CN103842846B - 一种用于低功耗和低成本gnss接收机的系统,方法和计算机程序 - Google Patents

一种用于低功耗和低成本gnss接收机的系统,方法和计算机程序 Download PDF

Info

Publication number
CN103842846B
CN103842846B CN201280037984.XA CN201280037984A CN103842846B CN 103842846 B CN103842846 B CN 103842846B CN 201280037984 A CN201280037984 A CN 201280037984A CN 103842846 B CN103842846 B CN 103842846B
Authority
CN
China
Prior art keywords
rough
satellite
pvt
value
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280037984.XA
Other languages
English (en)
Other versions
CN103842846A (zh
Inventor
基思·范迪伦唐克
M·徐
佩曼·洛特法利·卡萨米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASEBAND TECHNOLOGIES Inc
Original Assignee
BASEBAND TECHNOLOGIES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASEBAND TECHNOLOGIES Inc filed Critical BASEBAND TECHNOLOGIES Inc
Publication of CN103842846A publication Critical patent/CN103842846A/zh
Application granted granted Critical
Publication of CN103842846B publication Critical patent/CN103842846B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种系统和方法,用于先进的GNSS接收器,其可操作以提供超高速,自主的和可靠的TTFF,而不需要一个初始位置,同时,最小化的处理能力和硬件成本。该系统和方法能够使用的毫秒量级的I/Q采样可靠地恢复接收信号的传输时间,并能自主工作而不需要辅助技术,如AGPS技术会有隐私和服务的可行性的担忧。

Description

一种用于低功耗和低成本GNSS接收机的系统,方法和计算 机程序
交叉参考相关申请
本申请要求于2011年7月29日申请的美国临时申请号61/513149的优先权,其全部内容在此引入作为参考。
技术领域
本发明涉及全球导航卫星系统(GNSS)接收机。本发明更具体地涉及一种GNSS接收器,其可操作以提供超高速,自主的和可靠的定位位置,当最小化处理功耗和硬件成本时不需要一个初始位置。
背景技术
GNSS技术用于确定GNSS接收器的一个或多个的位置,速率,和时间(PVT)。全球导航卫星系统,包括美国的全球定位系统(GPS),俄罗斯的格洛纳斯系统(GLONASSSYSTEM),欧盟的伽利略系统(GALILEO SYSTEM),中国的北斗/指南针系统(BEIDOU/COMPASS SYSTEM)和其他类似卫星系统。在过去的几年里全球导航卫星系统技术已经成为主流的消费电子产品。产品,如具有GPS功能的智能手机和个人导航设备(PND)是广受欢迎的,非常实惠。作为全球导航卫星系统技术的需求扩展到新的定位应用,GNSS接收机的设计很难满足这些应用具有成本低,功耗非常低,且速度极快的首次定位时间(TTFF)的要求。这些设备以及传统的接收器遭受性能下降,甚至完全无法运作在这样充满挑战的环境中。
全球定位公司(Global Locate Inc.)的美国专利7133772公开了一种用于定位位置的GPS接收机,不包括从卫星导航数据对时间标记的解码,其中是从一个无线通信系统中获得精确的绝对时间。因此,为了操作该系统需要被连接至无线通信系统中。为此,该系统不能自主地进行操作。
全球定位公司(Global Locate Inc.)的美国专利6417801公开了一种用于定位位置的GPS接收机,不包括从卫星导航数据对时间标记的解码,也不具有从一个无线通信系统中获得精确的绝对时间。当自主操作和位置的先验估计值是未知的,“网格搜索”的方法假设一个先验位置和测试一个-
由最小二乘后验残差进行确认,如果溶液是有效的,重复这个过程直到一个有效的解决方案被发现。因此,额外的处理能力是必要的最小二乘过程重复进行。此外,作为后验残差测试需要冗余的测量结果,不能在有测量的最小集合可使用的方法。
有必要的,因此,提供一种可实现的GNSS接收器系统,其可操作以提供快速,自主的和可靠的TTFF,它不需要在初始位置,并在同一时间,降低处理能力和硬件成本。
发明内容
本公开涉及一种用于先进的全球导航卫星系统(GNSS)接收器的系统,方法和计算机程序。其是可操作的以相对于现有技术提供超快速的首次定位时间(TTFF)和低功率消耗。
本发明还描述了一种用于从全球导航卫星系统(GNSS)的信号采样确定一个或多个的位置,速度和时间(PVT)的系统,包括:(a)一种GNSS采样获取装置,用于获得同相和/或正交(I/Q)的来自一个或多个GNSS卫星的信号采样值;(b)一个时钟获取装置,用于获得所述1/Q采样的预计到达时间(TOA);一个参数获取装置,用于获取卫星星历数据,其中包括卫星的轨道和所述一个或多个GNSS卫星的时钟信息;以及(c)一个PVT引擎用以提供接受器的PVT。
所述PVT引擎包括:(i)一个测量值生成程序用以计算多普勒频率测量值和从I/Q采样的一个或多个GNSS的码相位测量值;(ii)一个粗略估计程序用以估计粗略PVT,粗略TOA以及来自多普勒频率测量值的粗略卫星发射信号(TOT)的时间,初始的TOA,和卫星星历数据;(iii)一个TOT构建程序,用以确定相对于粗略TOA的精确的TOTs,并通过来自码相位测量值的粗略PVT,粗略TOTs,和卫星星历数据确定整数代码出现时间,产生完整的伪距测量值;以及一个精化PVT程序,用以计算来自码相位测量的粗略PVT,粗略TOA,和精确的TOTs,和卫星星历数据。
在这方面,在详细解释至少一个实施例之前,应当理解,本发明并不限于附图中所示的其应用到的构造的细节和组件的描述。本发明能够有其它实施例,并且以各种方式实行。另外,应当理解,本文所采用的措辞和术语是出于描述的目的,而不应被视为一种定。
附图说明
图1示出了一种系统的一个实施例。
图2是根据一个实施例的硬件体系结构的框图。
图3示出用于获得PVT的方法的一个实施例。
图4示出根据一个实施例的检测和粗略测量值生成程序。
图5示出根据一个实施例的精化多普勒频率估计的实用程序。
图6示出根据一个实施例的精化码相位的估计程序。
图7示出了根据实施方式的粗化估计的实用程序。
图8示出了根据实施方式用于来自多普勒测量值的PVT的的最小二乘法(LSQ)。
图9示出了根据一个实施例的TOT构建过程。
图10示出一个过程,其中,精化PVT程序确定精化PVT的一个实施例。
图11示出根据一个实施例的位置和速度矢量在笛卡尔坐标系中的关系。
图12示出了根据实施例的TOT,代码信号出现时间,小数码相位的时间之间的关系。
具体实施例
本公开涉及一种用于先进的全球导航卫星系统(GNSS)接收器的系统,方法和计算机程序。其是可操作的以相对于现有技术提供超快速的首次定位时间(TTFF)和低功率消耗。该系统和方法是可操作的,而不需要对GNSS信号的任何导航数据解码,也无需对通信网络实时连接和进行无网格搜索。因此,该系统和方法是可操作的,利用短毫秒范围信号采样长度。因此,该系统功率消耗低,并提供一个超快速的相比于现有技术的TTFF。
下面介绍利用GPS信号进行PVT确定。然而,应当理解的是,类似的技术可以被用于其它全球导航卫星系统并且GPS信号的结构的具体细节不应被认为是限定性的。
传统GPS接收器包括一个射频电路(RF电路)和一个专用基带处理器来获得,提取,降频转换,以及从一个或多个GPS卫星的解调导航信号。该计算需要计算PVT可以在专用处理器组件或在一个单独的通用处理器上执行。
每个卫星发送信号,该信号提供了接收机来计算信号广播的时间和位置,以及卫星当时的速度。用这种已知的信息,传统的GPS接收机通常通过计算信号的来自不少于4个的GPS卫星的传输时间来确定PVT。当运输时间是由光速相乘,它们代表对一个每颗卫星的距离,被称为伪距。由于接收器可能不知道绝对的GPS精确时间,传输时间和伪距将会是误差的,其通过对一个恒定接收机时钟偏差进行计算和校正,这也是作为PVT技术的一部分。
采集的目的是识别可见所有卫星给接收机。如果一个卫星对接收机是可见的,该接收机必须确定其频率和码相位。码相位是指当前数据块的点,其在粗略识别(C/A)码开始处。该C/A码是一种伪随机噪声(PRN)序列,其识别发射卫星并且每毫秒重演自身一次。
传统接收机需要来自卫星的实时导航消息数据,以便计算PVT。当信号被正确地跟踪时,C/A码和载波都会被去掉,只保留导航消息数据位。一GPS导航消息帧持续30秒,因此,将不采取任何小于30秒的跟踪信号来获得一个完整的GPS导航消息帧。
来自每个卫星的导航数据包括星历和时钟参数,从中该接收器可以计算出卫星的位置和速度。该导航数据还包括一个高度精确的时间标记,其以一个周数的形式和周时(TOW)参数的形式呈现,是指GPS时间,在该信号上调制一个特定的数据位传输。导航数据的长解码提供了用于所有的GPS卫星年历参数和大气校正参数。
由于PRN码每毫秒重复一次,信号的任何部分的传输时间(TOT)可以从TOW和PRN码出现时间的数量来确定。每当PRN码复位到零代码阶段,TOT将是一个整数时,表示为毫秒。否则,该码相位测量值表示TOT的小数毫秒部分。类似地,码相位可以被视为伪距测量值的沉余,模计算为1光毫秒。应当注意,该TOT将是相对于卫星的时钟。必须用来自该导航数据的卫星时间参数校正TOT到绝对GPS时间。
该伪距可接着被构造为(TOA-TOT)*C,其中的TOA是信号到达该接收机的时间以及C是光速。如果接收机不知晓TOA的启动,通过相对于一个或更多TOT数值累加上一些公称偏移可以预测TOA。对TOA的误差将是几十毫秒量级,代表了最初的接收机时钟偏差。
随着GNSS技术的引入,更多的电子器件需要基于位置的服务(LBS),传统的GNSS接收机技术有几个挑战需要克服,以满足这些设备的要求。专用基带处理器产生高成本的研发,组件和制造。该处理器难以升级,增加了功率消耗,并占用了在印刷电路板上的宝贵区域。
另外,用于获取GPS信号的搜索过程,读取来自多个卫星的导航数据并且计算来自数据的所述接收机的位置,该数据是指时间和功率消耗,经常需要从几十秒到几分钟的“冷启动”时间。而GPS子系统被接通时,它消耗相当大的能量,通常是由一个小的电池提供。
当在现有技术中用于确定一个位置,该TOT的卫星必须解码导航消息,以从码相位构造完整的伪距来确定。直到时间标记确定,所测得的伪距是不明确的,因为只有模计算的1毫秒部分是已知的。在某些操作环境(如森林或城市峡谷),其中信号间歇阻断和/或信号弱,难以或不可能经常对标准的GPS接收器保持锁和解码导航信息以确定时间标记。其结果是,不能计算定位解决方案。在许多情况下,这种长的处理时间是不切实际或不适合于某些应用。
基于软件的GNSS接收机已经成为现代GNSS接收机发展的革命性一步。取代使用专用基带处理器的,基于软件的GNSS接收器的技术(也被称为软件定义无线电或SDR)仅采用RF电路,以提供同相和/或正交(I/Q)采样与同相分量,正交分量,或两者兼而有之。RF电路可以包括(i)一个射频(RF)前端,(ⅱ)一个射频集成电路(RFIC)或(iii)任何可以提供的I/Q采样。进一步的信号处理和计算是通过一个通用处理器执行的,例如中央处理单元(CPU)或数字信号处理器(DSP)。我们的想法是放置处理器尽可能便利地靠近天线,传输所接收的I/Q采样到可编程元件并且应用数字信号处理技术以产生测量值,并且计算接收器位置。
由于基于软件的GNSS接收器的专用基带处理器是不存在的,它们比传统的,基于硬件的接收器具有优势。例如,在不久将来的全球导航卫星系统协议,将有许多可被用于增强的具有可用性和性能的额外信号。通常情况下,软件接收机只需要软件升级,允许增加新的信号处理,而专用集成电路(ASIC)的用户根据接收器将不得不购买新的硬件组件访问这些新的信号。基于软件的GPS接收机的其他好处包括快速发展时间,成本效益和显着的灵活性。
如果现有的的处理是在主机装置的处理器中进行的,基于软件的GNSS接收器可以被集成到主机系统而具有更容易使用和显著占据较少资源的有点。进一步的好处是,如果主机装置不需要PVT在主板上被计算,则I/Q采样可被存储以供稍后使用或在外部服务器上进行处理传输。
然而,传统的软件GPS接收机的处理方法的问题在于,它需要一个大量的I/Q采样被传送到处理器以计算接收机位置。由于密集的数据处理,CPU的负载可以被显著增加,这反过来,可能会迅速消耗便携式设备的电池寿命。其结果是,传统的基于软件的GPS接收器的方法通常是不适合现代小型化的便携式电子产品。
快照接收器技术提供了新的措施,以降低电力消耗和首次定位时间,同时提高了弱信号的可用性。快照接收机利用小数伪距测量值(即精化码相位)通过直接内插采集引擎的相关输出来确定,然后通过初始位置和卫星星历的协助来重建完整的伪距。
通过得到的一个第二I/Q采样中的一小部分,使仅在位置需要定位时启动系统,在软件GPS接收机的处理负载可以使用快照技术大幅度降低。当不需要位置定位,GPS功能可能被禁用。通过使用最短的采样长度,使功率消耗最小化。
跟踪环路通常不能用于快照接收机,因为采样数据长度通常比跟踪环路的收敛时间短得多。因此,其他精化估算技术必须被使用。
因为快照接收机不连续跟踪卫星信号,它是无法解码实时导航消息数据。因此,卫星星历,时钟校正,时间标记,以及其它的信息必须通过其他方法来获得。然而,由于在当前接收信号的TOTs的不断变化,它们不能直接由外部来源提供。如果不知晓TOTs,所述估计伪距是不明确的。为了解决这个问题,一些接收器需要现有技术中的初始位置的协助,以解决该不明确性。
当实时卫星信号的解码是不可能或不方便的,辅助GPS(AGPS)技术有时也被采用以获得来自通信网络的导航数据,或等效的信息。它通常用于蜂窝设备,其能够下载来自蜂窝网络所需要的数据。然而,AGPS接收器必须被连接到AGPS网络,以便操作。因此,接收器不能自主地操作。关于位置的隐私问题的担忧是AGPS服务不可行的理由,是还需要解决的一个问题。
另一种已知的技术用以获得导航数据,或相当于是利用存储在存储器中数据的预测参数。此数据可以在需要使用时的数天前被加载到的设备上。
不管使用什么方法,得到导航数据而不从卫星信号解码时,当前所接受的信号的TOTs不能直接以这种方式获得。GPS接收器必须足以解码导航数据检索时间标记,所以需要几秒钟构建完整的伪距测量值并计算定位。在快照接收器中,码相位可能会产生零碎的伪距测数值,但他们将是不明确的,而没有一些其他的方法来可靠地构建完整的伪距。
如果一种快照GNSS接收器能够可靠地恢复所接收的信号的TOTs,它可以是以毫秒为单位的顺序采样长度进行操作。随着具有增强识别和测量值的产生,采样的长度甚至可以进一步缩短。如此短的采样长度可以使得软件接收机没有过多的处理负载,这样就不需要有专用处理器的功耗和成本了。如果接收器能够自主运行,在通信网络实时连接的功耗和成本也消除了。
1.综述
如在下面进一步详细地说明,本发明的发明人已经发现,使用采样长度短至2毫秒以允许快照GNSS接收器以非常低的功率来操作并且非常迅速地计算位置。因为导航数据不能从卫星信号解码如此短的采样长度,则接收机不能获得卫星星历数据或常规方法得到的时间标记。另外,在样品长度可能远低于采用跟踪环路所需的收敛时间,要求其他精化估计技术。
按照本发明的系统和方法中,提供一个PVT引擎,一个GNSS采样获取装置,一个时钟获取装置,以及一个参数获取装置,用于获取卫星信号和计算出的PVT。本发明的系统和方法,具有少至2毫秒的数据,因此能够非常快速地获得在米级的精度的有效位置。在一个实施例中,PVT引擎处理GNSS信号的I/Q采样,以产生从时钟获得装置得出的初始估计的时间(TO A)相关联的测量值。PVT引擎随后计算来自测量值的快速GNSS接收器的位置和来自参数获取装置的卫星星历数据。随着本发明的系统和方法的应用,所述PVT引擎的GNSS采样获取装置,时钟获取装置和所述参数获取装置的整体功耗是非常低或可忽略不计的,因此可实现电子设备以及常见市售设计GNSS接收机的低功耗。
在一个实施例中,该系统可以包括参数获取装置,一个时钟获取装置和一个PVT引擎。参数获得装置,可取得一个或多个GNSS卫星的卫星星历数据。时钟获取装置可获取一个时钟,用于估计粗略的GNSS时间。该PVT引擎可以连接到一个的信号接口,其可操作以提供来自GNSS天线的I/Q采样。该PVT引擎可以包括一测量值生成程序,一个粗略估算程序,一个TOT构建程序和精化PVT程序。
在一个实施例中,测量值生成程序可以计算多普勒频率和基于所述的I/Q采样的一个或多个GNSS卫星的码相位。粗略估计程序可以基于多普勒频率的测量值,卫星年鉴/星历数据和粗略的GNSS时间决定粗略位置和初始TOT。该TOT构建程序过减少来自粗略估计程序的粗略TOT的误差,可提供一改进的TOT给精化PVT程序。所构建的TOT可以用来产生完整的伪距测量值。精化PVT程序基于粗略位置,伪距测量值,卫星星历数据,和构建TOT决定精化的位置和精化的GNSS时间。
下面的描述中讨论了一种用于GPS系统的本发明的系统和方法的实施例。然而,应当理解的是,对于其他全球导航卫星系统本系统和方法是容易实现,例如俄罗斯的格格瓦斯系统(GLONASS SYSTEM),欧盟的伽利略系统(GALILEO SYSTEM),中国的北斗/指南针系统(BEIDOU/COMPASS SYSTEM),并且利用伪卫星或一个定位系统卫星和伪卫星,并且其中多个卫星,和/或伪卫星和/或其他类型的发射器,已经知道其准确的参考频率。根据定义,伪卫星是基于地面的发射机,其广播一个PRN码(类似于GPS信号),调制在L波段的载波信号,一般与GPS时间同步。
图1示出了根据一个实施例的系统。所述系统可能包括一个可连接至信号端口3的PVT引擎1和/或一个可以进一步连接至RF电路5和GPS天线7的存储装置2。所述RF电路5可以用于提供向下转换,信号调节/过滤,自动获取控制和模拟GPS卫星信号到I/Q采样的模数转换。所述信号端口3,例如可能是一个USB端口,可以将I/Q采样转换为PVT引擎1。所述PVT引擎1可以通过所述信号端口3和/或存储装置2从RF电路5接收I/Q采样。I/Q采样也可以在所述信号端口3和/或所述存储装置2之间传递。此外,所述参数获取装置4可以向PVT引擎1提供卫星星历图,例如通过下载或预测技术,包括卫星星历和时钟校准。所述时钟获取装置6可能为所述PVT引擎1提供一个用于估计GNSS信号粗略TOT的时钟。
所述系统可能被作为分布式计算机系统进行应用,例如包括一个通过网络连接至一个服务器设备的客户端设备,其中所述服务器设备可能提供处理功能。如果所述位置在服务器设备进行处理,因为所述PVT引擎只需要少量的I/Q采样,所以在客户端设备和服务器设备之间也只需要少量的带宽。
所述PVT引擎的任何功能都能够被应用在客户端设备或服务器设备上。所述服务器设备可能为一或两个客户端设备提供处理。
图1所述的PVT引擎1可能包括(i)测量值生成程序(ii)一个粗略估计程序(iii)一个发送次数构建程序和一个精化的PVT程序。对于由所述粗略估计程序生成的位置的精度和PVT程序的精化进行评估。一旦所述位置的精度达到了指定的位置精度要求所述PVT引擎将会关闭。
所述测量值生成程序可以生成原始测量值,所述原始测量值同时包括多普勒频率和2毫秒短的I/Q采样的码相位测量值。所述码相位指示了I/Q采样开始到第一个完整的PRN码开始之间的时间间隔。
图2是根据一个实施例的所述硬件架构的方块图。所述系统可能包括一个连接于信号向下转换器11的GPS-天线10,所述转换器将RF信号转化为即时频率(IF)带。所述信号被传输至一个模数转换器(ADC)12,然后被存储于随机存取存储器(RAM)13,所述RAM-连接至一个用于处理以取得PVT解法的数字信号处理器(DSP)/微处理器17。所述固件,包括处理算法,被存储于非易失性存储器,例如只读存储器/可擦写可编程只读存储器(ROM/EPROM)14。一个频率合成器15向系统提供了所述时钟和同步机制,以及一个电源16,所述电源可以包括一个电池组或交流电(AC)适配器以为所述系统的所有部件提供电能。
图3示出了一种根据实施例获取PVT的方法。所述PVT引擎于起始点302开始然后于304进入引擎。在决策点306,如果所述初始接收器位置是可得的,所述初始接收器位置308将会被传送通过合并点312和314。否则,所述默认接收器位置310(如,在地球的中心)将会被传送通过合并点312和314。然后,所述引擎会启动测量生成程序以得到多普勒和码相位测量值,如动作所示。所述“rake”标识,代表着一个层级,说明了动作316可以被扩展到其他UML活动图中。在取得了所述测量值以后,所述引擎会呼叫粗略估计程序318基于所述多普勒测量值计算PVT。一旦取得了PVT,其精度会在决策点320进行评估。如果所述精度已经达到了要求,所述引擎会如图所示的在合并点328,退出操作动作330和结束点332处结束。在所有的其他情况下,所述引擎会呼叫程序和对所有可视卫星构造TOT并生成完整的伪距测量值。然后,所述引擎呼叫精化PVT程序322基于所述伪距测量值估测位置。所述位置的精度会再一次在决策点324进行评估,如果其精度达到了要求,所述引擎会如图所示的在合并点328,退出操作动作330和结束点332处结束。在所有的其他情况下,所述引擎会抛弃现在收集到的I/Q数据,收集新的数据并且重新开始这一流程,如326所示。所述新的数据会通过合并点314传输至动作316进行处理,并且所述流程不断进行直至位置精度达到要求。一旦所述位置精度达到要求,所述引擎会停止并在结束点322退出。
所述PVT引擎可以实时操作或近实时操作或可以被进一步连接至一个存储装置,例如,所述存储装置能够允许对于静态、低动态和高动态应用的后处理模式操作。如果所述主机设备不要求PVT进行机上运算而所述I/Q采样能够被存储为之后调用或被传输至一个外部服务器进行处理,所述PVT引擎也可以实现。应当注意到所述PVT引擎不要求如AGPS所要求的“一直在线”的连接。
所述I/Q采样可以从以下方式取得:(a)任何GNSS卫星信号接收器(基于硬件或软件)的跟踪环;(b)一个GNSS RFIC;(c)一个GNSS RF前端;(d)使用一个ADC直接RF采样;或(e)任何其他能够取得所述I/Q采样的方式。
如前文所述的,一个传统的GPS接收器需要至少30秒来通过接收和解码一个导航信息来取得历书。所述PVT引擎只需要收集短至2毫秒的时间并且不需要解码所述导航信息。从导航信息解码卫星星历数据可能是从其他来源取得的。这些星历数据包括:年历/星历参数;卫星时钟校准;大气模型/校准;以及其他定位必要或所需的信息。例如,精确的年历/星历(卫星轨道和时钟参数)是在如IGS和NGS网站等公共来源上免费下载可得的。此外,预测卫星年历/星历算法可以被提供以实现自主接收器操作。卫星位置和时钟误差可以由星历确定。大气校准可以在如IGS和NGS网站等公共来源上下载或者通过其他方式建模。
鉴于在没有导航信息解码的情况下可能不能取得精确的TOT。所述PVT引擎通过使用多普勒定位的第五状态变量和精化PVT程序的伪距定位来估测精确的TOT。因此所述PVT引擎无需接受和解码所述导航信息。所述PVT引擎可以使用I/Q采样的快照来取得所述GNSS接收位置。
2.测量生成程序
现有的系统和方法可以应用一个测量生成程序来计算所述多普勒频率和基于I/Q采样的一个或多个GNSS卫星的码相位。
GNSS接收器的可用性、可靠性和精确性很大程度上依赖与测量值的质量。对于传统的GNSS接受器来说,一旦所述比特和子帧成功同步,准确的伪距和载波相位测量值可以从跟踪环取得。稳定的跟踪也确保了对星历的正确解码从而提供所述卫星的各种参数。
跟踪环通常不能被用作快照接收器因为所述采样数据的长度远小于收敛时间,所以其他的精化估测技术必须作为替代使用。因为所述初始多普勒和相位的精度对于定位这一目的而言太差了,此处展示了一种具有多种数据长度的新型的多级探测/估测方案。这一方案包括一个探测和粗略测量值生成程序,精化多普勒频率估测程序和精化码相位估测程序。
所述探测阶段是相对而言计算最密集的因为其需要探测所有视野中的卫星并取得其中每一个的粗略多普勒值和码相位。在这个阶段的多普勒值和码相位估测不要求达到定位所需的精度,一个大致的估计就足够了。相比于传统的快照接收器设计,此处使用了一种最小化处理过程个能量使用的技术,以使得对于一个2TM毫秒的卫星探测的采样数据仅仅需要使用其中的M毫秒(其中M毫秒<2N毫秒)。完整的2N毫秒的采样数据将在之后的阶段被用到以取得对于可视卫星的多普勒频率和码相位的更好的估计。所述M的值是由所需的监测性能和所述接收器运行中的信号调教来决定的。
所述探测和粗略测量值生成程序可以使用传统的相干和不相干积分来增加用以探测卫星的信号处理增益。除了非相干积分以外,也可以使用不同的探测技术以减少由非相干操作所引起的平方损耗。
对于GPS,导航数据信息使在C/A模式下被调制的,使用了二进制相移键控(BPSK),速率为每秒50比特或每比特20毫秒。导航数据比特转换可能引起在相干积分期间的相位反转,其结果是,它可能会否定扩展积分所预期的效果同时降低所述多普勒频率估测的精度。为了克服这一问题,一种传统的快照接收器选项是首先收集10毫秒的数据然后无时间间隔的收集下一个10毫秒的数据以确保至少一个10毫秒的数据块是在导航数据比特转换之外的。每一个10毫秒的采样都会被独立地用于确定所述多普勒频率测量值和码相位测量值。在这一阶段划分数据是对于能量和资源的浪费因为每个10毫秒的数据块被独立地处理,而只有具有最高准确率部分的值才会被选用。
在现有的系统和方法中,这一划分仅在精化多普勒频率估测程序中被执行,相比于在探测和粗略测量值生成程序阶段执行,在这一阶段执行需要较少的运算量,其结果是,没有能量和资源被浪费。所述探测和粗略测量值生成程序通过使用非相干积分或使用不同的探测技术(因为只需进行粗略的多普勒频率估测,可以在之后进行精确化),克服了现存的导航数据比特转换的问题。其结果是,所述探测和粗略测量值生成程序使用了未分割的完整的数据长度,从而最终增加了信号处理增益。虽然其他用于在跟踪环比特同步之前探测导航数据比特转移的技术也是可用的,但大部分技术无法在不利的信号条件下进行。
在经过了探测和粗略测量值生成程序之后,所有的可视卫星和他们相应的粗略多普勒频率和码相位会被传输至精化多普勒频率估测程序,在该程序中取得精化多普勒频率并且确定不受导航数据比特转换的数据部分并且传输至所述精化码相位估测程序已取得所述码相位测量值。
下面将对每一个部分进行详细的描述
2.1探测和粗略测量值生成程序
这一程序包括相关和非相关积分以探测所述可是卫星并估计所述粗略多普勒频率和码相位。一个基于软件的采集单元的一般架构通常使用一个单独运行在一个微型处理器上的傅里叶变化(FFT)算法来平行测试所述所述时间域码相位模糊。基于硬件的架构通常具有多个专用于特定的多普勒频率和码相位段的相关器。所述FFT方法在多个现有技术中已经很好地建立了,此处不再重复。
采集搜索不断重复直至一个多普勒频率或码相位段的相关值大于预定义的探测阈值。所述预定义的探测阈值是一个关于信号杂讯层值和所需的探测数据的函数,所述探测数据部分确定一个接收器的采集性能。虽然延长所述相干积分时间对于增加灵敏度是理想的,但是此类方法受到包括数据信息模糊,由于频率误差增加的能量损失,以及信息采集时间的快速增长等因素的限制。其结果在于,相干积分不能无限量地增加。在不增加所述相干积分时间的情况下增加所述过程增益,非相干积分或混合差分/相干积分可以被使用。
图4示出了一个采集过程,所述过程使用了相干和非相干积分以检测可是卫星并通过一个UML活动图取得粗略多普勒频率测量值和粗略码相位测量值。所述采集过程开始于起始点402,而2N毫秒的I/Q数据可以被存储在404处,其中N可以是不小于1的整数。M(<2N)毫秒的此类数据可以在406处取得,其中M是相干积分时间Tcoh的产物而非相干积分Tncoh的数字。在408处所述非相干积分计数i被初始化为1而分叉点410将所述数据和计数调度至合并点412。在414处,所述第i个Tcoh毫秒数据被取得并转换至I/Q采样416。依据所述多普勒频率的搜索带宽和搜索步骤,所有多普勒频率段在418处被取得而本地复合载波在420处生成。I/Q采样和本地复合载波通过422被传输至424以进行乘法和傅里叶变换以移除所述多普勒频率。其他处理技术包括但不限于序列处理可以被使用。对于实时的应用,FFT和其他优化技术可以被应用于减少CPU和存储器的负载以提升处理速度。其他技术例如填充也可以被应用以满足FFT的尺寸要求并且减少相关的计算误差。
当426处在执行对所有满足信号采样率的卫星生成Tcoh毫秒的采样C/A码时,428处正在处理采样C/A序列的傅里叶变换和复共轭。作为一种很好的方法,所述采样C/A序列可能被预先运算并存储在非易失性存储器中,因此所述采样C/A序列在运行过程中总是可得的并且无需额外的运算。426和428的虚线边界指出了这些活动可以预先或在运行过程中被执行。当所述采样C/A序列和傅里叶变换后的复数信号同时在连接点430处可得时,它们会在432处进行复数乘法和逆傅里叶变换的操作。在434处所述逆傅里叶变换的绝对值被加入到相关值之中。在判定点436处,如果所述非相干积分计数i小于所述非相干积分Tcoh的数字,则前述程序将在412处被重复执行,而所述非相干积分计数/将在438处增加1。
在440处,所述每一课卫星的最终相关值与预定义的探测阈值进行比较,如果其值大于所述阈值,所述卫星被认为是可视的。在判定点442处,所述可视或探测到的卫星数将进行检查。如果存在足够多的检测到的卫星以在粗略估测程序和精化PVT程序中取得PVT解法,相应的多普勒频率和码相位在446被存储为粗略估测值,否则,呼叫450处的误差处理程式,同时所述采集过程在452被停止。一个子进程444在448处调取2N毫秒的数据(已储存在404中),与446处的粗略估计值一起通过454到达456处的精化多普勒频率估算程序,而所述探测和粗略测量值生成程序到达了所述终点458。
2.2精化多普勒频率估测程序
精化多普勒频率估测程序通过使用缩小多普勒频率的搜索空间从前一阶段提炼出了所述粗略多普勒估测值。因为所述频率估测对于可能的导航数据比特的相位反转很敏感,所述所述2N毫秒的数据被分成两个N毫秒的部分。每个部分将分别于所述粗略相位相关并在粗略多普勒频率范围中本地生成载波。具有最大相关值的所述N毫秒部分被认为是不受导航比特转换的部分而与其相应的多普勒段被认为是精化多普勒频率估测值。
图5示出了所述精化多普勒频率估测过程。所述过程开始于起始点502,2N在508处取得的2N毫秒的数据与所述粗略码相位和506处的多普勒频率一起创建子进程点504被送至510处。所述2N毫秒的数据可以被均匀地划分为两个相等的N毫秒组,分别于512和514处。在516和518处分别执行缩小粗略多普勒频率的搜索范围和对所述粗略码相位的校准,所述结果将分别加入520处。在522处执行相关值的比较并在524处确定最大相关值。第一个N毫秒数据和第二个N毫秒数据分别在526处和528处取得而最大相关值的相应多普勒值被作为精化多普勒频率估测值被保存。具有最大相关值的所述N毫秒数据与精化多普勒频率估测之一起通过530被传送至所述精化码相位估测程序532,并且所述过程在结束点534结束。
2.3精化码相位估测程序
精化码相位确定的精度对于快照接收器的定位精度是十分重要的。如上文所述,所述码跟踪环的收敛速度通常不够快以至于在只有少量毫秒的可得采样数据时无法使用。一个自相关函数测量其本身通过一段时间信号的相似性而一个互相关函数测量信号与另一信号的相似性。一种传统的做法是使用线性差值以确定精化码相位。这一做法是依赖于理想的具有无限带宽的GPS C/A码的自相关函数是一个三角函数这一事实的。为了克服这一问题此处开发了一种新型的多级拟合技术以基于一段非常短的数据长度取得精确的码相位测量值。
下面给出了对于性能分析更为方便的I和Q采样的标准化版本:
I i = sin ( &pi;&Delta;fT ) &pi;&Delta;fT 2 S N 0 T R ( &tau; ) D i cos ( &Delta; &Phi; i ) + &eta; i
Q i = sin ( &pi;&Delta;fT ) &pi;&Delta;fT 2 S N 0 T R ( &tau; ) D i sin ( &Delta; &Phi; i ) + &eta; Q - - - ( 2.1 )
E ( &eta; i 2 ) = E ( &eta; Q 2 ) = 1
其中Di(t)是50bps数据调制;Δf是传入采样和本地载波副本之间的频率偏差;ΔΦ,是所述相位偏差;是信噪密度比;T是所述相关积分的时间;ηi是具有N(0,1)分布(标准正态分布)的标准化相位噪声元件;ηQ具有N(0,1)分布(标准正态分布)的标准化正交相位噪声元件;是对于所述噪声元件的功率估测值;R(τ)是C/A码的自相关而τ是码相位偏移。
所述自相关可以被表述为如下形式:
R ( &tau; ) = &Integral; - &infin; &infin; c ( t ) c ( t - &tau; ) dt - - - ( 2.2 )
其中c(t)是C/A码。
对于所述GPS C/A码信号,所述自相关函数与C/A码片标准时间相关并且通常近似于如下的三角形函数:
R ( &tau; ) = ( 1 - | &tau; | T c ) | &tau; | &le; T c 0 else - - - ( 2.3 )
其中Tc是所述C/A码的码片周期。
因为与所述前端带宽会影响自相关函数的形状,一个较窄的带宽由于前端滤波会导致一个平滑的三角形函数。所述完美三角形假设只适用于一个无限制带宽,所述无限制带宽通常是不正确的因为大部分前端使用带通滤波器抑制带外噪声。现有接收器的带宽通常是2MHz所以C/A码主瓣之外的噪声可以被屏蔽。所述受限制的前端带宽平滑了相关峰值并且衰减了相关能量。其结果是,所述自相关函数应当被调整为如下形式:
F [ R ( &tau; ) ] = &Integral; - &infin; &infin; F [ c ( t ) ] c ( t - &tau; ) dt - - - ( 2.4 )
其中F[c(t)]是所述C/A码的过滤版本而F[R(τ)]是考虑了前端效应的GPS信号的自相关函数。
本系统和方法使用了等式(2.4)来估测所述码相位偏移。所述估测包括两个阶段的拟合过程。F[c(t)]是由一个GPS C/A码通过一个精确的模拟前端IF过滤器得到的。F[R(τ)]是由一个本地生成的C/A码与一个过滤后的C/A码互相关后得到的。所述F[R(τ)]的一般形状将通过一个适合的数学函数进行拟合,经验证据显示其能够被一个正弦波系列精确展现。其结果如下:
F [ R ( &tau; ) ] = &Sigma; i = 1 n a i sin ( b i &tau; + c i ) - - - ( 2.5 )
其中ai,bi和ci能够通过将一个正弦波系列与一个本地生成的C/A码与过滤后的C/A码之间的互相关函数进行拟合确定。
这些数值是前端相关的并且根据所述前端滤波带宽和过滤器类型(例如巴特沃斯滤波器或切比雪夫滤波器)而变化。应当注意这些计算是可以离线完成的而ai,bi和ci能够被储存在存储器中。
通过使用精华多普勒频率估测在所述GPS信号中消除多普勒效应和应用粗略码相位,在峰值附近的多种相关采样可以被测量。因为每个可视卫星具有不同的信号接收功率,不同卫星的自相关振幅可以是不同的。在取得了多个相关取样之后,所述最终拟合函数Ω与峰值附近的相关采样相拟合以取得振幅A和精化码相位偏移τ。
&Omega; ( A , &tau; ) = A ( &Sigma; i = 1 n a i sin ( b i &tau; + c i ) ) - - - ( 2.6 )
这一技术提升了最终位置的精度同时显著降低了与现有技术相比最差情况下的位置误差。
图6示出了所述精化码相位估测程序。所述过程开始于起始点602。从530处输出的N毫秒的导航非比特转换数据与所述粗略码相位和精化多普勒频率608一起通过子进程创建点604在606处取得,并且被发送至610以在622处计算多个相关采样。所述相关采样的实际个数取决于例如采样率和所需的曲线拟合精度等因素。所述C/A码在614处生成且在612中过滤,其中所述前端的滤波效果进行了事先模拟。连接点616将612处的滤波后C/A码和614处的C/A码发送至618已取得所述互相关。在620中,一个正弦波系列或类似的函数与所述峰值附近的互相关函数进行拟合并确定系数ai,bi和ci。所述拟合函数620与多个相关采样622然后被一起发送至626的一个第二拟合模块,期间通过624,在624中通过将预定义的拟合函数与多个相关采样相拟合来对振幅A和精化码相位进行估测,最终,所述程序结束于结束点628。所述虚线边界内的612,614,618和620说明了这些活动可以事先或在运行时被执行。
3.粗略估测程序
所述粗略估测程序可以生成一个粗略的接收器位置和一个GNSS信号的初始TOT用于TOT构建程序并且所述精化PVT程序是基于所述多普勒频率测量值的,所述测量值是由测量生成程序,时钟取得装置的粗略GNSS时间和可用的星历或年历所提供的。如果所述粗略的接收器位置的精度已经达到了TTFF的位置精度的特定要求,所述PVT引擎将报告成功并停止工作。否则,所述定位流程会进展至所述TOT构建程序和所述精化PVT程序。
对于本技术领域的专业人员应当认识到,给予初始接收位置的估测足够的精度并且从多普勒定位以外的其他来源获得TOA,可以计算出一个粗略的TOT以达到相同的目的。
3.1使用多普勒频率测量值确定PVT
所述粗略估测程序可以基于所述多普勒频率测量值计算PVT,所述多普勒频率测量值是由所述测量生成程序生成的。所述粗略估测程序可以提供一种加权最小二乘法来为每个多普勒测量值分配适合的权重以进一步提升PVT确定值的精度。在实践中,如果所述接收器动态状态是静态或低动态的,所述PVT引擎可以在估测过程中忽略所述接收器的速度。
图7示出了所述PVT引擎是如何确定所述粗略PVT的。所述PVT引擎开始于起始点702,并且进入所述粗略估测程序704。所述PVT引擎可以在706中确定一个初始位置是否是已知的。所述初始位置可以由所述粗略位置或默认位置提供。如果所述粗略位置是已知的,它将会在708中被使用。否则,一个默认位置可能在710中被使用。所述默认位置可以被设定为地球中心。所述粗略或默认的位置通过合并点712被发送至下述流程中。所述大气分支714,可以包括电离层和对流层模型和参数,与包括有多径模型和参数的所述多径分支716一起,可以被可选的加入到所述过程之中。除了714和716之外,所述PVT引擎需要星历718,粗略时间720和多普勒频率测量值722。只有当所有这些都在724中具备时,所述PVT引擎在726开始一种算法,所述算法使用多普勒频率测量值和LSQ计算所述接收器PVT。所述“rake”标识,代表着一个层级,说明了动作726可以被扩展到其他UML活动图中。如果所述PVT精度已经达到了要求,如在判断点728中所示,所述PVT引擎会退出所述粗略估测程序732并在结束点738处退出PVT引擎。如果所述PVT精度未达到所述要求,所述PVT引擎会在730处显示并处理误差并在734处退出程序。
动作726可以被扩展到其他UML活动图中,如图8所示。所述程序开始于起始点802,并静茹804中的最小二乘法算法。在806处取得了所述粗略TOT,所述初始接收位置,星历数据和多普勒测量值后,所述程序通过多普勒频率测量值在808中计算测量距离变化率并在810中建立五个系统状态的线性测量值函数。通过合并点812,所述程序进入一个迭代循环。在所述迭代循环中,所述程序基于星历数据和TOT在814中获取或计算卫星位置、速度和加速度。然后所述程序在816中计算五种系统状态的增量并根据818中的高度和TOT约束更新所述五种系统状态。在判定点820中,如果所述最大迭代没有达到,所述迭代将通过812继续进行。否则,所述过程在结束点822处退出。
多普勒定位的数学方法和模型可以解释为以下形式。如果所测量的卫星i的多普勒频率是一个变量范围可以被定义为:
&rho; &CenterDot; ( i ) = - f ~ D ( i ) c L 1 - - - ( 3.1 )
其中c是光速;L1是卫星转换的载波频率。
与此同时,参照图11所示,所述变量范围也可以是关于速度矢量和卫星以及接收器的位置矢量的非线性函数:
&rho; &CenterDot; ( i ) = ( v 1 - v u ) &CenterDot; ( r i - r ^ u ) | | r i - r ^ u | | + d &CenterDot; - - - ( 3.2 )
其中
vi=[vxi vyi vzi]T是卫星i的速度矢量
vu=[vxu vyu vzu]T广是接收器的速度矢量
ri=[xiyi zi]T是卫星i的位置矢量
是接收器的估测位置矢量
是矢量范数
“·”是两个矢量的点积运算
是本地时钟漂移效应
等式(3.2)的非线性形式可以被写成如下形式:
f i ( r ^ u , t ^ i ) = f i ( x ^ u , y ^ u , z ^ u , t ^ i ) = ( v i - v u ) &CenterDot; ( r i - r ^ u ) | | r i - r ^ u | | - - - ( 3.3 )
其中是信号TOT的估测值
基于等式(3.2)和(3.3),以及所述接收器是静态的假设,所述变量范围可以通过泰勒级数展开线性化为:
&rho; &CenterDot; ( i ) = f i ( r ^ u , 0 , t ^ t , 0 ) + d &CenterDot; 0 + &PartialD; f i ( r ^ N , 0 , t ^ t , 0 ) &PartialD; r ^ u , 0 &PartialD; f i ( r ^ u , 0 , t ^ t , 0 ) t ^ t , 0 1 &Delta; r ^ u &Delta; t ^ t &Delta; d &CenterDot; - - - ( 3.4 )
在等式(3.4)中,所述五种系统状态或状态变量能够被表示为:
X = r ^ N t ^ t d &CenterDot; T = x ^ u y ^ u z ^ u t ^ t d &CenterDot; T - - - ( 3.5 )
因此,所述系统状态变量ΔX可以通过LSQ算法进行运算
ΔX=(ATA)-1ATE (3.6a)
其中E是变量范围剩余矢量或矩阵而A是导数矩阵。
E和A可以表示为:
E = &rho; &CenterDot; ( 1 ) - f 1 ( r ^ u , 0 , t ^ t , 0 ) - d &CenterDot; ^ 0 &rho; &CenterDot; ( 2 ) - f 2 ( r ^ u , 0 , t ^ t , 0 ) - d &CenterDot; ^ 0 &CenterDot; &CenterDot; &CenterDot; &rho; &CenterDot; ( n ) - f n ( r ^ u , 0 , t ^ t , 0 ) - d &CenterDot; ^ 0 - - - ( 3.6 b )
A = &PartialD; f 1 ( r ^ u , 0 , t ^ t , 0 ) &PartialD; r ^ u , 0 &PartialD; f 1 ( r ^ u , 0 , t ^ t , 0 ) t ^ t , 0 1 &PartialD; f 2 ( r ^ u , 0 , t ^ t , 0 ) &PartialD; r ^ u , 0 &PartialD; f 2 ( r ^ u , 0 , t ^ t , 0 ) t ^ t , 0 1 &CenterDot; &CenterDot; &CenterDot; &CenterDot; &CenterDot; &CenterDot; &CenterDot; &CenterDot; &CenterDot; &PartialD; f n ( r ^ u , 0 , t ^ t , 0 ) &PartialD; r ^ u , 0 &PartialD; f n ( r ^ u , 0 , t ^ t , 0 ) t ^ t , 0 1 - - - ( 3.6 c )
基于等式(3.6),所述系统状态可以通过下列迭代计算:
&Delta;X k = ( A ( X k ) T A ( X k ) ) - 1 A ( X k ) T E ( X k ) X 1 = X 0 + &Delta;X 0 &CenterDot; &CenterDot; &CenterDot; X k = X k - 1 + &Delta;X k - 1 - - - ( 3.7 )
对于在LSQ迭代中PVT运算的收敛,可以使用所更新的状态变量的约束。
所述TOT更新约束可以被表示为:
<时间约束 (3.8)
其中所述时序约束可能被设置为,例如30分钟。
所述粗略估测程序需要一个在几十分钟内的初始估测TOA误差。这种对于初始时间精度的宽松的要求可以使得所述RF电路持续工作若干年而无需调整或校准它们的时钟。
假设只使用了2-10毫秒的I/Q采样,所述粗略估测程序的位置误差可能在100千米以内并且所述TOT的误差,无论是对于低动态或高动态条件,都在100秒以内。
4.TOT构建程序
所述TOT构建程序在没有解码卫星导航数据的情况下为每个卫星重建了一个TOT。所构建的TOT是关于一个估测的GNSS信号的TOA的,所以它与真实的TOT不相同并且不能达到计算所述卫星位置,速度,加速度和所述星历数据的时钟的精度。本发明和方法生成一个相对于TOT精确完整的伪距。
图9示出了所述TOT构建过程。所述过程开始于起始点902并且在904处进入所述TOT构建程序。在906的粗略估测程序中获取粗略用户位置,粗略TOA和粗略TOT。所述大气分支908,包括有电离层和对流层模型和参数,与包括有多径模型和参数的多径分支910一起被可选地加入到所述过程中。当所述卫星星历912和测得的码相位914在连接点916处可得时,所获取的数据通过连接点918被用于常规偏置估测组生成器920以计算每一个卫星分别的常规偏置估测值。
在判定点922中,如果粗略TOT执行了误差抑制,所述粗略TOT误差抑制924计算每一个卫星所变化的误差抑制值并且在连接点918处重新进入所述过程。所述粗略TOT误差抑制未被执行或已经执行完毕了,所述过程进入判定点926。如果粗略位置误差抑制将要被执行,粗略位置误差抑制928采用雏菊链过程以更新所述常规偏置估测和计算每个卫星的整数码信号出现时间并继续运行至连接点932.如果粗略位置误差抑制未被执行,所述常规偏置估测930为每个卫星从整租估测值计算一个单一的常规偏置,计算整数码信号出现的时间并继续运行至连接点932。
在连接点932之后,所述伪距生成器934为每个卫星构建一个TOT和完整的伪距测量值。所述TOT构建程序在936处退出并且到达结束点938。
4.1生成伪距
由一个GNSS卫星发射的信号是一个时间信号。也就是说,在任何时间点,当前所发送的信号表示了根据卫星时钟所显示的时间。在一个GNSS接收器中,所述导航数据被解码,当前周时间可以从编码后的数据参考信号传输中的特定点而取得。所述TOT可以由相对于该点发送的C/A码的数量来确定。所述C/A码每1毫秒重复一次,所以每次所述码重复表示了1毫秒的时间并且当前码相位测量值表示了1毫秒的片段部分。
一个未针对所述卫星时钟误差进行校正的伪距被称为“原始伪距”。在本讨论中所用的伪距是指原始伪距。对于一个卫星i的伪距测量值可以被表示为:
&rho; ( i ) = ( t a - t t ( i ) ) &CenterDot; c - - - ( 4.1 )
其中
ta是相对于所述接收器时钟的接收器信号的TOA,
是相对于所述卫星时钟的卫星i的TOT,并且
c是光速
如果一个传统的GNSS接收器在起始时不具有时间信息,所述TOA可能在相对于一个或多个TOT值的基础上加上一些标准偏移量进行估测。这一初始TOA将会具有约几十毫秒的绝对误差。如果所述接收器已经被初始化了,TOA通常众所周知地在1毫秒以内。
众所周知地,所述原始伪距和真实信号移动距离之间的关系为:
ρ(i)=||ru-ri||-δt(i)·c+n·c (4.2)
其中
ri是由所述TOT计算出的卫星i的位置并根据在传送时间内地球的旋转进行了校正,
ru是所述接收器位置,
δt(i)是对于所述TOT计算出的卫星i的卫星时钟校正值,并且
b是所述接收器的常规偏置值。
根据等式(4.1)和(4.2),TOT可以被计算为:
t t ( i ) = t a - | | r u - r i | | / c + &delta;t ( i ) - b - - - ( 4.3 )
4.2从一个构建的TOT生成伪距
在一个使用快照技术的接收器的设计中,一个关键的问题是短暂的采样时间排出了从所传输的数据中解码周时间。所述码相位可以被测量以确定所述片段式的时间毫秒部分,但并没有可得的参考时间用于恢复完整的TOT。所述粗略估测程序提供了一个粗略的接收器位置和TOA其中所述TOA参照了所述I/Q采样的起始。它也为每个卫星提供了粗略位置和时钟校正值所述值是在最小二乘过程中在粗略TOT中被评估的。所述粗略TOT并没有达到与传统GPS中计算相同伪距的精度。所述TOT构建程序为每个卫星构建了一个新的TOT所述新的TOT仍然是关于所述TOA的,但可以被用于生成伪距。也就是所,其中
&rho; ( i ) = ( t a - t t ( i ) ) &CenterDot; c = ( t ^ a - t ^ t ( i ) ) &CenterDot; c - - - ( 4.4 )
根据等式(4.3)和(4.4),为卫星i所构建的TOT是
t ~ t ( i ) = t ^ t ( i ) + &Element; t ( i ) + &Element; r ( i ) = t ^ a - | | r ^ u - r ^ i | | / c + &delta; t ^ ( i ) - b + &Element; t ( i ) + &Element; r ( i ) - - - ( 4.5 )
其中
是粗略TOT的误差组成,即是由于而不是真实TOT中评估所产生的误差;并且
是所述粗略位置误差组成,是由误差产生的。
因为未知常规偏置b以及所述误差 不能被构建至足够生成所述伪距的程度。下一步是找到一个能够被固定在任意整数的TOT。
每一次所述C/A PRN码重新开始时,所述码相位将会归零。当一个零码相位被播送时所述TOT可以被称为“码标准时间”,当以毫秒表示时可以是整数。在任意时间内,所述“片段式码相位时间”是从上一个码标准时间τ(i)过去1毫秒的一个时间部分并且可以从所述码相位测量值进行计算。然后,一个接收信号的所述TOT可以被表示为
t t ( i ) = &tau; ( i ) + &Delta;t s ( i ) - - - ( 4.6 )
图12示出了所述TOT,所述码标准时间,和所述片段式码相位时间之间的关系。
因此,最近的一个可能成为一个标准时间的TOT可以被估测为
&tau; ^ ( i ) = t t ( i ) - &Delta;t s ( i ) = t ^ a - | | r ^ u - r ^ i | | / c + &delta; t ^ ( i ) - &Delta;t s ( i ) - b + &Element; t ( i ) + &Element; r ( i ) - - - ( 4.7 )
如果b可以被估测为假设一个整数码标准时间τ(i)可以通过对四舍五入计算出来。然后所述整数码标准时间是
&tau; ( i ) = round ( &tau; ^ ( i ) ) = round ( t ^ a - | | r ^ u - r ^ i | | / c + &delta; t ^ ( i ) - &Delta;t s ( i ) - b ^ ) - - - ( 4.8 )
一旦对于每个卫星的所述整数码标准时间被确定,对于每个卫星的所述TOT可以被计算而所述原始伪距可以被构建为
&rho; ( i ) = ( t ^ a - t ~ t ( i ) ) &CenterDot; c = ( t ^ a - ( &tau; ( i ) + &Delta;t s ( i ) ) ) &CenterDot; c - - - ( 4.9 )
剩余的问题是估测足以找到每个卫星的整数码标准时间的所述常规偏置值b。代入等式(4.7),对每一个卫星的b的独立的估测是
b ^ ( i ) = b - &Element; t ( i ) - &Element; r ( i ) = t ^ a - | | r ^ u - r ^ i | | / c + &delta; t ^ ( i ) - &Delta;t s ( i ) - &tau; ^ ( i ) - - - ( 4.10 )
在传统的GPS的情况下,一个接收器的常规偏置可以在最小二乘位置算法中得到解决。由TOT构建的所述初始TOA可以存在几毫秒的误差,并且随意进行几毫秒的改变可以被所述常规偏置所吸收而不会产生影响。类似地,在现有程序中,所述TOT是由TOA所构建的,可以假设b<1毫秒。
将1毫秒作为系数代入到等式(4,10)中,所述码标准时间因为其应当是整数而被淘汰。使用运算符“()[ms]”来表示系数1毫秒,所述系数的常规偏置可以被估测为
为了从集合中确定单一估测值应当注意不要对任意卫星的τ(i)引入错误的整数值。应当注意如果针对所有卫星的τ(i)偏差了一个恒定的整毫秒数,这种情况是可以接受的。是由于卫星之间的相关量可能会引起一个或多个无效的伪距。
当所述粗略TOT误差组成和粗略位置误差组成较小时,在内值的导数也会较小。在这种情况下,对b的较好的估测值就显得很重要。当粗略误差组成较大时,对所有卫星获取一个接近整数的的难度会增加。特别是,对于具有高距离变化率的卫星将会最大而对于视线接近粗略位置误差方向的卫星将会最大。τ(i)的整数误差出现在 b ^ - b + &Element; t ( i ) + &Element; r ( i ) &GreaterEqual; 0.5 ms 时。
一个对与b的单独估测的简单示例是对于卫星L固定所述卫星被假设具有最小的粗略误差组成,例如具有最高仰角或最低范围的卫星。另一个示例是在区间(-0.5,+0.5]ms内直接搜索的实验值,基于等式(4.8),以测试出对于卫星n使下列函数最小的实验值:
&Sigma; i = 1 n ( &tau; ^ ( i ) - &tau; ( i ) ) 2 - - - ( 4.12 )
所述TOT构建程序可以被用于增强误差抑制以提升对τ(i)的确定。粗略TOT误差抑制可能通过提升所述粗略时间和卫星位置的估测来用于减少的效果。粗略位置误差抑制可以通过一种不单独估测所述常规偏置以确定整数码标准时间的方法来用于减少τ(i)的效果。
4.3粗略TOT误差抑制
所述TOT构建程序可以应用粗略TOT误差抑制作为一种减少效果的方法。所述卫星i的粗略TOT误差组成可以被表示为
&Element; t ( i ) ( t ^ t ( i ) , t t ( i ) ) = D i ( t t ( i ) ) - D i ( t ^ t ( i ) ) &ap; D &CenterDot; i ( t ^ t ( i ) ) &CenterDot; ( t t ( i ) - t ^ t ( i ) ) - - - ( 4.13 )
其中Di(t)=||ru-ri(t)||/c-δt(i)(t)是对于任意TOTt的传播延迟,并且
Di(t)是由星历数据对于任意TOTt确定的距离变化率。
对于任意一组卫星i和j,的差值是
当两个卫星在天空中靠近在一起时,它们将具有相同的粗略位置误差组成(即同时对于这两颗卫星的时间误差值将会非常接近。
&Delta;t &ap; t t ( i ) - t ^ t ( i ) &ap; t t ( j ) - t ^ t ( j ) - - - ( 4.15 )
因此,如果卫星i和卫星j是所有卫星中两个相互最接近的卫星,则通过等式(4.13)和(4.15)可以得到:
然后所述TOT构建程序的粗略估测可以下下列方面改进
是改进的粗略TOA
是改进的卫星i的粗略TOT,
是由计算的卫星i的位置并根据在传输之间内的地球旋转进行了校正,并且是由计算的卫星i的卫星时钟校正值。
4.4粗略位置误差抑制
所述TOT构建程序可以采用粗调位置误差抑制作为一种方法来确定整数代码出现时间τ(i),而不对常见的偏差b进行直接估计。的方法。如上文所述,对于任意两个在天空中靠近在一起的卫星i和j,并且是相似的。所述粗略位置误差抑制方法使用了对于卫星的常规偏置值自适应估计的方法,所述方法是以“雏菊链”方式下最邻近的卫星的常规偏置为基础的。
所述第一步是选定任意卫星作为i=1并固定所述偏置值为这是i一个新集合内的第一个元素。
然后第二步是选定与卫星1最邻近的卫星2。根据下列等式设置新估测值在这一步中,i=1且j=2:
在第三步中,为等式(4.18)选定一个新的卫星组i和j,其中卫星i是已经表示在集合中的而卫星j是从其他卫星中选定的,因此所述组合具有最小距离。继续此步骤直至所有的卫星都在集合中被表示。
然后所述整数码标准时间可以使用等式(4.8)进行运算,对于每一个卫星将替换为
5.精化PVT程序
所述精化PVT可以最小二乘法(LSQ)计算该精化PVT,这是基于所构建的TOTs和TOT构建程序产生的原始伪距算法。
图10说明了一个过程,其中精化PVT程序决定了该精化PVT。该过程开始于起始点1002并在1004进入精化PVT。在1006,获得粗略位置,伪距,构建的TOT和来自TOT构建程序的TOA。随着来自TOT构建程序的值,可选的大气组件1008,包括电离层和对流层模型和参数,可选的多径组件1010,其包括多径模型和参数,以及星历表1012都发送给连接1014。经过该具有五个系统状态的线性化测量值的函数是设置在1016,该进程进入通过合并1018LSQ迭代循环。在迭代循环中,在1020计算来自星历的卫星位置和速度和所估计的TOTs。然后计算在1022的德尔塔(delta)系统状态并且更新五个系统状态:接收器的位置,一般偏移和在1024的一般出现时间。随着第一个完整的PRN出现时间,1026上更新信号TOTs。在分支1028中,如果达到最大迭代次数,则处理进入分支1028。否则,该过程通过1018返回到迭代循环。在分支1028,如果精化PVT达到精度要求,程序退出在1034的精化PVT程序和端点1038。否则,程序将显示并处理在1032的误差然后退出1036。
对伪距测量的数学方法或模型可作如下解释。位置被表示为以地球为中心的,地球固定坐标(ECEF),而其他的坐标系统可以被类似地使用。正如在第4节提到的,该卫星的原始伪距i可以写为:
ρ(i)=||ru-ri||-δt(i)·c+b·c (5.1)
相比于传统的GPS,在用于所述卫星位置ri和时钟校正δt(i)的所述TOT中存在一个更大的误差。一个第五种状态可能被用于LSQ算法以引起一个较大的TOT误差。如第4部分所定义的,τ0代表对于卫星i的具有初始值τ(i)的一个常规整数码标准时间。然后使得对于每一个卫星存在一个固定的整数偏移值Δτ(i)以使得所述TOT可以根据所述常规整数码标准时间和片段式码相位时间进行更新:
t i ( i ) = &tau; ( i ) + &Delta; t s ( i ) = &tau; 0 + &Delta;&tau; ( i ) + &Delta;t s ( i ) - - - ( 5.2 )
然后所述状态适量可以被表示为w=[xuyu,zu,b,τ0]T (5.3)
其中(xn,yn,zn)是所述接收器的位置。当τ0被更新时,所述卫星位置和时钟校正被重新计算。所述测量值函数可以通过等式(5.1)取得
&rho; ( i ) = | | ( x u , y u , z u ) - r i ( t t ( i ) ( &tau; 0 ) , &delta;t ( i ) ) | | - &delta; t ( i ) ( t t ( i ) ( &tau; 0 ) ) &CenterDot; c + b &CenterDot; c - - - ( 5.4 )
与多普勒位置相似的,所述测量值函数可以被表示为一个非线性函数:
ρ(i)=gi(w) (5.5)
所述函数可以通过泰勒级数展开被线性化并且用LSQ算法求解或加权。所述系统状态增量可能被用于位置约束(如100千米)和/或时间约束(如60秒)。
所述LSQ算法的PVT解法是五种系统状态的估测值
因此,在一个实施例中,公开了一种用于从全球导航卫星系统(GNSS)的信号采样确定一个或多个的位置,速度和时间(PVT)的系统,包括:一种GNSS采样获取装置,用于获得同相和/或正交(I/Q)的来自一个或多个GNSS卫星的信号采样值;一个时钟获取装置,用于获得所述1/Q采样的预计到达时间(TOA);一个参数获取装置,用于获取卫星星历数据,其中包括卫星的轨道和所述一个或多个GNSS卫星的时钟信息;以及一个PVT引擎,包括:
一个测量值生成程序用以计算多普勒频率测量值和来自I/Q采样的一个或多个GNSS的码相位测量值;一个粗略估计程序用以估计粗略PVT,粗略TOA以及来自多普勒频率测量值的粗略卫星发射信号(TOT)的时间,初始的TOA,和卫星星历数据;一个TOT构建程序,用以确定相对于粗略TOA的精确的TOTs,并通过来自码相位测量值的粗略PVT,粗略TOTs,和卫星星历数据确定整数代码出现时间,产生完整的伪距测量值;以及
一个精化PVT程序,用以计算来自码相位测量的粗略PVT,粗略TOA,和精确的TOTs,和卫星星历数据。
在一个实施例中,所述测量值生成程序采用多平台检测和估计的方法,其中每个阶段可以使用不同的采样长度,包括:一个检测和粗略测量值生成程序,用以检测卫星并确定粗略多普勒频率和来自1/Q采样数据的M毫秒(M ms)粗略码相位;一个精化多普勒频率估计程序,用以确定来自粗略多普勒频率和I/Q采样数据的2N(>M)毫秒(ms)值的多普勒频率测量值;以及一个精化码相位估计程序,用以确定来自粗略码相位的码相位测量值,精化多普勒频率,和I/Q采样数据的N毫秒(ms)值。
另一个实施例中,所述检测和粗略测量值生成程序对I/Q采样数据进行相干和非相干积分。
另一个实施例中,所述精化多普勒频率估计程序执行狭窄的频率在粗略多普勒频率周围搜索,所述粗略多普勒频率来自所述I/Q采样数据的2N毫秒(ms)值的子集,并且确定来自所述子集的精化多普勒频率测量值的最大相关值。
另一个实施例中,所述精化码相位估计程序使用一个预定义的自相关函数,模型化了C/A码上的特定前端的效果。
另一个实施例中,所述预定义的自相关函数是一个曲线,所述曲线拟合于一个特定的数学函数或一系列函数,模型化了C/A码上的特定前端的效果。
另一个实施例中,所述预定义的自相关函数拟合于相关值用以确定精化码相位和信号功率。
另一个实施例中,所述信号功率是由拟合的自相关函数的最大值估计的。
另一个实施例中,所述粗略估计程序使用一个时间更新,并限制在最小二乘算法,用以提高粗略PVT和粗略TOTs的收敛域。
另一个实施例中,所述TOT构建程序使用一个估计的偏差值来确定整数代码出现时间。
另一个实施例中,所述TOT构建程序采用粗略TOT误差抑制来使用邻近的卫星,以减少误差的粗略TOTs和粗略的TOA。
另一个实施例中,所述TOT构建程序采用粗调位置误差抑制来使用卫星菊花链(satellite daisy chain),以减少由于在粗略调位置的误差导致的误差的整数代码出现时间的概率。
在另一方卖弄,提供了一种决定一个或多个来自全球导航卫星系统(GNSS)信号采样的位置,速度和时间(PVT)的方法,包括:通过GNSS采样获取装置获取,信号的同相和/或正交(I/Q)采样的来自一个或多个GNSS卫星的信号)采样值;通过时钟获取单元获取,I/Q采样的到达的初始估计的时间(TOA);通过参数获取装置获取,卫星星历数据,其中包括卫星的轨道和所述一个或多个GNSS卫星的时钟信息;通过测量值生成程序计算,多普勒频率测量值和来自I/Q采样的一个或多个GNSS的码相位测量值;通过粗略估算程序估算,一个粗略PVT,粗略TOA,和来自多普勒频率测量值的粗略卫星信号传输时间(TOT),初始TOA,卫星星历数据;通过TOT构建程序决定,相对于粗略TOA的精确的TOTs,并通过来自码相位测量值的粗略PVT,粗略TOTs,和卫星星历数据确定整数代码出现时间,产生完整的伪距测量值计算;其中使用GNSS PVT算法生成的完整的伪距测量值代替来自传统解码TOTs计算的伪距测量值。
在一个实施例中,所述测量值生成程序采用多平台检测和估计的方法,其中每个阶段可以使用不同的采样长度,进一步包括:通过粗略测量值生成程序检测卫星并确定粗略多普勒频率和来自1/Q采样数据的M毫秒(M ms)粗略码相位;
通过精化多普勒频率估计程序确定来自粗略多普勒频率和I/Q采样数据的2N(>M)毫秒(ms)值的多普勒频率测量值;以及通过一个精化码相位估计程序确定来自粗略码相位的码相位测量值,精化多普勒频率,和I/Q采样数据的N毫秒(ms)值。
在另一个实施例中,所述检测和粗略测量值生成程序对I/Q采样数据进行相干和非相干积分。
在另一个实施例中,所述精化多普勒频率估计程序执行狭窄的频率在粗略多普勒频率周围搜索,所述粗略多普勒频率来自所述I/Q采样数据的2N毫秒(ms)值的子集,并且确定来自所述子集的精化多普勒频率测量值的最大相关值。
在另一个实施例中,所述精化码相位估计程序使用一个预定义的自相关函数,模型化了C/A码上的特定前端的效果。
在另一个实施例中,其特征在于,所述预定义的自相关函数是一个曲线,所述曲线拟合于一个特定的数学函数或一系列函数,模型化了C/A码上的特定前端的效果。
在另一个实施例中,所述预定义的自相关函数拟合于相关值用以确定精化码相位和信号功率。
在另一个实施例中,所述信号功率是由拟合的自相关函数的最大值估计的。
在另一个实施例中,所述粗略估计程序使用一个时间更新,并限制在最小二乘算法,用以提高粗略PVT和粗略TOTs的收敛域。
在另一个实施例中,所述TOT构建程序使用一个共同的估计偏差来确定整数代码出现时间。
在另一个实施例中,所述TOT构建程序采用粗略TOT误差抑制来使用邻近的卫星,以减少误差的粗略TOTs和粗略的TOA。
在另一个实施例中,所述TOT构建程序采用粗调位置误差抑制来使用卫星菊花链(satellite daisy chain),以减少由于在粗略调位置的误差导致的误差的整数代码出现时间的概率。
根据本发明的一个方面,提供一种非易失性计算机可读介质存储计算机代码,当被加载到系统中,用于确定一个或多个位置,速度和来自全球导航卫星采样的时间,以使系统适应执行上述的方法。
在另一个方面,提供一种位置,速度和时间(PVT)引擎,用于在一个系统中使用,用于确定一个或多个的来自全球导航卫星系统(GNSS)的信号采样的位置,速度和时间(PVT),所述PVT引擎包括:一个测量值生成程序用以计算多普勒频率测量值和从I/Q采样的一个或多个GNSS的码相位测量值,一个粗略估计程序用以估计粗略PVT,粗略TOA以及来自多普勒频率测量值的粗略卫星发射信号(TOT)的时间,初始的TOA,和卫星星历数据;一个TOT构建程序,用以确定相对于粗略TOA的精确的TOTs,并通过来自码相位测量值的粗略PVT,粗略TOTs,和卫星星历数据确定整数代码出现时间,产生完整的伪距测量值;以及一个精化PVT程序,用以计算来自码相位测量的粗略PVT,粗略TOA,和精确的TOTs,和卫星星历数据。
虽然上面的描述提供了系统,并根据一个或多个实施方式举例说明,但可以理解,本领域中的技术人员可以在本说明书和以下权利要求的范围内解释其他实施例。

Claims (12)

1.一种决定一个或多个来自全球导航卫星系统(GNSS)信号采样的位置,速度和时间(PVT)的方法,包括:
获取信号的同相和/或正交(I/Q)采样的来自一个或多个GNSS卫星的信号采样值;
获取I/Q采样的到达的初始估计的时间(TOA);
获取卫星星历数据,其中包括卫星的轨道和所述一个或多个GNSS卫星的时钟信息;
计算多普勒频率测量值和来自I/Q采样的一个或多个GNSS的码相位测量值;估算一个粗略PVT,粗略TOA,和来自多普勒频率测量值的粗略卫星信号传输时间(TOT),初始TOA,卫星星历数据;
决定相对于粗略TOA的精确的卫星信号传输时间(TOTs),并通过来自码相位测量值的粗略PVT,粗略TOTs,和卫星星历数据确定整数代码出现时间,产生完整的伪距测量值计算;其中使用GNSS PVT算法生成的完整的伪距测量值代替来自传统解码TOTs计算的伪距测量值。
2.根据权利要求1所述的方法,其特征在于,所述多普勒频率测量值和来自I/Q采样的一个或多个GNSS的码相位测量值的计算步骤采用多平台检测和估计的方法,其中每个阶段使用不同的采样长度,进一步包括:
检测卫星并确定粗略多普勒频率和来自I/Q采样数据的M毫秒粗略码相位,M为相干积分时间Tcoh与非相干积分时间Tncoh的乘积;
确定来自粗略多普勒频率和I/Q采样数据的2N毫秒值的多普勒频率测量值,2N>M,N为不小于1的整数;以及
确定来自粗略码相位的码相位测量值,精化多普勒频率,和I/Q采样数据的N毫秒值。
3.根据权利要求2的所述方法,其特征在于,所述检测卫星并确定粗略多普勒频率和来自I/Q采样数据的M毫秒粗略码相位的步骤是通过对I/Q采样数据进行相干和非相干积分进行。
4.根据权利要求2的所述方法,所述确定来自粗略多普勒频率和I/Q采样数据的2N毫秒值的多普勒频率测量值的步骤执行狭窄的频率在粗略多普勒频率周围搜索,所述粗略多普勒频率来自所述I/Q采样数据的2N毫秒值的子集,并且确定来自所述子集的精化多普勒频率测量值的最大相关值。
5.根据权利要求2的所述的方法,其特征在于,所述确定来自粗略码相位的码相位测量值,精化多普勒频率,和I/Q采样数据的N毫秒值的步骤使用一个预定义的自相关函数,模型化了C/A码上的特定前端的效果。
6.根据权利要求5的所述的方法,其特征在于,所述预定义的自相关函数是一个曲线,所述曲线拟合于一个特定的数学函数或一系列函数,模型化了C/A码上的特定前端的效果。
7.根据权利要求5或6的所述的方法,其特征在于,所述预定义的自相关函数拟合于相关值用以确定精化码相位和信号功率。
8.根据权利要求7的所述的方法,其特征在于,所述信号功率是由拟合的自相关函数的最大值估计的。
9.根据权利要求1至4任意一项所述的方法,其特征在于,所述一个粗略PVT,粗略TOA,和来自多普勒频率测量值的粗略卫星信号传输时间(TOT),初始TOA,卫星星历数据的估算步骤使用一个时间更新,并限制在最小二乘算法,用以提高粗略PVT和粗略TOTs的收敛域。
10.根据权利要求1至4任意一项所述的方法,其特征在于,所述决定相对于粗略TOA的精确的卫星信号传输时间(TOTs),并通过来自码相位测量值的粗略PVT,粗略TOTs,和卫星星历数据确定整数代码出现时间,产生完整的伪距测量值计算;其中使用GNSS PVT算法生成的完整的伪距测量值代替来自传统解码TOTs计算的伪距测量值的确定步骤使用一个共同的估计偏差来确定整数代码出现时间。
11.根据权利要求1至4任意一项所述的方法,其特征在于,所述决定相对于粗略TOA的精确的卫星信号传输时间(TOTs),并通过来自码相位测量值的粗略PVT,粗略TOTs,和卫星星历数据确定整数代码出现时间,产生完整的伪距测量值计算;其中使用GNSS PVT算法生成的完整的伪距测量值代替来自传统解码TOTs计算的伪距测量值的确定步骤采用粗略TOT误差抑制来使用邻近的卫星,以减少误差的粗略TOTs和粗略的TOA。
12.根据权利要求1至4任意一项所述的方法,其特征在于,所述决定相对于粗略TOA的精确的卫星信号传输时间(TOTs),并通过来自码相位测量值的粗略PVT,粗略TOTs,和卫星星历数据确定整数代码出现时间,产生完整的伪距测量值计算;其中使用GNSS PVT算法生成的完整的伪距测量值代替来自传统解码TOTs计算的伪距测量值的确定步骤采用粗调位置误差抑制来使用卫星菊花链(satellitedaisy chain),以减少由于在粗略调位置的误差导致的误差的整数代码出现时间的概率。
CN201280037984.XA 2011-07-29 2012-07-26 一种用于低功耗和低成本gnss接收机的系统,方法和计算机程序 Active CN103842846B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161513149P 2011-07-29 2011-07-29
US61/513,149 2011-07-29
PCT/CA2012/000699 WO2013016800A1 (en) 2011-07-29 2012-07-26 System, method, and computer program for a low power and low cost gnss receiver

Publications (2)

Publication Number Publication Date
CN103842846A CN103842846A (zh) 2014-06-04
CN103842846B true CN103842846B (zh) 2016-10-26

Family

ID=47628573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280037984.XA Active CN103842846B (zh) 2011-07-29 2012-07-26 一种用于低功耗和低成本gnss接收机的系统,方法和计算机程序

Country Status (3)

Country Link
US (1) US9116234B2 (zh)
CN (1) CN103842846B (zh)
WO (1) WO2013016800A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9025640B2 (en) * 2012-06-18 2015-05-05 The United States Of America As Represented By The Secretary Of The Air Force Global navigation satellite system signal decomposition and parameterization algorithm
US9057780B2 (en) * 2013-04-18 2015-06-16 California Institute Of Technology Real-time and post-processed orbit determination and positioning
EP2811320A1 (en) * 2013-06-05 2014-12-10 Astrium Limited Receiver and method for direct sequence spread spectrum signals
US10671923B2 (en) * 2013-12-20 2020-06-02 Gemtrex Inc. Genetic method for the tracking of time varying signals
CN103869345B (zh) * 2014-01-01 2016-03-30 深圳北斗国芯科技有限公司 用于北斗卫星导航定位系统的联合时间同步与定位方法
CN104020482B (zh) * 2014-06-17 2017-05-31 北方工业大学 一种高动态卫星导航接收机精确测速方法
CN104297761B (zh) * 2014-09-10 2017-07-07 中国科学院光电研究院 基于非同时接收的定位方法
CN107430182A (zh) * 2015-02-09 2017-12-01 同心真时公司 用于确定信号源位置的无线电接收器
CA2978714C (en) 2015-03-06 2019-04-02 Gatekeeper Systems, Inc. Low-energy consumption location of movable objects
US9731744B2 (en) 2015-09-04 2017-08-15 Gatekeeper Systems, Inc. Estimating motion of wheeled carts
US10001541B2 (en) 2015-09-04 2018-06-19 Gatekeeper Systems, Inc. Magnetometer and accelerometer calibration for cart navigation system
CN106646548B (zh) * 2016-10-27 2020-03-10 易通共享技术(广州)有限公司 一种多模的超快速、低功耗的定位接收机系统及方法
EP3593333A4 (en) 2017-03-08 2021-01-20 Gatekeeper Systems, Inc. NAVIGATION SYSTEMS FOR WHEEL CARTS
CN107045132A (zh) * 2017-04-28 2017-08-15 上海华测导航技术股份有限公司 一种获取天线相位中心参数的系统
CN107045133A (zh) * 2017-04-28 2017-08-15 上海华测导航技术股份有限公司 一种获取天线相位中心参数的方法
EP3518003B1 (en) 2018-01-25 2021-03-24 Centre National d'Etudes Spatiales Self-assisted fast acquisition and first fix for a standalone gnss receiver
US10659941B2 (en) 2018-03-13 2020-05-19 Cypress Semiconductor Corporation Communicating packets in a mesh network
CN109444935B (zh) * 2018-10-17 2022-10-21 桂林电子科技大学 一种低采样率的多普勒周跳探测和修复方法
CN109581427B (zh) * 2018-11-16 2020-06-30 南京航空航天大学 基于微小卫星自主定轨的联合故障检测方法
CN111562600B (zh) * 2020-05-21 2023-06-30 上海市计量测试技术研究院 一种精度校准系统及校准方法
US11821993B2 (en) * 2020-06-01 2023-11-21 Onenav, Inc. Modernized consumer grade GNSS secondary code acquisition and signal tracking
EP4174527A1 (en) * 2021-10-27 2023-05-03 Semtech Corporation Global navigation satellite system receiver
CN114488230B (zh) * 2022-01-29 2024-05-24 清华大学 一种多普勒定位方法、装置、电子设备和存储介质
CN116819574B (zh) * 2023-08-29 2023-11-17 极诺星空(北京)科技有限公司 一种gnss定位掩星反射接收机一体化测试方法和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1833178A (zh) * 2003-08-05 2006-09-13 洛克达公司 在位置网络内提供辅助数据的系统和方法
CN101971046A (zh) * 2007-11-25 2011-02-09 天空标注器有限责任公司 导航数据获取和信号后处理

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6642884B2 (en) * 2000-05-08 2003-11-04 Sigtec Navigation Pty Ltd. Satellite-based positioning system receiver for weak signal operation
US6417801B1 (en) 2000-11-17 2002-07-09 Global Locate, Inc. Method and apparatus for time-free processing of GPS signals
US7133772B2 (en) 2002-07-30 2006-11-07 Global Locate, Inc. Method and apparatus for navigation using instantaneous Doppler measurements from satellites
US7463979B2 (en) * 2003-08-28 2008-12-09 Motorola, Inc. Method and apparatus for initializing an approximate position in a GPS receiver
US7961717B2 (en) 2005-05-12 2011-06-14 Iposi, Inc. System and methods for IP and VoIP device location determination
FR2943868A1 (fr) * 2009-03-27 2010-10-01 Thales Sa Procedes de calcul de la position d'un recepteur gnss a partir de pseudo-mesures bi et mono frequences
EP2548049A4 (en) * 2010-01-27 2013-10-02 Baseband Technologies Inc SYSTEM, METHOD AND COMPUTER PROGRAM FOR FIRST POSITIONING TIME FOR GNSS RECEIVER
GB201107849D0 (en) * 2011-05-11 2011-06-22 Cambridge Silicon Radio Ltd Cooperative positioning

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1833178A (zh) * 2003-08-05 2006-09-13 洛克达公司 在位置网络内提供辅助数据的系统和方法
CN101971046A (zh) * 2007-11-25 2011-02-09 天空标注器有限责任公司 导航数据获取和信号后处理

Also Published As

Publication number Publication date
WO2013016800A1 (en) 2013-02-07
CN103842846A (zh) 2014-06-04
US20150036724A1 (en) 2015-02-05
US9116234B2 (en) 2015-08-25
WO2013016800A4 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
CN103842846B (zh) 一种用于低功耗和低成本gnss接收机的系统,方法和计算机程序
CN100377507C (zh) 在gps接收机中确定时间
CN103443647B (zh) 无需广播星历表的定位方法和装置
CN101371159B (zh) 组合使用本地定位系统、本地rtk系统与区域、广域或全球载波相位定位系统的方法
CN100397094C (zh) 卫星定位系统接收机中的时间确定及其方法
EP1301803B1 (en) Signal detector and method employing a coherent accumulation system to correlate non-uniform and disjoint sample segments
US6714158B1 (en) Method and system for data detection in a global positioning system satellite receiver
US8279116B2 (en) Processing received satellite radio signals
CN102109604B (zh) Gps/galileo导航基带处理芯片及导航接收机
CN102193095B (zh) 全球导航卫星系统接收器的定位方法
CN101441259B (zh) 一种全球定位系统接收机的自辅助跟踪系统及其跟踪方法
CN102033236B (zh) 一种卫星导航位置速度联合估计方法
WO2011091512A9 (en) System, method and computer program for ultra fast time to first fix for a gnss receiver
CN101535832A (zh) 通过扩展sps轨道信息进行定位的方法和装置
CN102809750A (zh) 利用预测的混合式卫星定位
CN102540228A (zh) 一种单频gps高精度单点定位系统及方法
WO2010058266A2 (en) Mobile unit&#39;s position measurement apparatus and mobile unit&#39;s position measurement method
WO2010123603A1 (en) Method and apparatus for providing reliable extended ephemeris quality indicators
EP2872922A1 (en) Reduced sampling low power gps
CN106646548A (zh) 一种多模的超快速、低功耗的定位接收机系统及方法
Beuchert et al. Snappergps: Algorithms for energy-efficient low-cost location estimation using gnss signal snapshots
CN101726723B (zh) 对全球定位系统接收机观测量进行预处理的方法
CN102162853B (zh) 接收信号累计方法和接收装置
MacLean Development of a miniature, long-duration GPS tag
Realini free and constrained relative kinematic positioning with low cost receivers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant