,可避免多个TOF传感器当中的经调制照明的交叉干扰。
通过动态地改变IR调制频率的能力实现额外功能。通过调整与车辆的速度相关的调制频率,可针对碰撞避免或速度控制应用优化TOF摄像机的范围。在较高速度下,摄像机的范围经延伸以允许用于速度调整的更多时间,且在较低速度下,所述范围随距离测量的准确性的对应增加而减小。
还可根据速度及周围光动态地调整IR照明功率以便最小化TOF所经历的噪声级。
附图说明
在图式中图解说明本发明的这些及其它方面,其中:
图1展示现有技术TOF距离测量;
图2图解说明本发明的框图。
具体实施方式
TOF(飞行时间)传感器提供非常准确深度测量且可广泛地应用于各种环境内的应用。然而,TOF传感器技术由于来自多个TOF传感器的IR照明采用相同调制频率而在本质上具有TOF传感器当中的交叉干扰问题。由于IR调制频率与TOF的经覆盖深度范围直接相关,因此存在将在适当位置中的TOF传感器当中选择TOF IR照明的相同调制频率的可能性。
举例来说,针对以中等范围深度地图为目标的应用,在许多情形中,选择20MHz IR调制频率。来自具有相同IR调制频率(20MHz)的TOF传感器的干扰可显著影响每一传感器的深度准确性。
所描述的发明提供一种通过组合IR调制频率检测器与用于动态调整IR发射调制频率的逻辑而避免TOF传感器当中的IR干扰的方法。
如图2中所展示,本发明主要由两部分组成:AIMD(周围IR调制频率检测)模块及TIMA(发射IR调制频率调整)模块。
AIMD模块通过IR频率检测器201检测所有周围IR调制频率208,且MCU202通过IR调制频率监视例程203分析每一调制频率及其持续时间。如果其持续时间Δtime(fr,IR)比预定义阈值ThΔtime长,那么MCU触发IR调制频率调整例程207以调整相关联TOF传感器的当前IR发射调制频率209。可动态地重新配置所述预定义阈值以调整TOF对干扰噪声的敏感性及实时处理的需要。
IR调制频率209的小的改变(例如,20Mhz→20.1Mhz)可显著减小干扰相关的噪声。因此,可在TOF传感器205的深度地图采集中移除周围IR调制频率的干扰。因此,可在不具有周围交叉干扰噪声的情况下捕获TOF传感器原始数据210。
除减小来自周围IR调制频率的干扰之外,本发明的不同实施例还添加根据车辆的速度及周围光的强度调整TOF摄像机的IR调制频率及IR照明强度的能力。在碰撞预防或其它速度敏感应用中,在车辆速度增加时增加TOF摄像机的视觉距离以便确保校正行动的充分时间为有益的。
除减小来自周围IR调制频率的干扰之外,本发明的另一不同实施例还添加使调制频率及因此TOF摄像机的视觉距离周期性地变化以有效地覆盖较大视觉地图的能力。

Claims (4)

1.一种调整飞行时间TOF测量系统的操作参数的方法,其包括以下步骤:
接收指示所述飞行时间TOF测量系统的移动速度的信号;
与所述飞行时间TOF测量系统的所述移动速度的增加成比例地减小所述飞行时间TOF测量系统的调制频率;
与所述飞行时间TOF测量系统的所述移动速度的所述增加成比例地增加IR照明等级的强度;
接收指示周围光的等级的信号;
与所述周围光的所述等级成反比地调整所述IR照明等级。
2.根据权利要求1所述的方法,其中:
指示所述飞行时间TOF测量系统的所述移动速度的所述信号为与所述速度成比例的连续可变信号。
3.根据权利要求1所述的方法,其中:
指示所述飞行时间TOF测量系统的所述移动速度的所述信号为与设定速度范围成比例的阶梯函数。
4.根据权利要求1所述的方法,其进一步包括以下步骤:
在不考虑所述速度的情况下使所述飞行时间TOF测量系统的所述调制频率周期性地变化。
CN201310646288.5A 2012-12-04 2013-12-04 调整飞行时间(tof)测量系统的操作参数的方法 Active CN103852067B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/693,444 US8879050B2 (en) 2012-12-04 2012-12-04 Method for dynamically adjusting the operating parameters of a TOF camera according to vehicle speed
US13/693,444 2012-12-04

Publications (2)

Publication Number Publication Date
CN103852067A CN103852067A (zh) 2014-06-11
CN103852067B true CN103852067B (zh) 2017-06-30

Family

ID=50825151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310646288.5A Active CN103852067B (zh) 2012-12-04 2013-12-04 调整飞行时间(tof)测量系统的操作参数的方法

Country Status (2)

Country Link
US (1) US8879050B2 (zh)
CN (1) CN103852067B (zh)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908995B2 (en) 2009-01-12 2014-12-09 Intermec Ip Corp. Semi-automatic dimensioning with imager on a portable device
US9779546B2 (en) 2012-05-04 2017-10-03 Intermec Ip Corp. Volume dimensioning systems and methods
US10007858B2 (en) 2012-05-15 2018-06-26 Honeywell International Inc. Terminals and methods for dimensioning objects
US10321127B2 (en) 2012-08-20 2019-06-11 Intermec Ip Corp. Volume dimensioning system calibration systems and methods
US9939259B2 (en) 2012-10-04 2018-04-10 Hand Held Products, Inc. Measuring object dimensions using mobile computer
US9841311B2 (en) 2012-10-16 2017-12-12 Hand Held Products, Inc. Dimensioning system
EP2728306A1 (en) * 2012-11-05 2014-05-07 Hexagon Technology Center GmbH Method and device for determining three-dimensional coordinates of an object
WO2014109504A1 (ko) * 2013-01-09 2014-07-17 엘지전자 주식회사 거리 검출 장치, 및 이를 구비하는 영상처리장치
US9080856B2 (en) 2013-03-13 2015-07-14 Intermec Ip Corp. Systems and methods for enhancing dimensioning, for example volume dimensioning
US10228452B2 (en) 2013-06-07 2019-03-12 Hand Held Products, Inc. Method of error correction for 3D imaging device
US9464885B2 (en) 2013-08-30 2016-10-11 Hand Held Products, Inc. System and method for package dimensioning
US10203399B2 (en) 2013-11-12 2019-02-12 Big Sky Financial Corporation Methods and apparatus for array based LiDAR systems with reduced interference
US9360554B2 (en) 2014-04-11 2016-06-07 Facet Technology Corp. Methods and apparatus for object detection and identification in a multiple detector lidar array
US9823059B2 (en) 2014-08-06 2017-11-21 Hand Held Products, Inc. Dimensioning system with guided alignment
US10810715B2 (en) 2014-10-10 2020-10-20 Hand Held Products, Inc System and method for picking validation
US10775165B2 (en) 2014-10-10 2020-09-15 Hand Held Products, Inc. Methods for improving the accuracy of dimensioning-system measurements
US9779276B2 (en) 2014-10-10 2017-10-03 Hand Held Products, Inc. Depth sensor based auto-focus system for an indicia scanner
US9752864B2 (en) 2014-10-21 2017-09-05 Hand Held Products, Inc. Handheld dimensioning system with feedback
US10060729B2 (en) 2014-10-21 2018-08-28 Hand Held Products, Inc. Handheld dimensioner with data-quality indication
US9762793B2 (en) 2014-10-21 2017-09-12 Hand Held Products, Inc. System and method for dimensioning
US9897434B2 (en) 2014-10-21 2018-02-20 Hand Held Products, Inc. Handheld dimensioning system with measurement-conformance feedback
US9557166B2 (en) * 2014-10-21 2017-01-31 Hand Held Products, Inc. Dimensioning system with multipath interference mitigation
US9874630B2 (en) 2015-01-30 2018-01-23 Microsoft Technology Licensing, Llc Extended range gated time of flight camera
US10036801B2 (en) 2015-03-05 2018-07-31 Big Sky Financial Corporation Methods and apparatus for increased precision and improved range in a multiple detector LiDAR array
US9786101B2 (en) 2015-05-19 2017-10-10 Hand Held Products, Inc. Evaluating image values
US10066982B2 (en) 2015-06-16 2018-09-04 Hand Held Products, Inc. Calibrating a volume dimensioner
US20160377414A1 (en) 2015-06-23 2016-12-29 Hand Held Products, Inc. Optical pattern projector
US9857167B2 (en) 2015-06-23 2018-01-02 Hand Held Products, Inc. Dual-projector three-dimensional scanner
US9835486B2 (en) 2015-07-07 2017-12-05 Hand Held Products, Inc. Mobile dimensioner apparatus for use in commerce
EP3396313B1 (en) 2015-07-15 2020-10-21 Hand Held Products, Inc. Mobile dimensioning method and device with dynamic accuracy compatible with nist standard
US20170017301A1 (en) 2015-07-16 2017-01-19 Hand Held Products, Inc. Adjusting dimensioning results using augmented reality
US10094650B2 (en) 2015-07-16 2018-10-09 Hand Held Products, Inc. Dimensioning and imaging items
US10397546B2 (en) 2015-09-30 2019-08-27 Microsoft Technology Licensing, Llc Range imaging
US10249030B2 (en) 2015-10-30 2019-04-02 Hand Held Products, Inc. Image transformation for indicia reading
US10225544B2 (en) 2015-11-19 2019-03-05 Hand Held Products, Inc. High resolution dot pattern
US10523923B2 (en) 2015-12-28 2019-12-31 Microsoft Technology Licensing, Llc Synchronizing active illumination cameras
US10025314B2 (en) 2016-01-27 2018-07-17 Hand Held Products, Inc. Vehicle positioning and object avoidance
US10627490B2 (en) 2016-01-31 2020-04-21 Velodyne Lidar, Inc. Multiple pulse, LIDAR based 3-D imaging
US9866816B2 (en) 2016-03-03 2018-01-09 4D Intellectual Properties, Llc Methods and apparatus for an active pulsed 4D camera for image acquisition and analysis
US10462452B2 (en) 2016-03-16 2019-10-29 Microsoft Technology Licensing, Llc Synchronizing active illumination cameras
US10473784B2 (en) 2016-05-24 2019-11-12 Veoneer Us, Inc. Direct detection LiDAR system and method with step frequency modulation (FM) pulse-burst envelope modulation transmission and quadrature demodulation
US10416292B2 (en) * 2016-05-24 2019-09-17 Veoneer Us, Inc. Direct detection LiDAR system and method with frequency modulation (FM) transmitter and quadrature receiver
US10838062B2 (en) 2016-05-24 2020-11-17 Veoneer Us, Inc. Direct detection LiDAR system and method with pulse amplitude modulation (AM) transmitter and quadrature receiver
CA3024510C (en) 2016-06-01 2022-10-04 Velodyne Lidar, Inc. Multiple pixel scanning lidar
US10339352B2 (en) 2016-06-03 2019-07-02 Hand Held Products, Inc. Wearable metrological apparatus
US9940721B2 (en) 2016-06-10 2018-04-10 Hand Held Products, Inc. Scene change detection in a dimensioner
US10163216B2 (en) 2016-06-15 2018-12-25 Hand Held Products, Inc. Automatic mode switching in a volume dimensioner
US10712561B2 (en) 2016-11-04 2020-07-14 Microsoft Technology Licensing, Llc Interference mitigation via adaptive depth imaging
JP6922187B2 (ja) * 2016-11-08 2021-08-18 株式会社リコー 測距装置、監視カメラ、3次元計測装置、移動体、ロボット及び光源駆動条件設定方法
US10909708B2 (en) 2016-12-09 2021-02-02 Hand Held Products, Inc. Calibrating a dimensioner using ratios of measurable parameters of optic ally-perceptible geometric elements
US10302764B2 (en) 2017-02-03 2019-05-28 Microsoft Technology Licensing, Llc Active illumination management through contextual information
US11047672B2 (en) 2017-03-28 2021-06-29 Hand Held Products, Inc. System for optically dimensioning
CN108663682A (zh) * 2017-03-28 2018-10-16 比亚迪股份有限公司 障碍物测距系统及具有其的车辆和tof测距方法
EP3593166B1 (en) 2017-03-31 2024-04-17 Velodyne Lidar USA, Inc. Integrated lidar illumination power control
JP2020519881A (ja) 2017-05-08 2020-07-02 ベロダイン ライダー, インク. Lidarデータ収集及び制御
US10733748B2 (en) 2017-07-24 2020-08-04 Hand Held Products, Inc. Dual-pattern optical 3D dimensioning
US11460550B2 (en) 2017-09-19 2022-10-04 Veoneer Us, Llc Direct detection LiDAR system and method with synthetic doppler processing
US10613200B2 (en) 2017-09-19 2020-04-07 Veoneer, Inc. Scanning lidar system and method
US10838043B2 (en) 2017-11-15 2020-11-17 Veoneer Us, Inc. Scanning LiDAR system and method with spatial filtering for reduction of ambient light
US10684370B2 (en) 2017-09-29 2020-06-16 Veoneer Us, Inc. Multifunction vehicle detection system
US11194022B2 (en) 2017-09-29 2021-12-07 Veoneer Us, Inc. Detection system with reflection member and offset detection array
US11585901B2 (en) 2017-11-15 2023-02-21 Veoneer Us, Llc Scanning lidar system and method with spatial filtering for reduction of ambient light
US11016179B2 (en) * 2017-12-03 2021-05-25 Munro Design & Technologies, Llc Digital image processing systems for three-dimensional imaging systems with image intensifiers and methods thereof
US11774563B2 (en) 2017-12-04 2023-10-03 Ams International Ag Time-of-flight module and method to determine distance to object
US10584962B2 (en) 2018-05-01 2020-03-10 Hand Held Products, Inc System and method for validating physical-item security
CN108897000B (zh) * 2018-06-19 2022-02-08 北京旷视科技有限公司 一种串扰抑制方法、装置、电子设备和计算机可读介质
WO2020033808A1 (en) * 2018-08-10 2020-02-13 Brain Corporation Systems, apparatus and methods for removing false positives form sensor detection
US11971507B2 (en) * 2018-08-24 2024-04-30 Velodyne Lidar Usa, Inc. Systems and methods for mitigating optical crosstalk in a light ranging and detection system
US10712434B2 (en) 2018-09-18 2020-07-14 Velodyne Lidar, Inc. Multi-channel LIDAR illumination driver
KR20200069096A (ko) * 2018-12-06 2020-06-16 삼성전자주식회사 전자 장치 및 이를 이용하여 오브젝트의 깊이 정보를 획득하는 방법
US11885958B2 (en) 2019-01-07 2024-01-30 Velodyne Lidar Usa, Inc. Systems and methods for a dual axis resonant scanning mirror
CN109870148B (zh) * 2019-01-16 2021-10-22 刘建明 一种立体空间测绘方法及装置
CN109819238B (zh) * 2019-02-22 2021-06-22 北京旷视科技有限公司 Tof图像采集模块的工作频率调节方法、装置和电子系统
CN113614566A (zh) * 2019-03-27 2021-11-05 松下知识产权经营株式会社 测距方法、测距装置以及程序
US20220146664A1 (en) * 2019-03-28 2022-05-12 Sony Semiconductor Solutions Corporation Signal processing device, signal processing method, program, and information processing device
US11579257B2 (en) 2019-07-15 2023-02-14 Veoneer Us, Llc Scanning LiDAR system and method with unitary optical element
US11474218B2 (en) 2019-07-15 2022-10-18 Veoneer Us, Llc Scanning LiDAR system and method with unitary optical element
US11639846B2 (en) 2019-09-27 2023-05-02 Honeywell International Inc. Dual-pattern optical 3D dimensioning
US11313969B2 (en) 2019-10-28 2022-04-26 Veoneer Us, Inc. LiDAR homodyne transceiver using pulse-position modulation
US11006068B1 (en) 2019-11-11 2021-05-11 Bendix Commercial Vehicle Systems Llc Video recording based on image variance
WO2021145473A1 (ko) 2020-01-14 2021-07-22 엘지전자 주식회사 이동 단말기 및 그의 제어 방법
US11861857B2 (en) 2020-12-08 2024-01-02 Zoox, Inc. Determining pixels beyond nominal maximum sensor depth
WO2022125612A1 (en) * 2020-12-08 2022-06-16 Zoox, Inc. Determining depth using multiple modulation frequencies
US11994591B2 (en) 2020-12-08 2024-05-28 Zoox, Inc. Determining depth using multiple modulation frequencies
US11954877B2 (en) 2020-12-08 2024-04-09 Zoox, Inc. Depth dependent pixel filtering
US11326758B1 (en) 2021-03-12 2022-05-10 Veoneer Us, Inc. Spotlight illumination system using optical element
CN113411476A (zh) * 2021-06-10 2021-09-17 蔚来汽车科技(安徽)有限公司 图像传感器控制装置、方法、存储介质和可移动对象
US11732858B2 (en) 2021-06-18 2023-08-22 Veoneer Us, Llc Headlight illumination system using optical element
CN115423714B (zh) * 2022-09-02 2024-06-25 点昀技术(南通)有限公司 一种相机自适应调整方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835199A (en) * 1996-05-17 1998-11-10 Coherent Technologies Fiber-based ladar transceiver for range/doppler imaging with frequency comb generator
CN1403834A (zh) * 2002-10-11 2003-03-19 清华大学 激光测距方法及其系统
CN102393515A (zh) * 2010-07-21 2012-03-28 微软公司 用于对飞行时间(tof)系统进行分层去混叠的方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10232878B4 (de) * 2002-07-19 2012-02-23 Robert Bosch Gmbh Vorrichtung und Verfahren zur Distanzmessung
JP2012168049A (ja) * 2011-02-15 2012-09-06 Stanley Electric Co Ltd 距離画像生成装置および距離画像生成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835199A (en) * 1996-05-17 1998-11-10 Coherent Technologies Fiber-based ladar transceiver for range/doppler imaging with frequency comb generator
CN1403834A (zh) * 2002-10-11 2003-03-19 清华大学 激光测距方法及其系统
CN102393515A (zh) * 2010-07-21 2012-03-28 微软公司 用于对飞行时间(tof)系统进行分层去混叠的方法和系统

Also Published As

Publication number Publication date
US20140152975A1 (en) 2014-06-05
US8879050B2 (en) 2014-11-04
CN103852067A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
CN103852067B (zh) 调整飞行时间(tof)测量系统的操作参数的方法
CN103852754B (zh) 飞行时间(tof)测量系统中的干扰抑制的方法
US11725956B2 (en) Apparatus for acquiring 3-dimensional maps of a scene
US10445928B2 (en) Method and system for generating multidimensional maps of a scene using a plurality of sensors of various types
Kukkala et al. Advanced driver-assistance systems: A path toward autonomous vehicles
US11422265B2 (en) Driver visualization and semantic monitoring of a vehicle using LiDAR data
Stiller et al. Multisensor obstacle detection and tracking
EP2602640B1 (en) Vehicle occupancy detection using time-of-flight sensor
CN111344647A (zh) 具有低延时运动规划更新的智能激光雷达系统
JP2016189184A (ja) リアルタイム多次元画像融合
JP5353455B2 (ja) 周辺監視装置
US20180038961A1 (en) System and method for stereo triangulation
Ortiz et al. Applications and services using vehicular exteroceptive sensors: A survey
KR20200076989A (ko) 라이다를 이용한 어라운드 뷰 모니터링 장치 및 방법
Chen et al. Vision-based distance estimation for multiple vehicles using single optical camera
US20190337455A1 (en) Mobile Body Surroundings Display Method and Mobile Body Surroundings Display Apparatus
US20230098314A1 (en) Localizing and updating a map using interpolated lane edge data
KR20210048889A (ko) 자동차용 센서 통합 모듈
US11648876B2 (en) System and method for visibility enhancement
WO2024009739A1 (ja) 光学式測距センサ、及び光学式測距システム
EP4212902A1 (en) Positioning system and calibration method of object location
Hwang A Vehicle Tracking System Using Thermal and Lidar Data
CN117452411A (zh) 障碍物检测方法和装置
US20190163986A1 (en) System, apparatus, and method for vehicle control and image sensor
WO2021232031A2 (en) Detection of hidden object using non-line-of-sight (nlos) imaging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant