CN103794666B - 一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件及其制备方法 - Google Patents

一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件及其制备方法 Download PDF

Info

Publication number
CN103794666B
CN103794666B CN201410069877.6A CN201410069877A CN103794666B CN 103794666 B CN103794666 B CN 103794666B CN 201410069877 A CN201410069877 A CN 201410069877A CN 103794666 B CN103794666 B CN 103794666B
Authority
CN
China
Prior art keywords
film
amorphous carbon
substrate
gaas
photo resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410069877.6A
Other languages
English (en)
Other versions
CN103794666A (zh
Inventor
翟章印
俞阿龙
张佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Normal University
Original Assignee
Huaiyin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Normal University filed Critical Huaiyin Normal University
Priority to CN201410069877.6A priority Critical patent/CN103794666B/zh
Publication of CN103794666A publication Critical patent/CN103794666A/zh
Application granted granted Critical
Publication of CN103794666B publication Critical patent/CN103794666B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提出了一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件及其制备方法。该方法以硅掺杂的n型GaAs基片作为底层,底层上预设两个电极区位,在一个电极区位的基片上,制备Co掺杂的a-C膜,在Co掺杂的a-C膜上,再采用真空热蒸发方法蒸镀Ag层;在底层上另一个电极区位的基片上直接蒸镀Ag层,从而构成具有p-n结和肖特基结的双结串联结构的光敏电阻器件。该器件不仅红光敏感、光灵敏度高、光响应速度快,具有线性的光照特性,可用作火警报警的光电开关或光功率计,而且还具有所取用的原材料价格低廉,制备工艺简洁,环保无污染等优越性。

Description

一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件及其制备方法
技术领域
本发明涉及光敏电阻技术,具体涉及一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件及其制备方法。
技术背景
光敏电阻器件是利用半导体光电导效应制成的一种特殊电阻器,具有对光线十分敏感的特性,其电阻值可随着外界光照射的强弱(明暗)变化而变化,照射光弱,电阻增大、呈高阻状态;照射光强,电阻值将迅速减小。鉴于这一特性,光敏电阻器广泛用于国防、科学研究、工农业生产、家用电器中各种电路的自动控制,或涉及光测量、光控制、光电转换等多种测量仪器。目前,光敏电阻器件的制造,大多采用金属硫化物、硒化物和碲化物等材料,经涂敷、喷涂、烧结等方法,在绝缘衬底上制作光敏电阻体及欧姆电极接出引线,封装于透光密封壳体内构成。根据光敏电阻的光谱特性,可分紫外、可见光、红外三种光敏电阻器。其中可见光光敏电阻材料主要有硫化镉和硒化镉。它们的优点是体积小,灵敏度高,光谱特性好,不足之处是受温度影响大,响应速度不快,光照特性为非线性,不适宜做光检测元件;另外还存在制作成本高,所含有的重金属镉,容易对环境造成污染等缺陷。
发明内容
本发明提出了一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件及其制备方法。目的在于制备出一种清洁无污染、工艺简洁、价格低廉的可见光光敏电阻,替代现有以硫化镉和硒化镉为材料制作的可见光光敏电阻。
本发明的技术解决方案如下:
本发明所称的光敏电阻器件的结构是:其底层为硅(Si)掺杂的n型GaAs基片,基片上设置的两个电极区中的一个电极区上,镀有钴(Co)掺杂的非晶碳膜(a-C:Co),该非晶碳膜层上设置有镀银(Ag)层;基片上设置的另一个电极区上直接设置有镀银(Ag)层,两个镀银(Ag)层构成一对电极。
本发明所称的制备方法是,以硅(Si)掺杂的n型GaAs基片作为底层,底层上预设两个电极区位。在其中的一个电极区位的基片上,采用脉冲激光沉积方法制备金属Co掺杂的a-C膜,并通过掩膜板在所制备的金属Co掺杂的a-C膜上,再采用真空热蒸发方法蒸镀Ag层;底层上另一个电极区位的基片上也采用真空热蒸发方法直接蒸镀Ag层。则制备成:由Co掺杂的a-C膜的p型半导体与硅(Si)掺杂的n型GaAs基片构成的p-n结,由硅(Si)掺杂的n型GaAs基片与其上的镀Ag层构成的肖特基结,属双结串联结构的光敏电阻器件。
本发明方法的进一步技术解决方案:
所述使用硅(Si)掺杂的n-GaAs基片的电阻率约为10-2Ω.cm;Co掺杂的a-C非晶碳膜的Co掺杂量约为10at%(原子百分比)。
所述金属Co掺杂的a-C膜层厚为35-45nm;镀Ag层的层厚为50-100nm。本发明的有益效果
(一)由于本发明器件为a-C:Co/GaAs形成的p-n结和GaAs/Ag形成肖特基结的两结串联结构,p-n结显著增强了光电流,肖特基结势垒降低暗电流,在特定正向偏压下可获得最大的光电流与暗电流比的光灵敏度或光电导。经测试,该器件在波长为650nm(红光)功率为45mW/cm2激光二极管的光照下,开路电压从0.45V减小为0.25V;加0.3V正向偏压室温光电导(光灵敏度)达650,而200K以下甚至达104以上,反向偏压下无光导现象;光照特性测试结果为线性。该器件不仅红光敏感、光灵敏度高、光响应速度快,还具有线性的光照特性,可用作火警报警的光电开关或光功率计。
(二)本发明器件所取用的原材料价格低廉,制备工艺简洁,并且环保无污染。
附图说明
图1为本发明光敏电阻器件(以下简称器件)结构及电光测量示意图;
图2为本发明器件在波长为650nm(红光)功率为45mW/cm2激光二极管光照和无光照下的I-V曲线图,插图为低偏压下的I-V曲线图;
图3-图6是为证实本发明器件静态等效工作电路图所提供的证明图件:
其中,图3是在GaAs基片上蒸两个银层电极作电光测量实验(见内插图)证实Ag/GaAs之间呈肖特基结构所测得的I-V曲线图;
图4是在GaAs基片上两端(即电极区位)镀钴(Co)掺杂的非晶碳膜,再在该碳膜上蒸镀两个银层电极作电光测量实验(见内插图)证实Ag/a-C:Co/GaAs之间为p-n接触所测得的I-V曲线图;
图5是在图4所述电极结构的基础上,证实a-C:Co膜增强GaAs光电导所测的激光分别照射在a-C:Co膜和GaAs基片上时RD(暗电阻)和RL(亮电阻)随时间周期性变化曲线图;
图6为本发明器件的静态等效工作电路图;
图7为本发明器件在室温下光电导(此处光电导以RD/RL值定义)随正向偏压变化关系曲线图;其内插图为在有无光照下,RD(暗电阻)和RL(亮电阻)随时间周期性变化曲线图;
图8为本发明器件在0.3V正向偏压下在300,250和200K时RD/RL的值;其内插图为不同温度下RD(暗电阻)和RL(亮电阻)随时间周期性变化曲线图;
图9为本发明器件在0.3V正向偏压下暗电阻RD和亮电阻RL随温度变化关系曲线图;
图10为本发明器件在0.3V正向偏压下样本的光电导(光灵敏度)随光照强度变化曲线图。
具体实施方式
根据上述技术方案制作样件。取硅(Si)掺杂的n型GaAs基片,基片电阻率为10-2Ω.cm,在基片的一个电极区位上,采用脉冲激光沉积方法制备金属Co掺杂的a-C膜,镀膜时使用纯度为99.99%的石墨和99.9%的金属Co为靶源,金属Co片贴在石墨靶上,操作中,通过靶和样件基片自转实现均匀掺杂,Co掺杂量约10at%,激光能量390毫焦/脉冲,腔体真空度1×10-4mBar,基片温度480℃,靶与基片距离5cm。镀膜后退火30分钟,自然降温到室温,a-C膜厚约为40nm。然后再采用真空热蒸发方法,通过掩膜板的控制,对所制备的金属Co掺杂的a-C膜,及基片的另一个电极区位进行蒸镀Ag层。蒸镀Ag层时,是将一小段约50毫克、纯度为99.9%的Ag放入加热舟内,腔内抽至背底真空10-6mBar,室温下增大电流直至Ag镀层厚度为50-100nm即制作完成本发明的双结串联结构的光敏电阻器件。
以下再结合由多种实验结果所制作的附图,对本发明的技术方案作进一步说明:
如图1显示本发明器件的结构及其电光测量系统,器件的结构包括:硅(Si)掺杂的GaAs基片的底层1,基片上的一个电极区上,镀有钴(Co)掺杂的非晶碳膜(a-C:Co)2,非晶碳膜层上设置有一个镀银(Ag)层3a;基片上的另一个电极区上,直接设置有另一个镀银(Ag)层3b,两个镀银(Ag)层构成一对电极;标注4为GaAs基片上的空白区。
如图2所示,为本发明器件在波长为650nm(红光)功率为45mW/cm2激光二极管光照和无光照下的I-V曲线图;插图中还标出了有无光照时开路电压分别为0.25V和0.45V。该曲线图证实了本器件具有很好的整流性和光电导性。
如图3所示为在GaAs基片上蒸两个银电极后所测得的I-V曲线,该电流-电压特性曲线为非线性的,证明了本发明器件Ag与GaAs之间为肖特基接触。
如图4所示为在GaAs基片上两端(即电极区位)镀钴(Co)掺杂的非晶碳膜,再在该碳膜上蒸镀两个银层电极后所测得的I-V曲线,证实本发明器件的Ag/a-C:Co/GaAs之间为弱p-n结接触。
如图5为在图4所述电极结构下激光分别照射在a-C:Co膜和GaAs基片上时RD(暗电阻)和RL(亮电阻)随时间周期性变化曲线图,证明了a-C:Co膜显著地增强了GaAs光电导。
如图6为本发明器件的静态等效工作电路图。激光照射到样件上产生光生载流子,这相当于直流电流源;a-C:Co膜本身电阻约为Rc=1-5KΩ,不可忽略。直流电压源与电阻Rc、肖特基结、p-n结构成串联电路。
如图7所示,为本发明器件在室温下的RD/RL随正向偏压变化关系曲线图。在0.3V正向偏压下光电导最大,为650。随着电压增大光电导呈指数衰减。插图为0.3V正向偏压时测得的RD与RL随时间周期性变化的曲线图。
如图8所示,图中曲线为在0.3V正向偏压下,样件在300,250和200K时RD/RL的值。可见,本发明器件随着温度的降低,光电导会增大。当温度低于200K时,光电导可达104。插图为三种不同温度下0.3V正向偏压时测得的RD与RL随时间周期性变化的曲线图。
如图9所示,分析了本发明器件低温下光导增大原因。测量了0.3V正向偏压时RD和RL随温度变化曲线。随温度降低,光电流先增大,然后在195K达到最大值后再减小。而暗电流随温度降低而单调降低。这一结果很好说明了低温下光电导迅速增大的原因。
如图10所示,图中曲线为本发明器件的光电导(光灵敏度)随光照强度变化曲线图,证明了本器件具有线性光照曲线,适用于制备光检测设备,如光功率计。
综上,本发明可实现预期的发明目的。

Claims (7)

1.一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件,其特征在于:它的底层为硅(Si)掺杂的n型GaAs基片,基片上设置的两个电极区中的一个电极区上,镀有钴(Co)掺杂的非晶碳膜(a-C:Co),该非晶碳膜层上设置有镀银(Ag)层;基片上设置的另一个电极区上直接设置有镀银(Ag)层,两个镀银(Ag)层构成一对电极。
2.根据权利要求1所述的一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件,其特征在于:所述使用硅(Si)掺杂的n型GaAs基片的电阻率为10-2Ω.cm。
3.根据权利要求1所述的一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件,其特征在于:钴(Co)掺杂的非晶碳膜(a-C:Co)的Co掺杂量为10at%(原子百分比)。
4.根据权利要求1所述的一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件,其特征在于:所述钴(Co)掺杂的非晶碳膜(a-C:Co)的非晶碳膜层厚为35-45nm;镀Ag层的层厚为50-100nm。
5.制备一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件的方法,其特征在于:该方法的步骤是,以硅(Si)掺杂的n型GaAs基片作为底层,底层上预设两个电极区位,在其中的一个电极区位的基片上,采用脉冲激光沉积方法制备金属Co掺杂的非晶碳膜,并通过掩膜板在所制备的金属Co掺杂的非晶碳膜上,再采用真空热蒸发方法蒸镀Ag层;底层上另一个电极区位的基片上也采用真空热蒸发方法直接蒸镀Ag层,则制备成:由Co掺杂的非晶碳膜的p型半导体与硅(Si)掺杂的n型GaAs基片构成的p-n结,由硅(Si)掺杂的n型GaAs基片与其上的镀Ag层构成的肖特基结的双结串联结构的光敏电阻器件。
6.根据权利要求5所述的制备一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件的方法,其特征在于:所述采用脉冲激光沉积方法制备金属Co掺杂的非晶碳膜,是在镀膜时使用纯度为99.99%的石墨和99.9%的金属Co为靶源,金属Co片贴在石墨靶上,操作中,通过靶和样件基片自转实现均匀掺杂,Co掺杂量为10at%,激光能量390毫焦/脉冲,腔体真空度1×10-4mBar,基片温度480℃,靶与基片距离5cm,镀膜后退火30分钟,自然降温到室温,非晶碳膜厚为35-45nm。
7.根据权利要求5所述的制备一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件的方法,其特征在于:所述的真空热蒸发方法蒸镀Ag层,是将一小段50毫克、纯度为99.9%的Ag放入加热舟内,腔内抽至背底真空10-6mBar,室温下增大电流直至Ag镀层厚度为50-100nm。
CN201410069877.6A 2014-02-28 2014-02-28 一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件及其制备方法 Active CN103794666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410069877.6A CN103794666B (zh) 2014-02-28 2014-02-28 一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410069877.6A CN103794666B (zh) 2014-02-28 2014-02-28 一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件及其制备方法

Publications (2)

Publication Number Publication Date
CN103794666A CN103794666A (zh) 2014-05-14
CN103794666B true CN103794666B (zh) 2015-12-30

Family

ID=50670157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410069877.6A Active CN103794666B (zh) 2014-02-28 2014-02-28 一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件及其制备方法

Country Status (1)

Country Link
CN (1) CN103794666B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088007B (zh) * 2018-06-29 2020-07-07 华灿光电股份有限公司 一种薄膜发光二极管及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB906040A (en) * 1959-06-05 1962-09-19 Ceskoslovenska Akademie Ved Sintered photo electric resistance
JPS5736872A (en) * 1980-08-13 1982-02-27 Matsushita Electric Ind Co Ltd Photovoltaic module
CN1767218A (zh) * 2005-11-12 2006-05-03 南阳利达光电有限公司电子公司 新型光敏电阻及其制备方法
CN201421845Y (zh) * 2009-03-31 2010-03-10 南阳市信利佳电子有限责任公司 大功率复合型光敏电阻

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382170A (ja) * 1989-08-25 1991-04-08 Nippon Hoso Kyokai <Nhk> 半導体光電変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB906040A (en) * 1959-06-05 1962-09-19 Ceskoslovenska Akademie Ved Sintered photo electric resistance
JPS5736872A (en) * 1980-08-13 1982-02-27 Matsushita Electric Ind Co Ltd Photovoltaic module
CN1767218A (zh) * 2005-11-12 2006-05-03 南阳利达光电有限公司电子公司 新型光敏电阻及其制备方法
CN201421845Y (zh) * 2009-03-31 2010-03-10 南阳市信利佳电子有限责任公司 大功率复合型光敏电阻

Also Published As

Publication number Publication date
CN103794666A (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
Game et al. ZnO (N)–Spiro-MeOTAD hybrid photodiode: an efficient self-powered fast-response UV (visible) photosensor
Feng et al. Frequency response characteristics of pyroelectric effect in pn junction UV detectors
CN109686844B (zh) 一种基于钙钛矿自供电行为的光敏传感器
Qiao et al. Ultrahigh, ultrafast and large response size visible-near-infrared optical position sensitive detectors based on CIGS structures
US11011717B2 (en) Photodetectors and photovoltaic devices
Liu et al. Lateral bipolar photoresistance effect in the CIGS heterojunction and its application in position sensitive detector and memory device
Salunkhe et al. Performance evaluation of transparent self-powered n-ZnO/p-NiO heterojunction ultraviolet photosensors
Zheng et al. Self-powered UV-B photodetector based on hybrid Al: MgZnO/PEDOT: PSS Schottky diode
Makori et al. Characterization of SnSe-CdO: Sn PN junction for solar cell applications
Witkowski et al. Photoresistor based on ZnO nanorods grown on a p-type silicon substrate
CN103794666B (zh) 一种钴掺杂的非晶碳膜/GaAs/Ag光敏电阻器件及其制备方法
Liang et al. Multifunctional high-performance position sensitive detector based on a Sb 2 Se 3-nanorod/CdS core-shell heterojunction
Pan et al. A ZnO-based programmable UV detection integrated circuit unit
CN107968135A (zh) 非制冷型红外光探测器及其制备方法
CN106206829A (zh) 一种基于锰掺杂氮化铜薄膜的可见光探测器
Qiao et al. Large near-infrared lateral photovoltaic effect of ITO/Si structure observed at low temperature
Çiçek et al. Self-powered visible-UV light photodiodes based on ZnO nanorods-silicon heterojunctions with surface modification and structural enhancement
Zhao et al. Lateral photovoltaic effect observed in Co-doped ZnO film induced by 10.6 μm infrared laser
Lajvardi et al. Ni/TiO2 ultraviolet detector
US20210288194A1 (en) Methods and systems for generating alternating current by light
Khosropour et al. Microcrystalline silicon photodiode for large area NIR light detection applications
Zhang et al. Fast decay time and low dark current mechanism in TiO 2 ultraviolet detector
Ahmed et al. Photoelectric behavior of n-GaAs/orange dye, vinyl-ethynyl-trimethyl-piperidole/conductive glass sensor
Liu et al. Electric-induced nonvolatile enhancement of lateral photovoltaic effect observed in chromium nanofilm
Pavelets et al. Effective polycrystalline sensor of ultraviolet radiation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant