CN103823275B - 基于柔性铰链的自适应光纤准直器 - Google Patents

基于柔性铰链的自适应光纤准直器 Download PDF

Info

Publication number
CN103823275B
CN103823275B CN201410115959.XA CN201410115959A CN103823275B CN 103823275 B CN103823275 B CN 103823275B CN 201410115959 A CN201410115959 A CN 201410115959A CN 103823275 B CN103823275 B CN 103823275B
Authority
CN
China
Prior art keywords
end cap
collimating apparatus
optical fiber
collimation lens
flexible hinge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410115959.XA
Other languages
English (en)
Other versions
CN103823275A (zh
Inventor
支冬
马阎星
司磊
王小林
周朴
刘磊
许晓军
陈金宝
刘泽金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201410115959.XA priority Critical patent/CN103823275B/zh
Publication of CN103823275A publication Critical patent/CN103823275A/zh
Application granted granted Critical
Publication of CN103823275B publication Critical patent/CN103823275B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本发明涉及一种基于柔性铰链的自适应光纤准直器。将可连接光纤端帽固定在端帽持具上,利用柔性铰链将持端帽具同准直器底座连接起来。压电陶瓷一端紧贴端帽持具,另一端同准直器底座衔接,最后将光纤端帽输出端放置在准直透镜的焦点位置。利用压电陶瓷的逆压电效应,通过改变压电陶瓷驱动电压实现对光纤激光倾斜像差的快速高精度控制。

Description

基于柔性铰链的自适应光纤准直器
技术领域
本发明涉及一种光纤准直器结构,尤其是一种基于柔性铰链的自适应光纤准直器。
背景技术
光束的倾斜控制对于稳定光束轴向位置十分重要,在天文观测、激光通信、激光雷达、光电跟瞄以及阵列光束相干合成等方面具有重要意义。特别在光纤激光阵列光束合成系统中,通过对光纤出射光束的倾斜控制可实现多光束共靶瞄准。共靶瞄准对光纤激光阵列光束的相干性控制起着至关重要的作用。在相应的光学系统中,需要能使光束受控地产生快速、小角度变化的器件。传统校正光束倾斜的方法是使用高速倾斜镜和自适应光纤光源准直器(AFOC)。高速倾斜镜的机械谐振频率相对较低,在对控制带宽要求较高的情况下不易实现。美国陆军实验室的L.Beresnev等人于2005年率先研制成功自适应光纤光源准直器,并将其应用于阵列光束的相干合成实验,得到很好验证[L.A.BeresnevandM.A.Vorontsov,"Designofadaptivefiberopticscollimatorforfree-spacecommunicationlasertransceiver,"Proc.SPIE5895,58950R,58950R-7(2005)]。国内中科院光电技术研究所耿超等人在该结构的基础上进一步改进,并应用于多光束合成中,也取得了很好的实验效果[GengChao,"Experimentalinvestigationoncoherentbeamcomnbinationofathree-elementfiberarraybasedontarget-in-the-looptechnique,"ActaPhys.Sin.Vol.61,No.3(2012)034024]。目前世界上仅有此两家单位研制成功自适应光纤光源准直器,但基本结构一致,其原理均是通过直接控制光纤尖端在准直透镜焦平面的位置达到控制出射光束倾斜像差的效果。此种结构的自适应光纤光源准直器由于驱动器出力很小(通常小于10N),仅可驱动单根光纤,而光纤激光输出端面是尺寸仅为几十微米的纤芯,这就使得该自适应光纤准直器在承受高功率时输出端功率密度极高(目前最高报道的仅为百瓦级)[ChaoGengandBaoyinZhao,"1.5kWIncoherentBeamCombiningofFourFiberLasersUsingAdaptiveFiber-OpticsCollimators,"IEEEPHOTONICSTECHNOLOGYLETTERS,VOL.25,NO.13,JULY1,2013],因而很难实现更高功率(如kW级)光纤激光输出。目前大功率光纤激光输出端通常采用光纤端帽。光纤端帽是熔接在光纤尾端的石英晶体块,由于光纤端帽的尺寸远远大于光纤纤芯,因而使得光纤激光输出端面的功率密度大大降低,更易承受高功率光纤激光输出。然而传统自适应光纤准直器由于驱动器出力小,无法推动大质量的光纤端帽,因而无法应用于大功率光纤激光系统。因此设计一种控制光纤端帽的新型自适应光纤准直器结构成为了当前高功率下光纤激光倾斜控制领域亟待解决的问题。
发明内容
本发明要解决的技术问题是:提供一种基于柔性铰链的新型自适应光纤准直器的结构设计方法。该结构控制原理简单,控制精度高,出力大,可控制大功率输出的光纤端帽,与光纤放大器可实现自由装卸。
本发明的技术解决方案是:
基于柔性铰链结构和压电陶瓷高精度控制技术,通过调节光纤端帽在准直透镜焦平面的位置实现对出射光束的倾斜控制。
其特点在于:利用压电陶瓷的逆压电效应,通过改变压电陶瓷驱动电压实现对光纤激光倾斜像差的快速高精度控制。基于出力大的考虑,应选用叠堆型压电陶瓷,其采用多片压电陶瓷片粘结共烧而成,可以承受很大的压力,刚度大,出力可达几千牛顿。将可连接光纤端帽固定在持具底座上,利用柔性铰链将持具底座同准直器底座连接起来。柔性铰链作为一种小体积、无机械摩擦、无间隙、导向精度高和运动灵敏度高的传动结构,是新型自适应光纤准直器的良好选择。基于柔性铰链的自适应光纤准直器可根据不同需求设计不同结构,可分别满足一维及二维的小角度和大角度倾斜控制,如图1-图6所示。
本发明的基于柔性铰链的自适应光纤准直器,包括准直器底座1、端帽持具2、光纤端帽3、柔性铰链4、压电陶瓷5、准直透镜6,其中光纤端帽3与端帽持具2固定,端帽持具2与准直器底座1用柔性铰链4紧密连接,压电陶瓷5一端紧贴端帽持具2,另一端同准直器底座1衔接,最后将光纤端帽3输出端放置在准直透镜6的焦点位置。
具体调节过程为:光纤端帽3与端帽持具2用四个螺钉固定,压电陶瓷5一端紧贴端帽持具2,另一端同准直器底座1利用螺钉衔接,将装配好的准直器底座1放在准直透镜6的焦平面附近,将装配好的准直器底座连接上带有激光输出的光纤端帽3,通过精密调节将光纤端帽输出端调节在准直透镜6的焦点位置。
本发明的自适应光纤准直器另一种结构可实现大角度倾斜控制,包括准直器底座1、端帽持具2、光纤端帽3、柔性铰链4、压电陶瓷5、准直透镜6、支撑杆G、杠杆H,其中光纤端帽3与端帽持具2固定,端帽持具2与准直器底座1用柔性铰链4紧密连接,同时与杠杆H一端贴合紧密,压电陶瓷5一端紧贴杠杆H另一端,压电陶瓷(5)的另一端同准直器底座1衔接,最后将光纤端帽3输出端放置在准直透镜6的焦点位置;支撑杆G作为杠杆H的支点插入杠杆H内,并确保支撑杆G和杠杆H紧密结合。
具体调节过程为:光纤端帽3与端帽持具2用四个螺钉固定,端帽持具2与杠杆H贴合紧密且保证接触面光滑,压电陶瓷5一端紧贴杠杆H,另一端同准直器底座1利用螺钉衔接,将装配好的准直器底座1放在准直透镜6的焦平面附近,将装配好的准直器底座连接上带有激光输出的光纤端帽,通过精密调节将光纤端帽输出端调节在准直透镜6的焦点位置。
所述的准直器底座1由硬质材料加工而成,结构牢固稳定;
所述的端帽持具2由轻型硬质金属合金加工而成,重量小,结构坚固;
所述的光纤端帽3为高功率光纤端帽;
所述的柔性铰链4可以采用直梁型、簧片型结构,形状可以为Z型片或S型片,其应具有受力小位移大且弹性好的特点;
所述的压电陶瓷5采用叠堆型压电陶瓷,出力大,谐振频率高;
所述的准直透镜6为一般准直透镜,材料无特殊要求;
所述的支撑杆G主要应用在大角度倾斜控制系统中,用来提供杠杆的支点,应采用刚度极大的材料;
所述的杠杆H用来放大位移,应采用不易发生形变的刚度大的材料。
本发明实现光纤输出激光倾斜控制的过程如下:
将带有光纤激光输出的光纤端帽利用螺纹连接到自适应光纤准直器底座上,以二维大角度倾斜控制的自适应光纤准直器为例,如图7-8所示,调整输出激光端位于准直透镜焦点位置,且保证光纤激光输出端面位于透镜的焦平面上。通过调节施加在压电陶瓷上的电压,产生相应的位移变化量,通过杠杆传动结构,将位移放大,进而推动光纤端帽在准直透镜焦平面的相位方向上产生较大位移,光纤端帽的位置改变会使得出射激光经准直透镜后产生一倾斜角度为)的倾斜像差。其中)为出射光束在两垂直方向上的倾斜角度,满足下式:
式中分别为光纤端帽在准直透镜焦平面的两垂直方向上的位移,准直透镜焦距。因为远小于,故上式“”成立。通过此种方式便可实现光纤激光的倾斜控制。
采用本发明可以达到以下技术效果:
1、本发明提供了一种基于柔性铰链的新型自适应光纤准直器结构,通过压电陶瓷的响应实现对光纤激光倾斜像差的快速高精度控制。
2、本发明提供的基于柔性铰链的新型自适应光纤准直器结构,可以实现对光纤激光的一维和二维、小角度和大角度的倾斜控制。
3、本发明提供的基于柔性铰链的新型自适应光纤准直器结构具有与出力大、同光纤激光器或光纤放大器可自由装卸的优势。
4、本发明提供基于柔性铰链的新型自适应光纤准直器结构设计方法原理简单,操作方便,性能可靠,对实验环境和仪器设备没有特殊要求。
5、本发明提供基于柔性铰链的新型自适应光纤准直器结构适用于阵列光纤激光光束之间相干合成与非相干合成,及光纤通信、光束抖动控制等其它需要控制光纤激光倾斜像差的领域。
附图说明
图1一维小角度倾斜控制自适应光纤准直器系统整体图,
图2一维小角度倾斜控制自适应光纤准直器系统基座示意图,
图3二维小角度倾斜控制自适应光纤准直器系统整体图,
图4二维小角度倾斜控制自适应光纤准直器系统基座示意图,
图5二维大角度倾斜控制自适应光纤准直器系统整体图,
图6二维大角度倾斜控制自适应光纤准直器系统基座示意图,
图7二维大角度倾斜控制自适应光纤准直器系统X方向倾斜角度随施加电压变化曲线图,
图8二维大角度倾斜控制自适应光纤准直器系统Y方向倾斜角度随施加电压变化曲线图,
图9二维大角度倾斜控制自适应光纤准直器系统的相位随频率变化曲线图,
图10二维大角度倾斜控制自适应光纤准直器系统的幅值随频率变化曲线图。
具体实施方式
基于柔性铰链的小角度倾斜控制自适应光纤准直器系统包括准直器底座1、端帽持具2、光纤端帽3、柔性铰链4、压电陶瓷5、准直透镜6。其中光纤端帽3与端帽持具2固定,端帽持具2与准直器底座1用柔性铰链4紧密连接,压电陶瓷5一端紧贴端帽持具2,另一端同准直器底座1衔接,最后将光纤端帽3输出端放置在准直透镜6的焦点位置。
基于柔性铰链的大角度倾斜控制自适应光纤准直器系统包括准直器底座1、端帽持具2、光纤端帽3、柔性铰链4、压电陶瓷5、准直透镜6、支撑杆G、杠杆H。其中光纤端帽3与端帽持具2固定,端帽持具2与准直器底座1用柔性铰链4紧密连接,同时要与杠杆H贴合紧密,压电陶瓷5一端紧贴杠杆H,另一端同准直器底座1衔接,最后将光纤端帽3输出端放置在准直透镜6的焦点位置。
将带有光纤激光输出的光纤端帽利用螺纹连接到自适应光纤准直器的法兰盘上,以二维大角度倾斜控制的自适应光纤准直器为例,如图5所示,调整输出激光端位于准直透镜焦点位置,且保证光纤激光输出端面位于透镜的焦平面上。通过调节施加在压电陶瓷上的电压,产生相应的位移变化量,通过杠杆传动结构,将位移放大,进而推动光纤端帽在准直透镜焦平面的相位方向上产生较大位移,光纤端帽的位置改变会使得出射激光经准直透镜后产生一倾斜角度为)的倾斜像差。其中)为出射光束在两垂直方向上的倾斜角度,满足下式:
式中分别为光纤端帽在准直透镜焦平面的两垂直方向上的位移。因为远小于,故上式“”成立。通过此种方式便可实现光纤激光的倾斜控制。
本实验室根据以上设计制作了基于柔性铰链的各类新型自适应光纤准直器底座。并利用焦距为100mm的准直透镜对其进行倾斜角度和谐振频率测试,皆可达到预期效果。以二维大角度倾斜控制自适应光纤准直器为例,其测试得到的倾斜角度曲线如图7-8所示,X方向的倾斜角度控制范围可达0.6mrad,Y方向的倾斜角度控制范围可达0.54mrad。其谐振频率测试曲线如图9-10所示,通过相位和幅值随频率变化曲线可以看出其有效控制带宽在600Hz以上,在光纤通信、光束抖动等领域可实现对倾斜像差的动态控制。

Claims (8)

1.基于柔性铰链的自适应光纤准直器,包括准直器底座(1)、端帽持具(2)、光纤端帽(3)、柔性铰链(4)、压电陶瓷(5)、准直透镜(6),其特征在于,光纤端帽(3)与端帽持具(2)固定,端帽持具(2)与准直器底座(1)用柔性铰链(4)紧密连接,压电陶瓷(5)一端紧贴端帽持具(2),另一端同准直器底座(1)衔接,最后将光纤端帽(3)输出端放置在准直透镜(6)的焦点位置;
调节过程为:光纤端帽(3)与端帽持具(2)用四个螺钉固定,压电陶瓷(5)一端紧贴端帽持具(2),另一端同准直器底座(1)利用螺钉衔接,将装配好的准直器底座(1)放在准直透镜(6)的焦平面附近,将准直器底座连接上带有激光输出的光纤端帽(3),通过精密调节将光纤端帽输出端调节在准直透镜(6)的焦点位置;
通过调节施加在压电陶瓷上的电压,产生相应的位移变化量,通过杠杆传动结构,将位移放大,进而推动光纤端帽在准直透镜焦平面的相位方向上产生较大位移,光纤端帽的位置改变会使得出射激光经准直透镜后产生一倾斜角度为的倾斜像差,其中为出射光束在两垂直方向上的倾斜角度,满足下式:
式中分别为光纤端帽在准直透镜焦平面的两垂直方向上的位移,准直透镜焦距。
2.根据权利要求1所述的基于柔性铰链的自适应光纤准直器,其特征在于,另一种结构可实现大角度倾斜控制,包括准直器底座(1)、端帽持具(2)、光纤端帽(3)、柔性铰链(4)、压电陶瓷(5)、准直透镜(6)、支撑杆G、杠杆H,其中光纤端帽(3)与端帽持具(2)固定,端帽持具(2)与准直器底座(1)用柔性铰链(4)紧密连接,同时与杠杆H一端贴合紧密,压电陶瓷(5)一端紧贴杠杆H另一端,压电陶瓷(5)的另一端同准直器底座(1)衔接,最后将光纤端帽(3)输出端放置在准直透镜(6)的焦点位置,支撑杆G作为杠杆H的支点插入杠杆H内;
调节过程为:光纤端帽(3)与端帽持具(2)用四个螺钉固定,端帽持具(2)与杠杆H贴合紧密且保证接触面光滑,压电陶瓷(5)一端紧贴杠杆H,另一端同准直器底座(1)利用螺钉衔接,将装配好的准直器底座(1)放在准直透镜(6)的焦平面附近,将装配好的准直器底座连接上带有激光输出的光纤端帽,通过精密调节将光纤端帽输出端调节在准直透镜(6)的焦点位置;
通过调节施加在压电陶瓷上的电压,产生相应的位移变化量,通过杠杆传动结构,将位移放大,进而推动光纤端帽在准直透镜焦平面的相位方向上产生较大位移,光纤端帽的位置改变会使得出射激光经准直透镜后产生一倾斜角度为的倾斜像差,其中为出射光束在两垂直方向上的倾斜角度,满足下式:
式中分别为光纤端帽在准直透镜焦平面的两垂直方向上的位移,准直透镜焦距。
3.根据权利要求1或2所述的基于柔性铰链的自适应光纤准直器,其特征在于,所述的准直器底座(1)由硬质材料加工而成。
4.根据权利要求1或2所述的基于柔性铰链的自适应光纤准直器,其特征在于,所述的端帽持具(2)由轻型硬质金属合金加工而成。
5.根据权利要求1或2所述的基于柔性铰链的自适应光纤准直器,其特征在于,所述的光纤端帽(3)为高功率光纤端帽。
6.根据权利要求1或2所述的基于柔性铰链的自适应光纤准直器,其特征在于,所述的柔性铰链(4)采用直梁型或簧片型结构,形状为Z型片或S型片。
7.根据权利要求1或2所述的基于柔性铰链的自适应光纤准直器,其特征在于,所述的压电陶瓷(5)采用叠堆型压电陶瓷。
8.根据权利要求2所述的基于柔性铰链的自适应光纤准直器,其特征在于,所述的支撑杆G和杠杆H采用刚度大的材料。
CN201410115959.XA 2014-03-26 2014-03-26 基于柔性铰链的自适应光纤准直器 Active CN103823275B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410115959.XA CN103823275B (zh) 2014-03-26 2014-03-26 基于柔性铰链的自适应光纤准直器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410115959.XA CN103823275B (zh) 2014-03-26 2014-03-26 基于柔性铰链的自适应光纤准直器

Publications (2)

Publication Number Publication Date
CN103823275A CN103823275A (zh) 2014-05-28
CN103823275B true CN103823275B (zh) 2015-12-09

Family

ID=50758417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410115959.XA Active CN103823275B (zh) 2014-03-26 2014-03-26 基于柔性铰链的自适应光纤准直器

Country Status (1)

Country Link
CN (1) CN103823275B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410600A (zh) * 2015-07-31 2017-02-15 北京航天计量测试技术研究所 一种用于激光器光轴方向自由调整的结构
CN105223211A (zh) 2015-11-06 2016-01-06 同方威视技术股份有限公司 准直装置以及射线检查装置
CN106324984A (zh) * 2016-11-09 2017-01-11 长春工业大学 一种辊对辊紫外纳米压印装置及方法
CN108594373A (zh) * 2018-05-02 2018-09-28 中国人民解放军国防科技大学 插拔式高功率光纤激光合束系统
CN109244806A (zh) * 2018-09-29 2019-01-18 武汉锐科光纤激光技术股份有限公司 可监控激光功率的光纤合束器及其制备方法
CN111755942A (zh) * 2020-07-31 2020-10-09 中国人民解放军国防科技大学 光纤端帽高精度大位移电动调节装置
CN112558288B (zh) * 2020-11-23 2021-09-03 山东大学 一种基于压电驱动的时分复用多窗口叶片式快速机械光开关

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359082A (zh) * 2008-09-02 2009-02-04 厦门大学 光纤位移反馈闭环控制二维柔性铰链工作台
CN102565983A (zh) * 2011-11-18 2012-07-11 中国科学院光电技术研究所 一种动镜轴向微调装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8500615A (nl) * 1985-03-05 1986-10-01 Nederlanden Staat Fijninstelmechanisme voor het nauwkeurig positioneren van een instelelement.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359082A (zh) * 2008-09-02 2009-02-04 厦门大学 光纤位移反馈闭环控制二维柔性铰链工作台
CN102565983A (zh) * 2011-11-18 2012-07-11 中国科学院光电技术研究所 一种动镜轴向微调装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Critical bending optical fiber sensor with serical structure for feedback control of flexible hinge stage;Zhang et.al.;《Proc.of SPIE 》;20071231;第6423卷(第642365期);全文 *
Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control;Chao et.al.;《OPTICS EXPRESS》;20131014;第21卷(第21期);全文 *

Also Published As

Publication number Publication date
CN103823275A (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
CN103823275B (zh) 基于柔性铰链的自适应光纤准直器
CN102289075B (zh) 偏振态可调空心光束的产生装置和方法
JP2005222049A (ja) 光ビーム路の導波路内の調整のための方法及び装置
JP2004006641A (ja) レーザダイオードコリメータシステム
US9684101B2 (en) Optical zoom structure
CN102354051A (zh) 基于反射镜平动的超高频响高灵敏度光束偏转控制装置
CN103246063B (zh) 一种可调节激光扩束镜
CN107275920A (zh) 一种半导体激光器慢轴准直夹具组件及其应用方法
US8950879B2 (en) Laser projection module with conical reflector supported by thin walls
CN108663817B (zh) 能够改变光束的传播方向的光学装置和包括该装置的系统
EP2824419A1 (en) Cross line laser
JP5196582B2 (ja) 可動鏡機構
CN203311072U (zh) 一种光纤端面定位器的六维机械调节机构
CN1277136C (zh) 光开关
US7321706B2 (en) Optical fiber coupler
CN102684042B (zh) 一种板条激光器热透镜效应的补偿装置
CN210937655U (zh) 用于光路/光线偏折的调节装置
CN113009686B (zh) 一种快速反射镜装置
CN209407660U (zh) 实现光斑能量分布变化的多束激光加工镜组与激光器系统
CN201302620Y (zh) 头戴显示器的光学装置
CN102364377A (zh) 激光扩束镜系统的调节方法
JP2022544500A (ja) 可変倍率型無限焦点テレスコープ要素
US20130336616A1 (en) Beam Coupler Alignment System and Method
CN102684060B (zh) 一种调节柱面镜曲率半径的装置
US20230213753A1 (en) Method and apparatus for moving a fibre tip

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant