CN103797242B - 风力涡轮机转子 - Google Patents

风力涡轮机转子 Download PDF

Info

Publication number
CN103797242B
CN103797242B CN201280027147.9A CN201280027147A CN103797242B CN 103797242 B CN103797242 B CN 103797242B CN 201280027147 A CN201280027147 A CN 201280027147A CN 103797242 B CN103797242 B CN 103797242B
Authority
CN
China
Prior art keywords
blade
thickness
spar
rotor
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280027147.9A
Other languages
English (en)
Other versions
CN103797242A (zh
Inventor
P·T·海丹
D·A·怀莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LM Wind Power UK Ltd
Original Assignee
Blade Dynamics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blade Dynamics Ltd filed Critical Blade Dynamics Ltd
Publication of CN103797242A publication Critical patent/CN103797242A/zh
Application granted granted Critical
Publication of CN103797242B publication Critical patent/CN103797242B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0658Arrangements for fixing wind-engaging parts to a hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/20Inorganic materials, e.g. non-metallic materials
    • F05B2280/2001Glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/20Inorganic materials, e.g. non-metallic materials
    • F05B2280/2006Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/50Intrinsic material properties or characteristics
    • F05B2280/5001Elasticity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6003Composites; e.g. fibre-reinforced
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

一种风力涡轮机转子,包括轮毂(1),多个叶片(2)以至少50米的半径从该轮毂(1)伸出。每个叶片都包括由中央翼梁支承的空心整流罩。每个叶片都在半径r处具有厚度t;其特征在于,当r=0.5R时,t>0.3T,其中的R是叶片的半径、T是叶片在叶根端部处的厚度。通过使叶片的更大比例的部分变得更厚,叶片的这部分的空气动力学性能更差,但这被数倍地补偿,因为在重要的地方,亦即在叶片的外部部分处,具有更好的空气动力学性能。本发明也使得能够提供更大的叶片。

Description

风力涡轮机转子
技术领域
本发明涉及一种风力涡轮机转子。更具体地说,本发明涉及一种现代化的大规模风力涡轮机转子。为了说明起见,将把该风力涡轮机转子定义为包括轮毂的风力涡轮机,多个叶片以至少为50米的半径从所述轮毂伸出,每个叶片都包括由中央翼梁支承的空心整流罩(fairing)。
背景技术
风力涡轮机叶片的现行尺寸是在35-55米(从轮毂的中心到叶片的末端测得的半径)的范围内。因为拟定计划建造供要求尺寸在50-100米范围内的叶片的岸上和海上二者应用的大得多的机械,将来会把该叶片尺寸调整到进一步增大。
现行叶片工艺学,如果被“原样照搬”地放大、或者具有较少修改地放大,将产生许多制造问题,此外,将产生许多对全部风力涡轮机设计人员设计的问题。主要的问题是处理叶片的很大质量(mass)的问题,该叶片的很大质量导致用于风力涡轮机及其基础的部件(这些部件用于处理载荷,尤其是放在风力涡轮机及其基础上的疲劳载荷)质量非常重而且巨大,并因此很昂贵。
现行的叶片设计方法,会导致叶片质量近似地随叶片长度的2.95次方而增大。这在目前早期试图建造大叶片的某种情况下被表明是正确的,并在图5中示出。
此外,随着叶片变得更大,叶片的自然频率下降,并且变得更接近在风力涡轮机的运行期间所看到的激发频率。
发明内容
按照本发明的第一方面,提供一种风力涡轮机转子,该转子包括轮毂,多个叶片以至少为50米的半径从所述轮毂伸出,每个叶片都包括由中央翼梁支承的空心整流罩,每个叶片都在半径r处具有厚度t;其特征在于,当r=0.5R时,t>0.3T,其中的R是叶片的半径、T是叶片在叶根端部处的厚度。
在常规叶片设计中,厚度缩减得更快,因此在叶片(从轮毂的中心到叶片的末端测得的)的中点处,叶片的厚度t通常约为叶根端部厚度T的20%。而在本发明中,叶片在该点处保留大于其叶根端部厚度的30%。
本发明所采取的方法是径向移动,远离典型的空气动力学和结构比。作为替代,本发明设想对于叶片的内部部分而言,在它的空气动力学性能方面实际上显著地更坏的叶片。作为替代,对叶片的内部部分的设计的考虑几乎完全受结构支配。另一方面,对长度的外部部分而言,设计考虑几乎完全受空气动力学支配。由内部部分的不良空气动力学表现所引起的“空气动力学损失”,由于在叶片的外部部分上形成更少空气动力学折损,而被数倍地补偿。它还能允许生产长得多的叶片,因为叶片的内部部分可以被制成为轻得多而提高空气动力学限制。这提供更大的空气动力学性能,而不显著地增大疲劳载荷。
优选地,当r=0.5R时,t>0.4T、并且更优选地>0.5T。换言之,在沿着叶片的中点处,叶片优选地仍然保留它在叶根端部处的厚度的至少40%、并且更优选地50%。
按照本发明的第二方面,提供一种风力涡轮机转子,所述转子包括轮毂,多个叶片以至少为50米的半径从所述轮毂伸出,每个叶片都包括由中央翼梁支承的空心整流罩,每个叶片都在半径r处具有厚度t;其特征在于,当r=0.25R时,t>0.6T,其中的R是叶片的半径、T是叶片在叶根端部处的厚度。
优选地,当r=0.25R时,t>0.7T、并且更优选地>0.8T。换言之,沿着叶片的路线的四分之一(从轮毂的中心),叶片保留它在叶根端部处的厚度的至少60%,优选地至少70%、并且更优选地至少80%。常规叶片在该点处是它的厚度的约50%。
按照本发明的第三方面,提供一种风力涡轮机转子,所述转子包括轮毂,多个叶片以至少为50米的半径从所述轮毂伸出,每个叶片都包括由中央翼梁支承的空心整流罩,每个叶片都在半径r处具有厚度t;其特征在于,当r=0.4R时,t>0.5T,其中的R是叶片的半径、T是叶片在叶根端部处的厚度。
优选地,当r=0.4R时,t>0.6T、并且更优选地>0.7T。换言之,沿着叶片的路线(从轮毂的中心)的40%,叶片保留其在叶根端部的厚度的至少50%,优选地至少60%、并且更优选地至少70%。常规叶片保留它在该点处厚度的约30%。
叶片沿着其最内部长度的更大部分的厚度更大的另一个好处,与材料的使用有关。随着叶片的内部部分更厚,对更大的叶片而言能够保持刚度,而不必对该内部部分采取更高模量纤维复合材料。因此,优选地,翼梁至少部分地包括:沿着其长度的内部部分的用玻璃纤维增强的环氧树脂层压材料、和沿着其长度的外部部分的用碳纤维增强的环氧树脂层压材料。因此,在叶片的最外部区域处使用性能更高的材料,进一步加强了叶片保持它的刚度的能力,而由于进一步增强性能,可以被制得相对更薄,并且具有很低的阻力。这也进一步增高了叶片的自然频率,而有助于避免激发频率。
在翼梁的内部部分和外部部分中的各种材料的使用,也可以根据杨氏模量限定。对于大叶片,可以在叶片的内部部分中使用较低性能的复合材料,这是因为叶片厚度被增大,从而无需求助于采取更高模量的复合材料以保持刚度。
优选地,翼梁至少部分地包括内部部分和外部部分,所述内部部分包括的翼梁缘条具有在主弯曲方向上纵向延伸的纤维,其中,在内部部分中的翼梁缘条的至少一部分包括在主方向上的杨氏模量<50GPa、并且杨氏模量/密度之比<0.027GPa/kgm-3,而所述外部部分包括的的翼梁缘条具有在主弯曲方向上纵向延伸的纤维,其中,在外部部分中的翼梁缘条的至少一部分具有的在主弯曲方向上的杨氏模量>100GPa、并且杨氏模量/密度之比>0.059GPa/kgm-3
本发明还扩展到用于上述本发明的各方面中的任一方面所述的转子的叶片。
附图说明
现在将参照附图,说明本发明的转子和叶片的实例,附图中:
图1是在平行于贯穿本发明的转子的旋转轴线的平面中从旋转轴线到叶片的末端的用透视画法缩小的示意横截面,而常规叶片的横截面用虚线示出,供对照用;
图1A是叶片穿过图1中线A-A的横截面,而常规叶片用虚线示出,供对照用,
图2是类似于图1的视图,但示出叶片的平面图;
图3A-3D是类似于图1A的视图,而示出不同的叶片构造;
图4是示出了用于常规叶片、本发明的可比较长度的叶片以及本发明的更长叶片的厚度比与半径比的关系的图表;
图5是在本发明和现有技术之间提供对照的质量与叶片长度的关系的图表;
图6是转矩与半径的关系的图表,其中示出本发明的性能表现与现有技术的对照;而
图7A和7B是类似于图1A的横截面,分别示出了现有技术和本发明,并示出了由本发明所提供的优点。
具体实施方式
用来建造叶片并将它装配到转子轮毂上的技术可以是常规的叶片制造技术,但优选地是如在我们的较早专利申请WO2009/034291,WO2009/034292,WO2009/130467,WO2010/041008,WO2010/04012,PCT/GB2010/002189和PCT/GB2011/000661中所公开的技术。
这些文献公开了用来制造能制成任何所需的几何形状的风力涡轮机叶片的技术。
因为本发明仅涉及外部几何形状的变化和随之而来的材料的变化,所以下面仅说明几何形状和材料。
转子包括中心轮毂1,多个叶片2(在图1和2中仅示出一个叶片2)在界面3处连结到中心轮毂上,如在上述那些专利申请中所述的那样。轮毂绕轴线4旋转。三个这样的叶片2连结到每个轮毂1上。叶片的半径R是从旋转轴线4到叶片的远端末端5的距离。通常,半径R的初始端的1至3米被轮毂1占据,而半径的其余部分由叶片本身形成。叶片具有:沿着其整个长度延伸以提供结构刚度的中央翼梁、和提供叶片的外表面的空气动力学整流罩,如在本技术领域中公知的那样。
叶根端部厚度T代表叶片在它与轮毂会合处平行于旋转轴线的方向上的外部尺寸。在此,叶片可以具有伸出部分,该伸出部分插入轮毂内部以便使它可以连结到轮毂上。对于本发明而言,当确定厚度T时,上述伸出部分不予考虑,因为T是外部厚度的量度。另外,盖的叶根端部可以设有向外伸出的凸缘,作为将它紧固到轮毂1上的结构的一部分。对本发明而言,在用于确定厚度T时,任何这种凸缘都应不被考虑。
如图1A中所示,叶片具有翼型(aerofoil)形状,该翼型形状带有前缘6和后缘7(它们限定叶片的宽度)。厚度t在垂直于叶片的半径的平面(如图1A所示的平面)中确定。在该平面中,厚度t是垂直于如图1中所示的中弧线C的尺寸。中弧线是从前缘6到后缘7所绘的线,并且在所有点处在叶片的上表面和下表面之间是等距离的。
在界面3处,叶片具有呈大致圆形的横截面,且随着厚度t减小,沿着叶片的长度的横截面变得越来越平坦。
在常规叶片的厚度中这种减小的程度在图1中用虚线8示出,而本发明的厚度轮廓用实线9示出。
图3A-3B是类似于图1A而具有不同的翼梁缘条的构造的视图。图3A基本上与图1A相同,供对照用。图3B示出的翼梁10具有I型横截面,该I型横截面具有一抗剪腹板11,该抗剪腹板的两侧上连接有一对翼梁缘条12。在图3C中,翼梁10是箱形梁,具有一对抗剪腹板11,所述一对抗剪腹板11借助于一对翼梁缘条12而被连接。翼梁可以具有如上述现有技术专利文献中所述的所有构造方式。
图3D示出具有双翼结构的叶片。在这种情况下,中弧线被绘制成位于上翼14的上表面13和下翼16的下表面15中间的线。厚度t被相应地确定。上翼14和下翼16借助于抗剪撑柱17而被连接。
厚度缩小的更多细节在图4中给出。该图4示出在y轴上厚度t与叶根端部处的厚度T的比值、对于在测量t的点处半径r与转子的半径R的比例的关系的图表。所用的t值是用上述方法对每个横截面能测得的最大的“t”。换言之,这代表在叶片的最平坦部分处的厚度。线18表示常规叶片,而线19表示按照本发明制造的相同长度的叶片。本发明能允许制造更长的叶片。在这种情况下,线20表示用于长度比线18和19所示的叶片长出15%的叶片的厚度轮廓图。用于曲线图的数据在曲线图上方的表格中给出。
如从图4中能看出的那样,常规叶片快速地变得更薄,其快速变薄所达到的程度,使得在沿着叶片的路线的仅仅25%处,厚度就下降到叶根端部厚度T的一半,而在本发明的叶片中,它的厚度被保留的比例远远地大得多,而且长度也更长。因此,沿着叶片的路线的四分之一,它仍保留它的叶根端部厚度的80%。在45%线处,常规叶片具有它的原始厚度的不到30%,而本发明中则超过原始厚度的50%。
这对叶片的性能具有两种作用。
首先,如参考图1A可以理解的那样,较平坦的横截面产生空气动力学性能较弱的横截面,使得本发明的叶片在该点处的效率减小。这在图6中示出,图6示出的是沿着叶片的长度所提供的输出功率的情况。由本发明所提供的输出功率用线21表示,而由常规叶片所提供的输出功率用线22示出。可以看出,在本发明中由叶片的起初30米所贡献的输出功率显著地低于现有技术。
此外,叶片的内部部分可以被做得更轻,如现在参照图7A和7B将要阐明的那样。
图7A是现有技术的横截面,而图7B是供对照用的本发明的横截面。因为本发明对空气动力学性能未进行优化,所以它显著地更厚,如图7B中所示。在这两种情况下,叶片的宽度和翼梁缘条的宽度相等。然而,由于在本发明中的各个翼梁缘条与中弧线C相距更远(并且在结构意义上更远离中性轴线),所以它们能够更多地抵抗绕中弧线C的弯曲力矩。作为这种增强的抗弯曲力矩能力的结果,本发明的翼梁缘条12的厚度b可以被制造得显著地薄于现有技术的翼梁缘条所需的相应厚度。
另外,由空气动力学性能较弱的内部部分所提供的改进的结构整体性,意味着内部部分能够有效地支承长得多的外部部分,因此,不但能够增进叶片效率,也将会增大所能生产的叶片的最大长度。
图5示出质量(mass)和叶片长度之间的关系。由此,很清楚的是,本发明打破了现有技术叶片其叶片质量近似随叶片长度的2.95次方增大的关系。如图5中所示,本文中的关系更接近于叶片质量近似随叶片长度的2.75次方而增大。

Claims (5)

1.一种风力涡轮机转子,所述转子包括轮毂,多个叶片以至少为50米的半径从所述轮毂伸出,每个叶片都包括由中央翼梁支承的空心整流罩,每个叶片都在半径r处具有厚度t;其特征在于,当r=0.5R时,t>0.5T,当r=0.4R时,t>0.7T,并且当r=0.25R时,t>0.7T,其中的R是叶片的半径,T是叶片在叶根端部处的厚度,代表叶片在它与轮毂会合处平行于轮毂旋转轴线的方向上的外部尺寸,t是垂直于叶片的中弧线的尺寸。
2.如权利要求1所述的转子,其中,当r=0.25R时,t>0.8T。
3.如权利要求1或权利要求2所述的转子,其中,所述翼梁至少部分地包括:沿着其长度的内部部分的用玻璃纤维增强的环氧树脂层压材料、和沿着其长度的外部部分的用碳纤维增强的环氧树脂层压材料。
4.如权利要求1或权利要求2所述的转子,其中,所述翼梁包括内部部分和外部部分,所述内部部分包括的翼梁缘条包含在主弯曲方向上纵向延伸的纤维,其中,在所述内部部分中的翼梁缘条的至少一部分具有的在主方向上的杨氏模量<50GPa、并且杨氏模量/密度之比<0.027GPa/kgm-3,而所述外部部分包括的翼梁缘条包含在主弯曲方向上纵向延伸的纤维,其中,在所述外部部分中的翼梁缘条的至少一部分具有的在主弯曲方向上的杨氏模量>100GPa、并且杨氏模量/密度之比>0.059GPa/kgm-3
5.如权利要求1或权利要求2所述的转子,其中,所述翼梁包括跨过叶片的厚度的至少一个抗剪腹板、和在抗剪腹板的每个端部处的至少一个翼梁缘条。
CN201280027147.9A 2011-06-03 2012-06-01 风力涡轮机转子 Active CN103797242B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1109412.5A GB201109412D0 (en) 2011-06-03 2011-06-03 A wind turbine rotor
GB1109412.5 2011-06-03
PCT/GB2012/051249 WO2012164305A1 (en) 2011-06-03 2012-06-01 A wind turbine rotor

Publications (2)

Publication Number Publication Date
CN103797242A CN103797242A (zh) 2014-05-14
CN103797242B true CN103797242B (zh) 2017-02-15

Family

ID=44343433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280027147.9A Active CN103797242B (zh) 2011-06-03 2012-06-01 风力涡轮机转子

Country Status (10)

Country Link
US (1) US10125741B2 (zh)
EP (1) EP2715118B1 (zh)
JP (1) JP2014517197A (zh)
CN (1) CN103797242B (zh)
BR (1) BR112013030714B1 (zh)
DK (1) DK2715118T3 (zh)
ES (1) ES2710477T3 (zh)
GB (1) GB201109412D0 (zh)
TR (1) TR201902216T4 (zh)
WO (1) WO2012164305A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201109412D0 (en) 2011-06-03 2011-07-20 Blade Dynamics Ltd A wind turbine rotor
EP2636890B1 (en) * 2012-03-09 2016-08-17 Siemens Aktiengesellschaft Rotor blade pitching arrangement
DE102012206109C5 (de) * 2012-04-13 2022-06-09 Wobben Properties Gmbh Rotorblatt einer Windenergieanlage
GB201215004D0 (en) 2012-08-23 2012-10-10 Blade Dynamics Ltd Wind turbine tower
GB201217212D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd Windturbine blade
GB201217210D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd A metod of forming a structural connection between a spar cap fairing for a wind turbine blade
US11572861B2 (en) 2017-01-31 2023-02-07 General Electric Company Method for forming a rotor blade for a wind turbine
DE102017124861A1 (de) 2017-10-24 2019-04-25 Wobben Properties Gmbh Rotorblatt einer Windenergieanlage und Verfahren zu dessen Auslegung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780982A (zh) * 2003-04-28 2006-05-31 艾劳埃斯·乌本 一种风力发电设备的转子叶片
CN101220799A (zh) * 2007-01-12 2008-07-16 西门子公司 具有扰流器的风轮机转子叶片

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1802094A (en) * 1926-01-19 1931-04-21 Elisha N Fales Turbine
US2041849A (en) * 1932-07-01 1936-05-26 Ernest G Mccauley Propeller
US3233678A (en) * 1964-09-14 1966-02-08 John B Wilk Marine propeller
US4081220A (en) * 1976-12-17 1978-03-28 United Technologies Corporation Semi-spar wound blade
US4260332A (en) * 1979-03-22 1981-04-07 Structural Composite Industries, Inc. Composite spar structure having integral fitting for rotational hub mounting
US4295790A (en) * 1979-06-21 1981-10-20 The Budd Company Blade structure for use in a windmill
CA1243993A (en) * 1983-07-04 1988-11-01 Westland Plc Helicopter rotor blade
FR2590229B1 (fr) * 1985-11-19 1988-01-29 Onera (Off Nat Aerospatiale) Perfectionnements apportes aux helices aeriennes en ce qui concerne le profil de leurs pales
US4858852A (en) * 1987-06-01 1989-08-22 Mcdonnell Douglas Corporation Divergent trailing-edge airfoil
US4976587A (en) 1988-07-20 1990-12-11 Dwr Wind Technologies Inc. Composite wind turbine rotor blade and method for making same
IL105107A (en) * 1992-03-18 1996-06-18 Advanced Wind Turbines Inc Wind turbines
US5417548A (en) * 1994-01-14 1995-05-23 Midwest Research Institute Root region airfoil for wind turbine
US5562420A (en) * 1994-03-14 1996-10-08 Midwest Research Institute Airfoils for wind turbine
TR200700949A2 (tr) * 2000-12-23 2007-10-22 Wobben Aloys Bir rüzgar enerjisi tesisi için rotor pervanesi
DK175275B1 (da) * 2002-03-19 2004-08-02 Lm Glasfiber As Overgangsområde i vindmöllevinge
DE20206942U1 (de) * 2002-05-02 2002-08-08 Repower Systems Ag Rotorblatt für Windenergieanlagen
US7357624B2 (en) * 2002-06-05 2008-04-15 Aloys Wobben Rotor blade for a wind power plant
US20050186081A1 (en) * 2004-02-24 2005-08-25 Mohamed Mansour H. Wind blade spar cap and method of making
US7802968B2 (en) * 2005-07-29 2010-09-28 General Electric Company Methods and apparatus for reducing load in a rotor blade
US7438533B2 (en) * 2005-12-15 2008-10-21 General Electric Company Wind turbine rotor blade
US7427189B2 (en) * 2006-02-13 2008-09-23 General Electric Company Wind turbine rotor blade
EP1845258A1 (en) * 2006-04-10 2007-10-17 Siemens Aktiengesellschaft Wind turbine rotor blade
DE102006017897B4 (de) * 2006-04-13 2008-03-13 Repower Systems Ag Rotorblatt einer Windenergieanlage
US7789629B2 (en) * 2006-12-07 2010-09-07 Verdant Power Non-fouling kinetic hydro power system axial-flow blade tip treatment
GB0717690D0 (en) 2007-09-11 2007-10-17 Blade Dynamics Ltd Wind turbine blade
ES2320962B1 (es) * 2007-11-28 2010-03-11 GAMESA INNOVATION &amp; TECHNOLOGY S.L. Perfil aerodinamico para la raiz de una pala de aerogenerador con doble borde de ataque.
GB0807515D0 (en) 2008-04-24 2008-06-04 Blade Dynamics Ltd A wind turbine blade
FR2933814B1 (fr) 2008-07-11 2011-03-25 Commissariat Energie Atomique Electrolytes liquides ioniques comprenant un surfactant et dispositifs electrochimiques tels que des accumulateurs les comprenant
GB2451192B (en) * 2008-07-18 2011-03-09 Vestas Wind Sys As Wind turbine blade
GB0818467D0 (en) 2008-10-08 2008-11-12 Blade Dynamics Ltd An insert for forming an end connection in a uni-axial composite material
DE102008052858B9 (de) * 2008-10-23 2014-06-12 Senvion Se Profil eines Rotorblatts und Rotorblatt einer Windenergieanlage
US7942637B2 (en) * 2008-12-11 2011-05-17 General Electric Company Sparcap for wind turbine rotor blade and method of fabricating wind turbine rotor blade
EP2391807B1 (en) * 2009-01-27 2015-04-22 Vestas Wind Systems A/S A sectional wind turbine blade
US7736127B1 (en) * 2009-01-28 2010-06-15 Carr Fred K Rotor design for submersible electronic generator
US8079819B2 (en) * 2009-05-21 2011-12-20 Zuteck Michael D Optimization of premium fiber material usage in wind turbine spars
US8241000B2 (en) * 2009-06-16 2012-08-14 Heartland Energy Solutions, LLC. Wind turbine rotor blade and airfoil section
GB0920749D0 (en) 2009-11-26 2010-01-13 Blade Dynamics Ltd An aerodynamic fairing for a wind turbine and a method of connecting adjacent parts of such a fairing
JP5536103B2 (ja) * 2009-12-25 2014-07-02 三菱重工業株式会社 風車回転翼
WO2011106733A2 (en) 2010-02-25 2011-09-01 The Regents Of The University Of California Advanced aerodynamic and structural blade and wing design
DK2366891T3 (da) * 2010-03-18 2014-10-27 Nordex Energy Gmbh Vindenergianlægs-rotorblad
GB201007336D0 (en) 2010-04-30 2010-06-16 Blade Dynamics Ltd A modular structural composite beam
US8425196B2 (en) * 2011-01-28 2013-04-23 General Electric Company Wind turbine blades with a hardened substrate construction
US20120020803A1 (en) * 2011-02-14 2012-01-26 Paul Lees Turbine blades, systems and methods
JP5479388B2 (ja) * 2011-02-28 2014-04-23 三菱重工業株式会社 風車翼およびこれを備えた風力発電装置
US8900671B2 (en) * 2011-02-28 2014-12-02 General Electric Company Method for manufacture of an infused spar cap using a low viscosity matrix material
GB201109412D0 (en) 2011-06-03 2011-07-20 Blade Dynamics Ltd A wind turbine rotor
US9133819B2 (en) * 2011-07-18 2015-09-15 Kohana Technologies Inc. Turbine blades and systems with forward blowing slots
EP2604856B1 (en) * 2011-10-12 2016-04-27 Mitsubishi Heavy Industries, Ltd. Wind turbine blade, wind power generation device provided with same, and design method for wind turbine blade
DE102012206109C5 (de) * 2012-04-13 2022-06-09 Wobben Properties Gmbh Rotorblatt einer Windenergieanlage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780982A (zh) * 2003-04-28 2006-05-31 艾劳埃斯·乌本 一种风力发电设备的转子叶片
CN101220799A (zh) * 2007-01-12 2008-07-16 西门子公司 具有扰流器的风轮机转子叶片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Innovative Design Approaches for Large Wind Turbine Blade;K.J.Jackson et al.;《WIND ENERGY》;20050401;第8卷;第141-171页 *

Also Published As

Publication number Publication date
US10125741B2 (en) 2018-11-13
CN103797242A (zh) 2014-05-14
EP2715118A1 (en) 2014-04-09
DK2715118T3 (en) 2019-03-11
BR112013030714B1 (pt) 2021-07-06
US20140086752A1 (en) 2014-03-27
BR112013030714A2 (pt) 2016-12-06
TR201902216T4 (tr) 2019-03-21
EP2715118B1 (en) 2019-01-16
ES2710477T3 (es) 2019-04-25
GB201109412D0 (en) 2011-07-20
WO2012164305A1 (en) 2012-12-06
JP2014517197A (ja) 2014-07-17

Similar Documents

Publication Publication Date Title
CN103797242B (zh) 风力涡轮机转子
EP2432997B1 (en) Wind turbine blade provided with flow altering devices and methods of designing and modifying a wind turbine blade
EP2432991B1 (en) Wind turbine blade
CN102317620B (zh) 用于风轮机的转子叶片及其制造方法
US9057359B2 (en) Wind turbine blade with base part having non-positive camber
CN101842584B (zh) 风力涡轮机叶片和叶片元件的组合以及改变风力涡轮机叶片的空气动力轮廓的方法
CN104662287B (zh) 具有成形阻流栅栏或偏流器的风力涡轮机叶片
DK178689B1 (da) Vindmøllerotorvinge med krumning i planet og indretninger, der anvender samme, og fremgangsmåder til fremstilling af samme
US10253751B2 (en) Wind turbine blade assembled from inboard part and outboard part having different types of load carrying structures
US20120070281A1 (en) Method of operating a wind turbine
DK2593670T3 (en) Wind turbine blade with narrow shoulder and relatively thick support profiles
CN104364517B (zh) 扭转的叶片根部
CN102192078B (zh) 风力涡轮机的转子叶片、风力涡轮机和转子叶片制造方法
EP2432992B1 (en) Method of manufacturing a wind turbine blade having predesigned segment
US20150050137A1 (en) Blade for a helicopter anti-torque device
US20120063910A1 (en) Wind turbine blade with base part having inherent non-ideal twist
US20100296940A1 (en) Shell structure of wind turbine blade having regions of low shear modulus
EP2078852B2 (en) Wind turbine rotor blade
CN104204510B (zh) 具有导片的用于风力涡轮机的叶片
CN102606385A (zh) 风力涡轮机转子叶片元件和风力涡轮机转子叶片
EP2159414B1 (en) Wind turbine blades with cross webs
US20180320655A1 (en) Rotor reinforcing device for wind turbine
WO2010048958A2 (en) A wind turbine generator with a back skewed rotor
CN117616196A (zh) 风力涡轮机叶片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant