CN103837837B - 一种钠硫电池批量检测方法 - Google Patents

一种钠硫电池批量检测方法 Download PDF

Info

Publication number
CN103837837B
CN103837837B CN201410126782.3A CN201410126782A CN103837837B CN 103837837 B CN103837837 B CN 103837837B CN 201410126782 A CN201410126782 A CN 201410126782A CN 103837837 B CN103837837 B CN 103837837B
Authority
CN
China
Prior art keywords
sodium
checked
sulphur battery
real
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410126782.3A
Other languages
English (en)
Other versions
CN103837837A (zh
Inventor
张宇
茅雁
楼晓东
徐敏
方陈
刘隽
时珊珊
周日生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Shanghai Electric Power Co Ltd
East China Power Test and Research Institute Co Ltd
Original Assignee
State Grid Shanghai Electric Power Co Ltd
Shanghai Electric Sodium Sulfur Energy Storage Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Shanghai Electric Power Co Ltd, Shanghai Electric Sodium Sulfur Energy Storage Technology Co Ltd filed Critical State Grid Shanghai Electric Power Co Ltd
Priority to CN201410126782.3A priority Critical patent/CN103837837B/zh
Publication of CN103837837A publication Critical patent/CN103837837A/zh
Application granted granted Critical
Publication of CN103837837B publication Critical patent/CN103837837B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Secondary Cells (AREA)

Abstract

本发明公开了一种钠硫电池批量检测方法,包括连接步骤:将保温箱内的待检钠硫电池连接成检测回路;加热步骤:将所述检测回路加热至待检钠硫电池的工作温度;充放电步骤:对所述检测回路进行四次放电和充电的循环,并测量所述检测回路中的各个待检钠硫电池的实时电压和实时容量;定位步骤:在所述保温箱内找出温度大于待检钠硫电池工作温度上限的异常测温点;判断步骤:依据所述异常测温点周围的四个待检钠硫电池的实时电压,找出损坏的待检钠硫电池,并将该待检钠硫电池隔离出所述检测回路;分类步骤:按照容量对待检钠硫电池进行分类,并将完成分类的待检钠硫电池隔离出所述检测回路。

Description

一种钠硫电池批量检测方法
技术领域
本发明涉及化学储能领域的一种钠硫电池批量检测方法。
背景技术
钠硫电池批量检测是一种通过对多数待检钠硫电池实施充电、放电过程从而判断钠硫电池性能的方法,相对于单个钠硫检测,虽然较大提高了效率,但是带来的最大问题是参与检测的同一批钠硫电池需要在相同的检测条件下完成,然而实际上钠硫电池的制备过程中难以避免的一些差异造成了钠硫电池性能上的差异,所有参与检测的钠硫电池不可能自始至终都在完全一样的条件下完成,比如一些钠硫电池在经过一定容量的充放电后超出了实际应用中规定的电压范围,而其他的电池可以继续检测。同时,较大量的电池集中在一起检测,难以避免少数钠硫电池会出现故障,可能会引起局部的温升等情况,如何解决局部温升对整体检测的影响,也是批量检测中所要重点关注的问题。
发明内容
本发明的目的是为了克服现有技术的不足,提供一种钠硫电池批量检测方法,其可以有效解决钠硫电池批量检测中局部温升对于整体检测的影响。
实现上述目的的一种技术方案是:一种钠硫电池批量检测方法,包括下列步骤:
连接步骤:将位于保温箱内的待检钠硫电池连接成检测回路;
加热步骤:将所述检测回路加热至待检钠硫电池的工作温度并进行保温;
充放电步骤:对所述检测回路进行四次放电和充电的循环,并对所述检测回路中的各个待检钠硫电池的实时电压和实时容量进行测量;
定位步骤:在所述保温箱中,在任意四个相邻的待检钠硫电池之间设置一个测温点,并找出温度大于待检钠硫电池工作温度上限的异常测温点;
判断步骤:将所述异常测温点周围的四个待检钠硫电池的实时电压与该时间点的标准电压进行比较,若四个待检钠硫电池中,有任意一个待检钠硫电池的实时电压低于该时间点的标准电压的98%,则判定该待检钠硫电池损坏,并将该待检钠硫电池隔离出所述检测回路;
分类步骤:对在充放电步骤的任一放电和充电循环中,对于所述检测回路中实时电压达到该循环的电压上限或者电压下限的待检钠硫电池按照实时容量进行分类,并将完成分类的待检钠硫电池隔离出所述检测回路。
进一步的,所述判断步骤后,终止对该异常测温点进行测温,并终止对损坏的待检钠硫电池的实时电压和实时容量进行测量。
进一步的,所述分类步骤中,对完成分类的待检钠硫电池,终止测量该待检钠硫电池的实时电压和实时容量。
进一步的,在所述判断步骤和所述分类步骤中,所述充放电步骤中断。
进一步的,所述连接步骤中将所述保温箱中的待检钠硫电池串联。
进一步的,所述判断步骤和所述分类步骤是通过一个控制器进行的,所述控制器上设有与所述保温箱内各个待检钠硫电池对应的指示灯,所述判断步骤后,与损坏的待检钠硫电池对应的指示灯熄灭;所述分类步骤前,与需要进行分类的待检钠硫电池对应的指示灯闪烁,分类步骤后,该指示灯熄灭。
再进一步的,所述判断步骤中,各个时间点的标准电压存储在内置于所述控制器的一个存储器中,所述时间点是通过内置于所述控制器的一个计时器确定的。
进一步的,所述加热步骤中,在4000min内将所述检测回路加热到330℃,并在300~350℃保温2~5h。
进一步的,充放电步骤中,
第一循环,依次以2A、6A、10A和20A恒电流对检测回路中各个待检钠硫电池进行放电,且放电容量分别为20Ah、90Ah、210Ah和300Ah或实时电压下降到截止电压1.5V,每次放电后都要静置,然后再以20A恒电流充电,且充电容量为520Ah或实时电压上升到截止电压2.5V,静置待处理;
第二循环,以40A恒电流放电且放电容量为520Ah或实时电压达到截止电压1.2V,静置后再以20A恒电流充电且充电容量为520Ah或实时电压上升到截止电压2.5V,静置待处理;。
第三循环,放电步骤与第二循环的放电步骤相同,放电完并静置后,以40A恒电流充电且充电容量为520Ah或实时电压上升到2.8V,静置待处理;
第四循环,以80A恒电流放电且放电容量为520Ah或实时电压下降至1.0V,再以40A恒电流充电且充电容量为520Ah或实时电压上升至2.8V,静置待处理。
再进一步的,充放电步骤中,第一循环的电压上限为2.8V,电压下限为1.2V,第二循环的电压上限为2.8V,电压下限为1.2V;第三循环中允许的电压上限为2.8V,电压下限为1.2V;第四循环的电压上限为2.8V,电压下限为1.0V。
采用了本发明的一种钠硫电池批量检测方法的技术方案,即包括连接步骤:将保温箱内的待检钠硫电池连接成检测回路;加热步骤:将所述检测回路加热至待检钠硫电池的工作温度;充放电步骤:对所述检测回路进行四次放电和充电的循环,并测量所述检测回路中的各个待检钠硫电池的实时电压和实时容量;定位步骤,在所述保温箱内找出温度大于待检钠硫电池工作温度上限的异常测温点;判断步骤:依据所述异常测温点周围的四个待检钠硫电池的实时电压,找出损坏的待检钠硫电池,并将该待检钠硫电池隔离出所述检测回路;分类步骤:按照容量对待检钠硫电池进行分类,并将完成分类的待检钠硫电池隔离出所述检测回路的技术方案。其技术效果是:钠硫电池批量检测中局部温升对于整体检测的影响,提高钠硫电池批量检测的准确率。
附图说明
图1为本发明的一种钠硫电池批量检测方法所用的保温箱外部结构的立体示意图。
图2为本发明的一种钠硫电池批量检测方法所用的保温箱内部结构的俯视图。
图3为本发明的一种钠硫电池批量检测方法所用的保温箱的箱体结构示意图。
图4为本发明的一种钠硫电池批量检测方法所用的保温箱的控制系统的结构示意图。
图5为本发明的一种钠硫电池批量检测方法的流程图。
具体实施方式
请参阅图1至图5,本发明的发明人为了能更好地对本发明的技术方案进行理解,下面通过具体地实施例,并结合附图进行详细地说明:
请参阅图1至图5,本发明的一种钠硫电池批量检测方法所使用的保温箱,包括箱盖2,箱体1和底座3。
箱体1的骨架为中空的立方形不锈钢体,即箱体1包括从外向内依次设置的外不锈钢槽11、保温材料层12和内不锈钢槽13。内不锈钢槽13的内表面设有内防护层131,内不锈钢槽的13的外表面设有外防护层132。内防护层131和外防护层132所用的材料均为云母。内不锈钢槽13的外表面的外防护层132与保温材料层12之间设有加热板14。由于内不锈钢槽13和外不锈钢槽11具有前、后、左、右、下五个面,因此内不锈钢槽13的前、后、左、右、下五个面各设一块加热板14,因此,箱体1上共有五块加热板14,五块加热板14分别设有独立的温度控制电路141。通过在外内不锈钢槽13的内外表面对应设置材料为云母的内防护层131和外防护层132,即使箱体1内部发生剧烈反应,也能保证箱体1内化学物质不外泄,保证箱体1外部以及加热板14的安全,同时对箱体1起到绝缘作用。保温材料层12起到减小箱体1内热量外泄的作用,外不锈钢槽12外壁通过喷漆防腐进行处理。
保温箱内均布有十二个竖直设置的不锈钢筒41,十二个不锈钢套筒41呈三行四列矩阵排列。每个不锈钢筒41内设有一个热电偶44,因此保温箱内一共十二个热电偶44。十二个不锈钢筒41对十二个热电偶44一一对应地起到保护的作用。
不锈钢套筒41的圆周上均布有四个卡槽(图中未显示),该卡槽内可插入云母板42,因此保温箱内,任意相邻的两个不锈钢套筒41之间通过一块云母板42连接,不锈钢套筒41与箱体1的内不锈钢槽13之间也通过云母板42连接。这样,通过十二个不锈钢套筒41和三十一块云母板42的相互嵌套,将保温箱内的空间分隔为呈四行五列矩阵排列的二十个矩形的小室4,每个小室4容纳一个待检钠硫电池。云母板42起到对相邻小室4进行绝缘的作用。
每个小室4内放置一个刚玉管43,刚玉管43外填充石英砂,刚玉管43内放置待检钠硫电池,由于云母板42的隔断作用,每个小室4内的石英砂或者待检钠硫电池等可在不影响其他小室4的条件下,自由处理,方便自由拆卸和装配。
该保温箱还包括一个控制系统,该控制系统除了包括热电偶44,在箱体1外侧安装的数据采集器5、控制器6、充放电装置7、上位机8、作为回路连接装置的电流线接线板9。上位机8连接箱体1的五块加热板14上的温度控制电路141,对五块加热板14表面的温度进行控制。箱体1内的十二个热电偶44对应通过一根热电偶线连接数据采集器5,数据采集器5通过该十二根热电偶线,对应采集十二个热电偶44所测量到的箱体1内的温度。十二根热电偶线是通过箱体1上的热电偶线孔101引出箱体1外的。
箱体1内的二十个待检钠硫电池的正极和负极均对应通过一根电压线连接数据采集器5,因此数据采集器5通过四十根电压线连接箱体1内的二十个待检钠硫电池。数据采集器5通过其与二十个待检钠硫电池之间的四十根电压线,实时采集二十个待检钠硫电池的实时电压和实时容量。四十根电压线是通过箱体1上的电压线孔102引出箱体1外,使四十根电压线与数据采集器5连接的。
箱体1内的二十个待检钠硫电池的正极和负极上各连接有一根电流线,电流线通过箱体1上的电流线出线孔103引出箱体1外。本实施例中一共有四十根电流线。电流线出线孔103的尺寸可以根据保温箱内的待检钠硫电池的数量进行调整,但是至少应大于电压线孔101和热电偶线孔102的尺寸。电流线接线板9将电流线出线孔103覆盖。电流线接线板9为一个用于将箱体1内的二十个待检钠硫电池连接成为检测回路的回路连接装置。二十个待检钠硫电池通过电流线接线板9上的接线柱以及四十根电流线连接成为一个检测回路,该检测回路用于与充放电装置7连接。本实施例中,该检测回路是一个串联回路。
控制器6连接在电流线接线板9与数据采集器5之间,控制器6的作用在于:通过控制电流线接线板9上各个接线柱与所述检测回路中各个待检钠硫电池之间的连接,将损坏的待检钠硫电池,或者放电至电压下限,或者充电至电压上限,从而检测完成的待检钠硫电池隔离出检测回路,使该检测回路与充放电装置7之间断开。同时,控制器6上还设有与箱体1内各个待检钠硫电池对应的指示灯,提示待检钠硫电池在充放电过程中的状态。
上位机8还连接充放电装置7、数据采集器5和控制器6,用于控制充放电装置7向所述检测回路中各个待检钠硫电池的充电电流的大小,同时使该检测回路与充放电装置7之间重新连接,以及将数据采集器5采集的各个待检钠硫电池的实施电压和实时容量显示出来。
本发明的一种钠硫电池批量检测方法包括:
连接步骤:将位于保温箱内的待检钠硫电池连接成检测回路;
加热步骤:通过上位机8控制箱体1上五块加热板14上的温度控制电路141,控制五块加热板14表面的温度,使五块加热板表面的温度在4000min内上升到330℃,即待检钠硫电池的工作温度,并保温2~5h,使五块加热板14表面的温度维持在300~350℃之间,从而使箱体1内的温度维持在300~350℃,使箱体1内检测回路中的待检钠硫电池充分活化。
充放电步骤:通过充放电装置7,对箱体1内的检测回路进行四个循环的放电和充电。
定位步骤:数据采集器5定时采集所有待检钠硫电池的实时电压、实时容量以及十二个热电偶44所采集到的实时温度,传递给控制器6和上位机8。每个热电偶44作为一个测温点。
当控制器6发现箱体1内任意一个热电偶44所检测到的实时温度超过了350℃,即待检钠硫电池工作温度的上限,则判定箱体1内出现超温故障,控制器6控制电流线接线板9,并断开所述检测回路与充放电装置7的连接,充放电装置7暂停向检测回路充放电,并将该热电偶44隔离,即数据采集器5不再对该热电偶44检测的温度进行采集。数据采集器5采集该热电偶44周围的四个待检钠硫电池的实时电压。通过热电偶44先进行温度的采集,可以先对不合格待检钠硫电池进行预先的定位,减少待检钠硫电池被误判为不合格的可能性。
控制器6内设有存储器61和计时器62,存储器61中存有充放电过程中各个时间点的待检钠硫电池标准电压,而计时器62对充放电过程进行计时,充放电装置7暂停充放电,计时器62暂停计时。每次充电或者放电完成,计时器62重新开始计时。控制器6逐个比较所检测到的实时温度超过350℃的热电偶44,即异常测温点周围的四个待检钠硫电池的实时电压和存储器61内存储的该时间点的待检钠硫电池标准电压,所述的时间点是通过计时器62确定的。若在该时间点,四个待检钠硫电池中有一或多个待检钠硫电池的实时电压低于该时间点代价钠硫电池标准电压的98%,比如该时间点的待检钠硫电池标准电压为2.1V,而待检钠硫电池实时电压只有2.0V,则判定该待检钠硫电池损坏不合格。控制器6通过控制电流线接线板9,将被判定为不合格的待检钠硫电池隔离出检测回路。同时控制器6上表示该待检钠硫电池的指示灯熄灭。上位机8通过控制器6控制电流线接线板9,将检测回路重新与充放电装置7连通,重启充放电装置7对检测回路的充放电。
分类步骤:在充放电过程中,对于未损坏的任意一个待检钠硫电池,当实时电压达到了规定的电压上限或者电压下限,控制器6控制电流线接线板9,断开所述检测回路与充放电装置7的连接,充放电装置7暂停向检测回路充放电,控制器6上与该待检钠硫电池对应的指示灯闪烁,测试人员根据该待检钠硫电池的实时容量,在上位机8上对该待检钠硫电池进行充分类。分类完成,工作人员通过上位机8,使控制器6控制电流线接线板9,将完成分类的待检钠硫电池隔离出所述检测回路,并屏蔽该待检钠硫电池的实时电压,即数据采集器5不再对该待检钠硫电池进行数据采集。同时使控制器6上表示该待检钠硫电池的指示灯熄灭,同时上位机8通过控制器6控制电流线接线板9,将检测回路重新与充放电装置7连通,重启充放电装置7对检测回路的充放电。
本实施例中,四个充放电循环依次为:
第一循环,依次以2A,6A,10A和20A恒电流对检测回路中各个待检钠硫电池进行放电,且放电容量分别为20Ah、90Ah、210Ah和300Ah或实时电压下降到截止电压1.5V,每次放电后都要静置,然后再以20A恒电流充电,且充电容量为520Ah或实时电压上升到截止电压2.5V,静置待处理,第一循环中允许的电压上限为2.8V,电压下限为1.2V。电压上限和电压下限也存储在存储器61中。
第二循环,以40A恒电流放电且放电容量为520Ah或实时电压达到截止电压1.2V,静置后再以20A恒电流充电且充电容量为520Ah或实时电压上升到截止电压2.5V,静置待处理;第二循环中允许的电压上限为2.8V,电压下限为1.2V。
第三循环,放电步骤与第二循环的放电步骤相同,放电完并静置后,以40A恒电流充电且充电容量为520Ah或实时电压上升到2.8V,静置待处理;第三循环中允许的电压上限为2.8V,电压下限为1.2V。
第四循环,以80A恒电流放电且放电容量为520Ah或实时电压下降至1.0V,再以40A恒电流充电且充电容量为520Ah或实时电压上升至2.8V,静置待处理。第四循环中允许的电压上限为2.8V,电压下限为1.0V。
每次放电中每个未损坏,且未分类的待检钠硫电池都要满足放电容量达到每个步骤中的放电容量规定值,或者实时电压下降到每个步骤中规定的电压下限中的任意一项。每次充电中每个未损坏,且未分类的待检钠硫电池都满足充电容量达到每个步骤中的充电容量规定值,或者实时电压上升至每个步骤中规定的电压上限中的任意一项。
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求书范围内。

Claims (10)

1.一种钠硫电池批量检测方法,包括下列步骤:
连接步骤:将位于保温箱内的待检钠硫电池连接成检测回路;
加热步骤:将所述检测回路加热至待检钠硫电池的工作温度并进行保温;
充放电步骤:对所述检测回路进行四次放电和充电的循环,并对所述检测回路中的各个待检钠硫电池的实时电压和实时容量进行测量;
定位步骤:在所述保温箱中,在任意四个相邻的待检钠硫电池之间设置一个测温点,并找出温度大于待检钠硫电池工作温度上限的异常测温点;
判断步骤:将所述异常测温点周围的四个待检钠硫电池的实时电压与该时间点的标准电压进行比较,若四个待检钠硫电池中,有任意一个待检钠硫电池的实时电压低于该时间点的标准电压的98%,则判定该待检钠硫电池损坏,并将该待检钠硫电池隔离出所述检测回路;
分类步骤:对在充放电步骤的任一放电和充电循环中,对于所述检测回路中实时电压达到该循环的电压上限或者电压下限的待检钠硫电池按照实时容量进行分类,并将完成分类的待检钠硫电池隔离出所述检测回路。
2.根据权利要求1所述的一种钠硫电池批量检测方法,其特征在于:所述判断步骤后,终止对该异常测温点进行测温,并终止对损坏的待检钠硫电池的实时电压和实时容量进行测量。
3.根据权利要求1所述的一种钠硫电池批量检测方法,其特征在于:所述分类步骤中,对完成分类的待检钠硫电池,终止测量该待检钠硫电池的实时电压和实时容量。
4.根据权利要求1所述的一种钠硫电池批量检测方法,其特征在于:在所述判断步骤和所述分类步骤中,所述充放电步骤中断。
5.根据权利要求1所述的一种钠硫电池批量检测方法,其特征在于:所述连接步骤中将所述保温箱中的待检钠硫电池串联。
6.根据权利要求1所述的一种钠硫电池批量检测方法,其特征在于:所述判断步骤和所述分类步骤是通过一个控制器进行的,所述控制器上设有与所述保温箱内各个待检钠硫电池对应的指示灯,所述判断步骤后,与损坏的待检钠硫电池对应的指示灯熄灭;所述分类步骤前,与需要进行分类的待检钠硫电池对应的指示灯闪烁,分类步骤后,该指示灯熄灭。
7.根据权利要求6所述的一种钠硫电池批量检测方法,其特征在于:所述判断步骤中,各个时间点的标准电压存储在内置于所述控制器的一个存储器中,所述时间点是通过内置于所述控制器的一个计时器确定的。
8.根据权利要求1所述的一种钠硫电池批量检测方法,其特征在于:所述加热步骤中,在4000min内将所述检测回路加热到330℃,并在300~350℃保温2~5h。
9.根据权利要求1至8中任意一项所述的一种钠硫电池批量检测方法,其特征在于:充放电步骤中,
第一循环,依次以2A、6A、10A和20A恒电流对检测回路中各个待检钠硫电池进行放电,且放电容量分别为20Ah、90Ah、210Ah和300Ah或实时电压下降到截止电压1.5V,每次放电后都要静置,然后再以20A恒电流充电,且充电容量为520Ah或实时电压上升到截止电压2.5V,静置待处理;
第二循环,以40A恒电流放电且放电容量为520Ah或实时电压达到截止电压1.2V,静置后再以20A恒电流充电且充电容量为520Ah或实时电压上升到截止电压2.5V,静置待处理;
第三循环,放电步骤与第二循环的放电步骤相同,放电完并静置后,以40A恒电流充电且充电容量为520Ah或实时电压上升到2.8V,静置待处理;
第四循环,以80A恒电流放电且放电容量为520Ah或实时电压下降至1.0V,再以40A恒电流充电且充电容量为520Ah或实时电压上升至2.8V,静置待处理。
10.根据权利要求9所述的一种钠硫电池批量检测方法,其特征在于:充放电步骤中,第一循环的电压上限为2.8V,电压下限为1.2V,第二循环的电压上限为2.8V,电压下限为1.2V;第三循环中允许的电压上限为2.8V,电压下限为1.2V;第四循环的电压上限为2.8V,电压下限为1.0V。
CN201410126782.3A 2014-03-31 2014-03-31 一种钠硫电池批量检测方法 Active CN103837837B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410126782.3A CN103837837B (zh) 2014-03-31 2014-03-31 一种钠硫电池批量检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410126782.3A CN103837837B (zh) 2014-03-31 2014-03-31 一种钠硫电池批量检测方法

Publications (2)

Publication Number Publication Date
CN103837837A CN103837837A (zh) 2014-06-04
CN103837837B true CN103837837B (zh) 2016-03-23

Family

ID=50801541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410126782.3A Active CN103837837B (zh) 2014-03-31 2014-03-31 一种钠硫电池批量检测方法

Country Status (1)

Country Link
CN (1) CN103837837B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155614B (zh) * 2014-08-26 2017-03-22 国网上海市电力公司 一种钠硫电池电解质陶瓷管寿命检测设备
CN106443494B (zh) * 2016-12-07 2019-03-26 上海电气钠硫储能技术有限公司 一种能量型钠硫电池加速测试方法
CN106707182B (zh) * 2016-12-07 2019-03-19 上海电气钠硫储能技术有限公司 一种功率型钠硫电池加速测试方法
CN106772088A (zh) * 2016-12-28 2017-05-31 浙江威星智能仪表股份有限公司 一种批量自动检测锂亚硫酰氯电池的工装电路
CN108414861B (zh) * 2018-03-07 2020-10-02 宁波弘讯科技股份有限公司 电热故障自检方法、装置、系统及计算机可读存储介质
CN113484363B (zh) * 2021-06-29 2023-05-23 重庆长安新能源汽车科技有限公司 模拟控制器内部发热的试验装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1145695A (zh) * 1994-12-26 1997-03-19 雅马哈发动机株式会社 2次电池的充电方法与充电器
CN102288921A (zh) * 2011-09-05 2011-12-21 中国科学院上海硅酸盐研究所 电池批量检测方法及系统
CN103121015A (zh) * 2012-12-12 2013-05-29 上海电气钠硫储能技术有限公司 一种单体钠硫电池的活化筛选方法
CN203350419U (zh) * 2013-05-24 2013-12-18 上海汽车集团股份有限公司 用于检测蓄电池的电池剩余容量的检测设备、蓄电池及汽车

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597208B2 (ja) * 1989-11-15 1997-04-02 株式会社日立製作所 ナトリウム―硫黄電池の残存容量推定方法
JPH04286873A (ja) * 1991-03-14 1992-10-12 Ngk Insulators Ltd 故障ナトリウム−硫黄単電池検出方法
JP2008010295A (ja) * 2006-06-29 2008-01-17 Hokuriku Electric Power Co Inc:The 二次電池の保温方法及び保温装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1145695A (zh) * 1994-12-26 1997-03-19 雅马哈发动机株式会社 2次电池的充电方法与充电器
CN102288921A (zh) * 2011-09-05 2011-12-21 中国科学院上海硅酸盐研究所 电池批量检测方法及系统
CN103121015A (zh) * 2012-12-12 2013-05-29 上海电气钠硫储能技术有限公司 一种单体钠硫电池的活化筛选方法
CN203350419U (zh) * 2013-05-24 2013-12-18 上海汽车集团股份有限公司 用于检测蓄电池的电池剩余容量的检测设备、蓄电池及汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钠硫储能电池管理系统研究;王中昂;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20121015(第10期);第1-56页 *

Also Published As

Publication number Publication date
CN103837837A (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
CN103837837B (zh) 一种钠硫电池批量检测方法
Kong et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs
CN106505693B (zh) 低温充电控制方法
CN103869258B (zh) 一种钠硫电池批量检测系统
CN107728078A (zh) 锂离子电池析锂的检测方法
CN106646060B (zh) 超级电容可靠性测试系统及温度不均衡测试方法
CN108646195A (zh) 一种电池仿真模拟测试机及其控制方法
CN205120935U (zh) 一种锂离子电池温度综合性能测试系统
CN103293481A (zh) 一种锂离子电池自放电快速检测方法
CN202995453U (zh) 新能源汽车电池管理采集子系统
CN204287442U (zh) 一种电能表用电池钝化检测及钝化消除电路
CN107462838A (zh) 一种锂离子动力电池模组虚焊检测方法
CN105428741B (zh) 一种锂离子电池充电方法
CN104269574A (zh) 一种电池组分选方法
CN104122884A (zh) 一种电池管理系统的模拟测试装置
CN201829585U (zh) 一种可拆卸的电池组装置
CN104614439B (zh) 一种基于电场指纹法的无损检测装置及检测方法
CN103337669A (zh) 一种电动汽车动力电池的二次利用方法
CN103018682A (zh) 一种电池系统热场测试及分析处理方法
CN103894350A (zh) 圆柱锂电池的分容筛选配组方法
CN103869259A (zh) 一种钠硫电池批量检测用保温箱
CN105742729A (zh) 一种锂离子电池在线安全预警方法
CN105589045A (zh) 一种并联电池组过温断路检测方法
CN104901409A (zh) 一种电池组低压充电的实现装置
CN205543102U (zh) 一种二次电池浸润程度在线检测及化成集成装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200901

Address after: No.171 Handan Road, Pudong New Area, Shanghai, 200122

Co-patentee after: EAST CHINA ELECTRIC POWER RESEARCH INSTITUTE Co.,Ltd.

Patentee after: STATE GRID SHANGHAI MUNICIPAL ELECTRIC POWER Co.

Address before: 200122 Shanghai City, Pudong New Area source deep road, No. 1122

Co-patentee before: SHANGHAI ELECTRIC SODIUM SULFUR ENERGY STORAGE TECHNOLOGY Co.,Ltd.

Patentee before: STATE GRID SHANGHAI MUNICIPAL ELECTRIC POWER Co.