CN103818965A - Phosphorous removal method for manganous sulfate produced from high-phosphorus rhodochrosite - Google Patents
Phosphorous removal method for manganous sulfate produced from high-phosphorus rhodochrosite Download PDFInfo
- Publication number
- CN103818965A CN103818965A CN201410105085.XA CN201410105085A CN103818965A CN 103818965 A CN103818965 A CN 103818965A CN 201410105085 A CN201410105085 A CN 201410105085A CN 103818965 A CN103818965 A CN 103818965A
- Authority
- CN
- China
- Prior art keywords
- phosphorus
- solution
- rhodochrosite
- manganese
- sulfate solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052698 phosphorus Inorganic materials 0.000 title claims abstract description 51
- 239000011574 phosphorus Substances 0.000 title claims abstract description 51
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 22
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 title claims abstract description 16
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 title abstract description 6
- 239000000243 solution Substances 0.000 claims abstract description 39
- 235000003891 ferrous sulphate Nutrition 0.000 claims abstract description 14
- 239000011790 ferrous sulphate Substances 0.000 claims abstract description 14
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims abstract description 14
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims abstract description 14
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000003756 stirring Methods 0.000 claims abstract description 13
- 239000011259 mixed solution Substances 0.000 claims abstract description 11
- 239000011268 mixed slurry Substances 0.000 claims abstract description 8
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 claims abstract description 5
- 239000000706 filtrate Substances 0.000 claims abstract description 5
- 229940099596 manganese sulfate Drugs 0.000 claims description 36
- 239000011702 manganese sulphate Substances 0.000 claims description 36
- 235000007079 manganese sulphate Nutrition 0.000 claims description 35
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 33
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- 229910052742 iron Inorganic materials 0.000 claims description 9
- -1 iron ions Chemical class 0.000 claims description 9
- 239000002244 precipitate Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000000926 separation method Methods 0.000 abstract description 3
- 238000001914 filtration Methods 0.000 abstract description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract 1
- 239000011707 mineral Substances 0.000 abstract 1
- 235000010755 mineral Nutrition 0.000 abstract 1
- 230000001376 precipitating effect Effects 0.000 abstract 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 23
- 239000011572 manganese Substances 0.000 description 21
- 229910052748 manganese Inorganic materials 0.000 description 20
- 238000012795 verification Methods 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- MQMHJMFHCMWGNS-UHFFFAOYSA-N phosphanylidynemanganese Chemical class [Mn]#P MQMHJMFHCMWGNS-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- IMBKASBLAKCLEM-UHFFFAOYSA-L ferrous ammonium sulfate (anhydrous) Chemical compound [NH4+].[NH4+].[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IMBKASBLAKCLEM-UHFFFAOYSA-L 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Inorganic materials O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
技术领域 technical field
本发明涉及对由高磷菱锰矿所制取的硫酸锰溶液进行脱磷处理的方法。 The invention relates to a method for dephosphorizing the manganese sulfate solution prepared from high phosphorus rhodochrosite.
背景技术 Background technique
金属锰(Mn)是一种重要工业原料,电解法是获得金属锰的方法之一。其基本步骤是,首先以锰矿石为原料,将其粉碎后加入硫酸制成含锰浸取液——硫酸锰溶液;然后将这硫酸锰溶液经除杂处理后作为电解液来进行电解,以得到金属锰。我国锰矿石多为贫矿,且有害杂质磷含量较高。由于在电解过程中,磷含量过高,不仅会使阳极电位大大上升,氧气析出,电流效率下降,阳极迅速腐蚀损坏,进而导致阴极金属锰上板效率低;而且会导致金属锰返溶而造成经济损失。另外,电解液中的磷会以磷锰化合物的形式进入金属锰产品中,导致金属锰质量下降,如果将其作为炼钢原料之一,还将影响钢材的质量。所以,对于各种高磷锰矿(含磷量高的锰矿石)来讲,在将其制备成可作为电解液用的硫酸锰溶液之前,还须尽量去除其中的磷。现有技术中,也的确有了不少针对不同种类的高磷锰矿来除磷(脱磷)的方法,然而,在这些方法中,有的操作较复杂、有的能耗较高、有的可能对环境造成污染。尤其是,这些方法都是在选矿阶段进行的,且有的只适用于软锰矿。在本来就要以高磷菱锰矿为原料来制备成可作为电解液用的硫酸锰溶液的情况下,若仍采用现有技术来对高磷菱锰矿多进行一次选矿处理,会使最终得到低磷硫酸锰溶液的成本大大增加。 Metal manganese (Mn) is an important industrial raw material, and electrolysis is one of the methods to obtain metal manganese. The basic steps are as follows: firstly, manganese ore is used as raw material, and after it is crushed, sulfuric acid is added to make manganese-containing leaching solution—manganese sulfate solution; to obtain manganese metal. Manganese ore in my country is mostly lean ore, and the content of harmful impurities is relatively high. Due to the high phosphorus content in the electrolysis process, not only will the anode potential be greatly increased, oxygen will be precipitated, the current efficiency will be reduced, and the anode will be corroded and damaged rapidly, which will lead to low efficiency of the cathode metal manganese plate; Economic losses. In addition, the phosphorus in the electrolyte will enter the metal manganese products in the form of phosphorus-manganese compounds, resulting in a decline in the quality of metal manganese. If it is used as one of the raw materials for steelmaking, it will also affect the quality of steel. Therefore, for various high-phosphorus manganese ores (manganese ores with high phosphorus content), phosphorus must be removed as much as possible before they are prepared into manganese sulfate solutions that can be used as electrolytes. In the prior art, there are indeed many methods for removing phosphorus (dephosphorization) for different types of high-phosphorus manganese ores. However, in these methods, some operations are more complicated, some have higher energy consumption, and some May cause pollution to the environment. In particular, these methods are carried out in the beneficiation stage, and some are only applicable to pyrolusite. In the case that the high-phosphorus rhodochrosite is used as the raw material to prepare the manganese sulfate solution that can be used as the electrolyte, if the existing technology is still used to carry out one more beneficiation process on the high-phosphorus rhodochrosite, the final result will be low. The cost of phosphorous manganese sulfate solution is greatly increased.
发明内容 Contents of the invention
本发明的目的是,提供一种工艺简单、能耗低、无污染,且其成本较低的高磷菱锰矿所制硫酸锰溶液的除磷方法。 The object of the present invention is to provide a method for removing phosphorus from manganese sulfate solution made from high phosphorus rhodochrosite with simple process, low energy consumption, no pollution and low cost.
为实现所述目的,提供了这样一种高磷菱锰矿所制硫酸锰溶液的除磷方法,其特征在于,该方法有如下步骤: For realizing said purpose, the dephosphorization method of the manganese sulfate solution that such a kind of high phosphorus rhodochrosite is made is provided, it is characterized in that, this method has the following steps:
(1)室温条件下,在搅拌槽内装入由高磷菱锰矿所制的硫酸锰溶液,接着加入硫酸亚铁、质量分数为30%的双氧水溶液以组成混合溶液;然后在搅拌状态下进行氧化反应; (1) At room temperature, put manganese sulfate solution made of high-phosphorus rhodochrosite into the stirring tank, then add ferrous sulfate and hydrogen peroxide solution with a mass fraction of 30% to form a mixed solution; then carry out the mixing under stirring oxidation reaction;
其中,硫酸锰溶液的磷浓度在2.5~3.2g/l之间,硫酸亚铁中铁离子与硫酸锰溶液中磷的摩尔比=1.0~2∶1,双氧水与硫酸亚铁中铁离子的摩尔比=0.5~1.25∶1; Wherein, the phosphorus concentration of manganese sulfate solution is between 2.5~3.2g/l, and the mol ratio=1.0~2: 1 of phosphorus in iron ion and manganese sulfate solution in ferrous sulfate, the mol ratio of iron ion in hydrogen peroxide and ferrous sulfate= 0.5~1.25:1;
(2)在步骤(1)所得混合溶液中加入浓氨水以调节pH值到3~5,然后在室温条件下充分搅拌以得混合料浆; (2) Add concentrated ammonia water to the mixed solution obtained in step (1) to adjust the pH value to 3-5, and then fully stir at room temperature to obtain a mixed slurry;
(3)静置、沉淀步骤(2)所得混合料浆,然后过滤、分离,所得滤液即为低磷硫酸锰溶液。 (3) Stand still and precipitate the mixed slurry obtained in step (2), then filter and separate, and the obtained filtrate is low-phosphorus manganese sulfate solution.
从方案中可以看出,本发明是针对已经用硫酸浸取高磷菱锰矿后,得到含磷过高的硫酸锰溶液来进行除磷处理的。在这种硫酸锰溶液中的磷,主要以可溶性的磷酸盐(正磷酸盐和少量焦磷酸盐)形态存在,在步骤(1)中加入硫酸亚铁和双氧水溶液而组成混合溶液,以进行氧化反应后,混合溶液中的部分二价铁(Fe2+)将氧化成新生态的三价铁(Fe3+),同时能让部分焦磷酸根(P2O7 4-)转化为正磷酸根(PO4 3-)。在步骤(2)中慢慢加入浓氨水(NH3·H2O)调节pH值后,一方面能让三价铁和尚未氧化的二价铁与磷酸根形成难溶性的磷酸盐沉淀;另一方面,混合溶液中新生态的三价铁发生强烈水解,并在水解的同时发生各个聚合反应,生成具有较长线形结构的多核羟基络合物,如Fe2(OH)2 4+、Fe3(OH)4 5+等,这些含铁的羟基络合物能够以吸附、络合的方式与磷酸根发生共沉淀现象,再通过沉淀分离将磷去除。这就保证了难溶性的磷酸盐沉淀与硫酸锰溶液的可靠分离。于是,在步骤(3)所得的滤液中就只是磷含量非常低的硫酸锰溶液了。与现有技术相比,由于本发明把去除磷的过程放在了硫酸锰溶液中,而用高磷菱锰矿为原料来制备硫酸锰溶液本身又是制备电解液的不可少的步骤,且在本步骤中除磷之外的其他杂质也被大量地去除掉了。所以,与现有技术相比较,不仅有效地避免了在选矿时除磷而可能存在的操作较复杂、能耗较高和/或对环境造成污染的问题,而且还有反应条件温和、成本相对较低的优点。 It can be seen from the scheme that the present invention is aimed at performing phosphorus removal treatment on manganese sulfate solution containing too high phosphorus after leaching high-phosphorus rhodochrosite with sulfuric acid. Phosphorus in this manganese sulfate solution mainly exists in the form of soluble phosphate (orthophosphate and a small amount of pyrophosphate). In step (1), ferrous sulfate and hydrogen peroxide solution are added to form a mixed solution for oxidation After the reaction, part of the ferrous iron (Fe 2+ ) in the mixed solution will be oxidized into new ecological ferric iron (Fe 3+ ), and at the same time, part of the pyrophosphate (P 2 O 7 4- ) can be converted into orthophosphoric acid root (PO 4 3- ). After slowly adding concentrated ammonia water (NH 3 ·H 2 O) to adjust the pH value in step (2), on the one hand, ferric iron and unoxidized ferrous iron and phosphate can form insoluble phosphate precipitation; On the one hand, the nascent ferric iron in the mixed solution is strongly hydrolyzed, and various polymerization reactions occur at the same time of hydrolysis, forming polynuclear hydroxyl complexes with long linear structures, such as Fe 2 (OH) 2 4+ , Fe 3 (OH) 4 5+ , etc. These iron-containing hydroxy complexes can co-precipitate with phosphate in the form of adsorption and complexation, and then remove phosphorus through precipitation and separation. This ensures reliable separation of insoluble phosphate precipitates from the manganese sulfate solution. Then, in the filtrate of step (3) gained, just just be the very low manganese sulfate solution of phosphorus content. Compared with the prior art, because the present invention puts the process of removing phosphorus in manganese sulfate solution, and using high-phosphorus rhodochrosite as raw material to prepare manganese sulfate solution itself is an indispensable step for preparing electrolyte, and in Impurities other than phosphorus are also largely removed in this step. Therefore, compared with the existing technology, it not only effectively avoids the problems of complex operation, high energy consumption and/or environmental pollution caused by phosphorus removal during ore dressing, but also has mild reaction conditions and relatively low cost. lower merit.
下面结合具体实施方式对本发明做进一步的说明。 The present invention will be further described below in combination with specific embodiments.
具体实施方式 Detailed ways
高磷菱锰矿所制硫酸锰溶液的除磷方法,其特征在于,该方法有如下步骤: The dephosphorization method of manganese sulfate solution made from high-phosphorus rhodochrosite is characterized in that the method has the following steps:
(1)室温条件下,在搅拌槽内装入由高磷菱锰矿所制的硫酸锰溶液,接着加入硫酸亚铁(FeSO4·7H2O)、质量分数为30%的双氧水(H2O2)溶液以组成混合溶液;然后在搅拌状态下进行氧化反应(保证充分氧化的搅拌时间,通常仅要3~5min); (1) At room temperature, put the manganese sulfate solution made of high phosphorus rhodochrosite into the stirring tank, then add ferrous sulfate (FeSO 4 7H 2 O), hydrogen peroxide (H 2 O 2 ) The solution is used to form a mixed solution; then the oxidation reaction is carried out under stirring (the stirring time to ensure sufficient oxidation is usually only 3 to 5 minutes);
其中,硫酸锰溶液的磷浓度在2.5~3.2g/l之间,硫酸亚铁中铁离子与硫酸锰溶液中磷的摩尔比=1.0~2∶1,双氧水与硫酸亚铁中铁离子的摩尔比=0.5~1.25∶1; Wherein, the phosphorus concentration of manganese sulfate solution is between 2.5~3.2g/l, and the mol ratio=1.0~2: 1 of phosphorus in iron ion and manganese sulfate solution in ferrous sulfate, the mol ratio of iron ion in hydrogen peroxide and ferrous sulfate= 0.5~1.25:1;
(2)在步骤(1)所得混合溶液中加入浓氨水以调节pH值到3~5,然后在室温条件下充分搅拌以得混合料浆(保证搅拌充分、混合均匀的时间,通常仅需30min~45min); (2) Add concentrated ammonia water to the mixed solution obtained in step (1) to adjust the pH value to 3-5, and then fully stir at room temperature to obtain a mixed slurry (the time to ensure sufficient stirring and uniform mixing is usually only 30 minutes ~45min);
(3)静置、沉淀步骤(2)所得混合料浆(通常,静置沉淀30min即可),然后过滤、分离,所得滤液即为低磷硫酸锰溶液。 (3) Standing and settling the mixed slurry obtained in step (2) (usually, settling for 30 minutes is sufficient), then filtering and separating, and the obtained filtrate is a low-phosphorus manganese sulfate solution.
本发明通过了在实验室所做的实验验证,验证步骤与上述具体实施方式的步骤相同。验证结果见验证表。 The present invention has passed the experimental verification done in the laboratory, and the verification steps are the same as the steps of the above-mentioned specific embodiment. See the verification table for verification results.
验证前后,均采用GB/T1515-2002《锰矿石磷含量的测定 磷钼蓝分光光度法》来测定硫酸锰溶液的磷浓度,然后分别计算出磷去除率。(注:在验证表中,“初磷浓度”为由高磷菱锰矿所制成的硫酸锰溶液的初始浓度,“n(Fe/P)”表示硫酸亚铁中铁离子与硫酸锰溶液中磷的摩尔比之比值,“H2O2∶Fe”表示双氧水与硫酸亚铁中铁离子的摩尔比,“残磷浓度(mg/l)”是指各例验证实验结束后的硫酸锰溶液的磷浓度。 Before and after verification, GB/T1515-2002 "Determination of Phosphorus Content in Manganese Ore - Phosphorus Molybdenum Blue Spectrophotometric Method" was used to measure the phosphorus concentration of manganese sulfate solution, and then the phosphorus removal rate was calculated respectively. (Note: In the verification table, "initial phosphorus concentration" is the initial concentration of manganese sulfate solution made from high-phosphorus rhodochrosite, and "n(Fe/P)" represents the iron ion in ferrous sulfate and phosphorus in manganese sulfate solution "H 2 O 2 : Fe" represents the molar ratio of hydrogen peroxide to iron ions in ferrous sulfate, "residual phosphorus concentration (mg/l)" refers to the phosphorus content of the manganese sulfate solution after each verification experiment concentration.
验证表: Verification form:
从上述各例中可以看出,本发明磷的去除率均达到了98%以上,验证例4的效果是最差的,但其硫酸锰溶液仍能够满足电解金属锰时对其磷含量的最低要求。 From above-mentioned each example as can be seen, the removal rate of phosphorus of the present invention has all reached more than 98%, and the effect of verification example 4 is the worst, but its manganese sulfate solution still can satisfy the minimum to its phosphorus content when electrolytic metal manganese Require.
特别说明,在对本发明进行验证时,为测试对硫酸锰溶液中锰的影响,还采用GB/T1506-2002《锰矿石锰含量的测定电位滴定法和硫酸亚铁铵滴定法》中的硫酸亚铁铵滴定法,测定了验证前后的硫酸锰溶液中的锰含量(验证前的锰浓度分别在30~34g/l之间)。结果表明,硫酸锰溶液中的锰损失均不大,锰损失最大是验证例3,但其损失也没有超过8%。由于用本发明方法除磷后的硫酸锰溶液电解而得到的金属锰的纯度较高(基本上没有磷锰化合物存在),故,从保证金属锰的纯度和综合效益来看,本发明是适合于工业生产的。 In particular, when the present invention is verified, in order to test the influence of manganese in manganese sulfate solution, the ferrous sulfate in GB/T1506-2002 "The Determination Potentiometric Titration and Ferrous Ammonium Sulfate Titration of Manganese Ore Manganese Content" is also used. Ferric ammonium titration method was used to measure the manganese content in the manganese sulfate solution before and after verification (manganese concentrations before verification were between 30 and 34 g/l). The results show that the manganese loss in the manganese sulfate solution is not large, and the manganese loss is the largest in verification example 3, but its loss does not exceed 8%. Because the purity of the manganese metal obtained by electrolysis of the manganese sulfate solution after dephosphorization by the method of the present invention is relatively high (substantially no phosphorus-manganese compound exists), so, from the perspective of ensuring the purity and comprehensive benefits of the manganese metal, the present invention is suitable produced in industry.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410105085.XA CN103818965A (en) | 2014-03-20 | 2014-03-20 | Phosphorous removal method for manganous sulfate produced from high-phosphorus rhodochrosite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410105085.XA CN103818965A (en) | 2014-03-20 | 2014-03-20 | Phosphorous removal method for manganous sulfate produced from high-phosphorus rhodochrosite |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103818965A true CN103818965A (en) | 2014-05-28 |
Family
ID=50754305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410105085.XA Pending CN103818965A (en) | 2014-03-20 | 2014-03-20 | Phosphorous removal method for manganous sulfate produced from high-phosphorus rhodochrosite |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103818965A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104480308A (en) * | 2015-01-02 | 2015-04-01 | 重庆大学 | Dephosphorizing method for acid vanadium leached solution |
CN104894374A (en) * | 2015-06-05 | 2015-09-09 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for carrying out phosphorus removal on acidic vanadium-containing solution |
CN108220600A (en) * | 2018-01-19 | 2018-06-29 | 重庆大学 | The minimizing technology of phosphorus in a kind of acidity vanadium leachate |
CN110819797A (en) * | 2019-11-21 | 2020-02-21 | 武汉理工大学 | A kind of carbonate mineral leaching method |
CN110983054A (en) * | 2019-12-31 | 2020-04-10 | 贵州合众锰业科技有限公司 | Method for separating and recovering cobalt and nickel from manganese sulfate solution |
CN118416848A (en) * | 2024-05-09 | 2024-08-02 | 重庆大学 | A method for efficiently absorbing phosphorus in water using iron-aluminum slag |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103224263A (en) * | 2013-04-28 | 2013-07-31 | 重庆科技学院 | Method for deep removal of phosphorus from high phosphorus iron ore dephosphorization wastewater |
-
2014
- 2014-03-20 CN CN201410105085.XA patent/CN103818965A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103224263A (en) * | 2013-04-28 | 2013-07-31 | 重庆科技学院 | Method for deep removal of phosphorus from high phosphorus iron ore dephosphorization wastewater |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104480308A (en) * | 2015-01-02 | 2015-04-01 | 重庆大学 | Dephosphorizing method for acid vanadium leached solution |
CN104894374A (en) * | 2015-06-05 | 2015-09-09 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for carrying out phosphorus removal on acidic vanadium-containing solution |
CN108220600A (en) * | 2018-01-19 | 2018-06-29 | 重庆大学 | The minimizing technology of phosphorus in a kind of acidity vanadium leachate |
CN110819797A (en) * | 2019-11-21 | 2020-02-21 | 武汉理工大学 | A kind of carbonate mineral leaching method |
CN110983054A (en) * | 2019-12-31 | 2020-04-10 | 贵州合众锰业科技有限公司 | Method for separating and recovering cobalt and nickel from manganese sulfate solution |
CN110983054B (en) * | 2019-12-31 | 2021-07-27 | 贵州合众锰业科技有限公司 | Method for separating and recovering cobalt and nickel from manganese sulfate solution |
CN118416848A (en) * | 2024-05-09 | 2024-08-02 | 重庆大学 | A method for efficiently absorbing phosphorus in water using iron-aluminum slag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103818965A (en) | Phosphorous removal method for manganous sulfate produced from high-phosphorus rhodochrosite | |
JP5229416B1 (en) | Manganese recovery method | |
AU2011201975B2 (en) | Highly efficient uranium leaching method using ultrasound | |
CN102888511A (en) | Iron removal method of hydrometallurgical acidic leaching solution | |
CN104928469B (en) | The method of demagging during manganese spar sulfuric acid leaching | |
Liu et al. | Preparation of electrolyte for vanadium redox flow battery from sodium-polyvanadate precipitated wastewater | |
CN103332810A (en) | Treatment method of heavy metals in desulfurization waste water | |
CN103820647B (en) | Method for secondary leaching of electrolytic manganese residue and manganese recovery | |
CN110306044A (en) | A method for hydrothermal oxalic acid complex leaching of vanadium in vanadium-iron-spinel vanadium-containing minerals | |
CN113481541B (en) | Method for recovering manganese metal by using electrolytic manganese slag leachate | |
CN106745652A (en) | The processing method of arsenic-containing waste water | |
CN105161746A (en) | Method for preparing vanadium battery electrolyte from acid vanadium-enriched liquid | |
CN101838017A (en) | Method for preparing hydrated manganese sulfate | |
CN105329908A (en) | Kaolin bleaching method | |
CN112850679A (en) | Method for preparing iron phosphate by using waste acid | |
CN107502740A (en) | One kind reclaims iron resource method from pyrolusite leached mud | |
CN102899491B (en) | Method for floating and separating high-concentration iron ions from zinc sulfate leachate | |
CN103466770B (en) | Copper ammonia complexation wastewater treatment method | |
CN113753874B (en) | Method for recovering active substances from PVDF-containing lithium iron phosphate positive electrode material | |
CN102061486A (en) | Method for reducing magnesium ion concentration of electrolytic manganese anolyte | |
CN104060093B (en) | A kind for the treatment of process of waste water neutralize gypsum tailings | |
CN106435183B (en) | A kind of wet-process metallurgy leachate neutralization removes solid oxidizer and its application of iron | |
US20240270613A1 (en) | Treatment method of wastewater containing ferricyanide complex and oxalate | |
CN102168178A (en) | Method for extracting vanadium again from tailing after extracting vanadium from vanadium tailing of converter | |
JP2017159222A (en) | Method for removing arsenic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140528 |