CN103785956B - 具有自动检测球体最高点位置的激光打孔设备及打孔方法 - Google Patents

具有自动检测球体最高点位置的激光打孔设备及打孔方法 Download PDF

Info

Publication number
CN103785956B
CN103785956B CN201410047588.6A CN201410047588A CN103785956B CN 103785956 B CN103785956 B CN 103785956B CN 201410047588 A CN201410047588 A CN 201410047588A CN 103785956 B CN103785956 B CN 103785956B
Authority
CN
China
Prior art keywords
spheroid
image
peak position
evaluation function
card
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410047588.6A
Other languages
English (en)
Other versions
CN103785956A (zh
Inventor
杨立军
王扬
张宏志
侯超剑
刘俊岩
王懋露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201410047588.6A priority Critical patent/CN103785956B/zh
Publication of CN103785956A publication Critical patent/CN103785956A/zh
Application granted granted Critical
Publication of CN103785956B publication Critical patent/CN103785956B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring

Abstract

具有自动检测球体最高点位置的激光打孔设备及打孔方法。目前在激光打孔还主要停留在人为的操作下,感知系统检测被加工材料的位置,凭借操作者的视觉来感知聚焦位置进而手动的调整运动控制系统到达指定的位置,进行激光打孔。具有自动检测球体最高点位置的激光打孔设备,包括:打孔机,高分辨同轴CCD传感器、图像采集卡构成自动检测系统,所述的自动检测系统连接计算机,所述的计算机装有高精度运动控制卡,所述的高精度运动控制卡连接所述的打孔机的步进电机,所述的计算机装有图像处理软件,通过自动检测系统迅速精确的聚焦球体的最高点位置。本发明位于球体最高点位置的激光打孔。

Description

具有自动检测球体最高点位置的激光打孔设备及打孔方法
技术领域
本发明属于激光打孔系统中球体最高点位置的自动检测的技术领域,特别是涉及一种精确的对球体最高点位置自动定位并进行打孔的设备和方法。
背景技术
在激光打孔过程中,为了保证孔的形状及尺寸要求,需要确定激光的聚焦位置,并且保证此聚焦位置的恒定不变。针对球体最高点位置的激光打孔,则激光束焦点聚焦球体最高点的精确程度是保证孔的形状和尺寸要求的关键因素。
目前在激光打孔的工艺过程中,还主要停留在人为的操作下,感知系统检测被加工材料的位置,凭借操作者的视觉来感知聚焦位置进而手动的调整运动控制系统到达指定的位置,进行激光打孔。这种方法在检测过程中的误差和后续的控制过程的误差很大,很难保持孔的形状和尺寸精度;而且自动化的程度很低,激光打孔的时间长。因此,为解决激光打孔精确聚焦问题,设计一套自动化程度高的激光打孔的系统,提高激光打孔的质量和效率具有重要的现实意义。
目前应用于激光打孔系统中的自动聚焦方法分为基于物方测距的主动式聚焦方法和基于像检测法的被动式聚焦方法。基于物方测距的主动式聚焦方法主要通过三角测距、红外线测距、超声波测距的方法测量物镜与被加工材料的距离,来达到自动聚焦的目的。但这种方法的缺点在于:针对透明材料会出现严重的散焦现象而造成很大的测量误差;硬件系统的成本高;系统的振动对其的影响比较敏感。故基于像检测法的被动式聚焦方法被广泛的使用,并且计算机图像处理的不断发展也为此方法提供了很好的支持。
发明内容
本发明提供一种具有自动检测球体最高点位置的激光打孔设备及打孔方法,采用图像处理技术,能够提高激光聚焦的精度,同时还能够解决激光打孔效率低的问题。
本发明的目的是这样实现的:
一种具有自动检测球体最高点位置的激光打孔设备,包括:打孔机,高分辨同轴CCD 传感器、图像采集卡构成自动检测系统,所述的自动检测系统连接计算机,所述的计算机装有高精度运动控制卡,所述的高精度运动控制卡连接所述的打孔机的步进电机,所述的计算机装有图像处理软件,通过自动检测系统迅速精确的聚焦球体的最高点位置。
所述的具有自动检测球体最高点位置的激光打孔设备,所述的 CCD 传感器光源与激光束光路同轴,并且所述的CCD 传感器支架应保证其轴线方向与载物台平面垂直,所述的CCD 传感器与所述的图像采集卡之间采用USB2.0 进行连接,所述的图像采集卡和所述的高精度运动控制卡则直接插入计算机的PCI 插槽中,保证检测结果使得采用图像处理得到的球体最高点位置即为激光束聚焦位置。
一种利用所述的设备进行自动检测球体最高点位置实现激光打孔方法,所述的通过高分辨率同轴CCD 传感器的准确识别、图像采集卡的模数转换、计算机图像处理软件的滤波处理及图像增强处理、高精度运动控制系统控制打孔机,实现打孔。
所述的设备进行自动检测球体最高点位置实现激光打孔方法,所述的通过高分辨率同轴CCD 传感器的准确识别,是指手动调整运动控制卡,将被测物体置于CCD 传感器的视场范围内,对被测物体进行照射,利用反射光透过物镜与CCD 感光部位成像,并使球体二维图像最清晰。
自动检测球体最高点位置实现激光打孔方法,所述的计算机图像处理软件的滤波处理及图像增强处理是将图像数据通过图像采集卡送入计算机,对二维图像边缘进行边缘点的采集;利用采集的边缘点,根据曲线拟合,拟合被测球体的二维图像边缘;根据所拟合的二维图像边缘求取图像的圆心位置,确定球体二维图像的圆心位置,采用所述的曲线拟合最终确定球体的最高点位置,以控制拟合误差,使得到的球体最高点位置更加精确。
自动检测球体最高点位置实现激光打孔方法,所述的高精度运动控制系统控制打孔机,实现打孔,是指在控制载物台时,使在X/Y 平面到达已经确定的圆心位置;建立针对该被测球体最高点位置的自动聚焦评价函数;控制载物台沿Z 轴的聚焦评价函数值增大的方向进行变步长移动,即:开始搜索采用大步长的搜索,逐步减小步长大小进行搜索,连续获得相应位置图像数据,计算相应位置聚焦评价函数的值,直到聚焦评价函数值出现第一次减小为止;采用变步长的搜索方法,有效的减小搜索的时间,控制载物台反向运动,重复以上的搜索过程;取聚焦评价函数值达到最大的位置及其附近的5 个位置,利用这些位置进行曲线拟合,根据所得曲线得出聚焦评价函数值最大的位置,将其作为最后的确定的球体最高点位置,从而迅速的确定球体最高点位置。
所述的设备进行自动检测球体最高点位置实现激光打孔方法,所述的高精度运动控制系统控制打孔机,实现打孔的方法是通过PC 机发出触发信号控制运动控制卡X/Y 方向,步进电机驱动载物台准确的到达指定的圆心位置;在圆心位置控制载物台Z 方向的运动,即给一个步长使得CCD 传感器大致聚焦于球体最高点附近,选择相应的聚焦评价函数,沿聚焦评价函数值变大的方向搜索,直到出现聚焦评价函数值减小的情况,在所有的步长都要记录相应的载物台的位置,采用曲线拟合的方式获得载物台Z 向位置与聚焦评价函数值之间的曲线,求取曲线的极大点位置则为聚焦点位置,完成聚焦;控制激光器,在聚焦位置进行精确打孔。
所述的设备进行自动检测球体最高点位置实现激光打孔方法,所述的计算机图像处理软件的滤波处理及图像增强处理是通过PCI 接口,将数字图像送入PC 机,利用图像处理软件先对图像进行滤波处理、图像增强处理,提高图像与背景之间的对比度;对图像处理后的图像进行智能边缘提取,利用边缘提取的采集点进行曲线拟合,准确的得出球体二维图像的圆心位置。
有益效果:
本发明提出的具有自动检测球体最高点位置的激光打孔系统具有以下几个特点:
(1)球体二维图像的边缘检测采用了智能边缘提取的方法,在减少检测时间的基础上更好的提取边缘检测点;
(2)对于球体二维图像的圆心位置的检测采用曲线拟合的方法,减小了传统的圆心确定的原理性误差;
(3)球体最高点位置的确定则建立相应聚焦评价函数,采用变步长的搜索方法,保证最高点位置确定的快速性和准确性。
本发明通过自动检测功能的高分辨率同轴CCD 传感器、高精度运动控制系统及检测方法,能够迅速的获得球体二维平面的圆心位置,能够自动的检测球体的最高点位置及进行精确的控制,在尽可能减少加工时间的基础上保证孔的形状和尺寸要求。
通过高分辨率同轴CCD 传感器的准确识别、图像采集卡的模数转换、计算机图像处理软件的滤波处理及图像增强处理、高精度运动控制系统的协同工作,实现了球体最高点位置的自动检测,并且检测的精度高、控制时间短,真正的实现了自动化程度高的激光打孔过程。同时,该系统中对于球体二维图像的圆心位置的确定,通过高分辨率CCD 的硬件支持上,尽可能的减小软件算法拟合误差;对于球体最高点位置的确定,则采用变步长的搜索方法,尽可能的减小调焦的时间。通过硬件的支持和软件的优化,形成了一套响应快、精度高的自动检测球体最高点的激光打孔系统。
附图说明
图1 自动检测球体最高点位置的激光打孔系统原理示意图。
图2 自动检测球体二维图像的圆心位置原理示意图。
图3 自动检测球体最高点位置的原理示意图。
具体实施方式:
实施例1 :
一种具有自动检测球体最高点位置的激光打孔设备,包括:打孔机,高分辨同轴CCD 传感器、图像采集卡构成自动检测系统,所述的自动检测系统连接计算机,所述的计算机装有高精度运动控制卡,所述的高精度运动控制卡连接所述的打孔机的步进电机,所述的计算机装有图像处理软件,通过自动检测系统迅速精确的聚焦球体的最高点位置。
实施例2 :
所述的具有自动检测球体最高点位置的激光打孔设备,所述的 CCD 传感器光源与激光束光路同轴,并且所述的CCD 传感器支架应保证其轴线方向与载物台平面垂直,所述的CCD 传感器与所述的图像采集卡之间采用USB 接口进行连接,所述的图像采集卡和所述的高精度运动控制卡则直接插入计算机的PCI 插槽中,保证检测结果使得采用图像处理得到的球体最高点位置即为激光束聚焦位置。
实施例3 :
一种利用实施例1 或2 所述的设备进行自动检测球体最高点位置实现激光打孔方法,所述的通过高分辨率同轴CCD 传感器的准确识别、图像采集卡的模数转换、计算机图像处理软件的滤波处理及图像增强处理、高精度运动控制系统控制打孔机,实现打孔。
实施例4 :
实施例3 所述的设备进行自动检测球体最高点位置实现激光打孔方法,所述的通过高分辨率同轴CCD 传感器的准确识别,是指手动调整运动控制卡,将被测物体置于CCD 传感器的视场范围内,对被测物体进行照射,利用反射光透过物镜与CCD 感光部位成像,并使球体二维图像最清晰。
实施例5 :
实施例3 或4 所述的自动检测球体最高点位置实现激光打孔方法,所述的计算机图像处理软件的滤波处理及图像增强处理是将图像数据通过图像采集卡送入计算机,对二维图像边缘进行边缘点的采集;利用采集的边缘点,根据曲线拟合,拟合被测球体的二维图像边缘;根据所拟合的二维图像边缘求取图像的圆心位置,确定球体二维图像的圆心位置,采用所述的曲线拟合最终确定球体的最高点位置,以控制拟合误差,使得到的球体最高点位置更加精确。
实施例6 :
实施例3 或4 或5 所述的自动检测球体最高点位置实现激光打孔方法,所述的高精度运动控制系统控制打孔机,实现打孔,是指在控制载物台时,使在X/Y 平面到达已经确定的圆心位置;建立针对该被测球体最高点位置的自动聚焦评价函数;控制载物台沿Z 轴的聚焦评价函数值增大的方向进行变步长移动,即:开始搜索采用大步长的搜索,逐步减小步长大小进行搜索,连续获得相应位置图像数据,计算相应位置聚焦评价函数的值,直到聚焦评价函数值出现第一次减小为止;采用变步长的搜索方法,有效的减小搜索的时间,控制载物台反向运动,重复以上的搜索过程;取聚焦评价函数值达到最大的位置及其附近的5 个位置,利用这些位置进行曲线拟合,根据所得曲线得出聚焦评价函数值最大的位置,将其作为最后的确定的球体最高点位置,从而迅速的确定球体最高点位置。
实施例7 :
实施例3 或4 或5 所述的设备进行自动检测球体最高点位置实现激光打孔方法,其特征是:所述的高精度运动控制系统控制打孔机,实现打孔的方法是通过PC 机发出触发信号控制运动控制卡X/Y 方向,步进电机驱动载物台准确的到达指定的圆心位置;在圆心位置控制载物台Z 方向的运动,即给一个步长使得CCD 传感器大致聚焦于球体最高点附近,选择相应的聚焦评价函数,沿聚焦评价函数值变大的方向搜索,直到出现聚焦评价函数值减小的情况,在所有的步长都要记录相应的载物台的位置,采用曲线拟合的方式获得载物台Z向位置与聚焦评价函数值之间的曲线,求取曲线的极大点位置则为聚焦点位置,完成聚焦;控制激光器,在聚焦位置进行精确打孔。
实施例8 :
实施例3 或4 或5 或6 或7 所述的设备进行自动检测球体最高点位置实现激光打孔方法,所述的计算机图像处理软件的滤波处理及图像增强处理是通过PCI 接口,将数字图像送入PC 机,利用图像处理软件先对图像进行滤波处理、图像增强处理,提高图像与背景之间的对比度;对图像处理后的图像进行智能边缘提取,利用边缘提取的采集点进行曲线拟合,准确的得出球体二维图像的圆心位置。
实施例9 :
具有自动检测球体最高点位置的激光打孔系统,包括硬件和软件两大部分。本方案的核心主要包括两个方面:一是球体二维图像的圆心位置的检测;二是球体最高点位置的快速准确的定位。
硬件系统包括:大功率激光器、激光束与照明光束同轴的高分辨率CCD 传感器、图像采集卡、PC 机、高精度运动控制卡、步进电机、具有X/Y/Z 向运动的载物台、CCD 传感器支架。软件系统包括:系统软件、图像处理软件、运动控制软件。其中对于CCD 传感器支架应保证其轴线方向与载物台平面严格的垂直,CCD 传感器与图像采集卡之间采用USB2.0 进行连接,图像采集卡和运动控制卡则直接插入PC 机的PCI 插槽中。
所述的具有自动检测球体最高点位置的激光打孔系统的工作原理是通过CCD 传感器和图像采集卡将图像送入PC 机,图像处理软件对图像进行处理,利用二维图像边缘的采集点进行曲线拟合得到二维图像的圆心位置,运动控制卡调整载物台X/Y 方向到该位置。在此基础上,调整载物台Z 方向的位置,采用变步长的搜索方法得到球体的最高点位置。
所述的具有自动检测球体最高点位置的激光打孔系统在自动定位时的包括以下步骤:
(1)手动调整运动控制卡,将被测物体置于CCD 传感器的视场范围内,对被测物体进行照射,利用反射光透过物镜与CCD 感光部位成像;
(2)将图像送入图像采集卡,进行模拟图像到数字图像的转变;
(3)通过PCI 接口,将数字图像送入PC 机,利用图像处理软件先对图像进行滤波处理、图像增强处理,提高图像与背景之间的对比度;
(4)对图像处理后的图像进行智能边缘提取,利用边缘提取的采集点进行曲线拟合,准确的得出球体二维图像的圆心位置;
(5)通过PC 机发出触发信号控制运动控制卡X/Y 方向,步进电机驱动载物台准确的到达指定的圆心位置;
(6)在圆心位置控制载物台Z 方向的运动,即给一个较大的步长使得CCD 传感器大致聚焦于球体最高点附近,选择相应的聚焦评价函数,沿聚焦评价函数值变大的方向搜索,直到出现聚焦评价函数值减小的情况,在所有的步长都要记录相应的载物台的位置,采用曲线拟合的方式获得载物台Z 向位置与聚焦评价函数值之间的曲线,求取曲线的极大点位置则为聚焦点位置,完成聚焦;
(7)控制激光器,在聚焦位置进行精确打孔。

Claims (6)

1.一种具有自动检测球体最高点位置的激光打孔设备,包括:打孔机,其特征是:高分辨同轴CCD 传感器、图像采集卡构成自动检测系统,所述的自动检测系统连接计算机,所述的计算机装有高精度运动控制卡,所述的高精度运动控制卡连接所述的打孔机的步进电机,所述的计算机装有图像处理软件,通过自动检测系统迅速精确的聚焦球体的最高点位置,
计算机图像处理软件的滤波处理及图像增强处理是将图像数据通过图像采集卡送入计算机,对二维图像边缘进行边缘点的采集;利用采集的边缘点,根据曲线拟合,拟合被测球体的二维图像边缘;根据所拟合的二维图像边缘求取图像的圆心位置,确定球体二维图像的圆心位置,采用所述的曲线拟合最终确定球体的最高点位置,以控制拟合误差,使得到的球体最高点位置更加精确;
高精度运动控制系统控制打孔机,实现打孔,是指在控制载物台时,使在X/Y 平面到达已经确定的圆心位置;建立针对该被测球体最高点位置的自动聚焦评价函数;控制载物台沿Z 轴的聚焦评价函数值增大的方向进行变步长移动,即:开始搜索采用大步长的搜索,逐步减小步长大小进行搜索,连续获得相应位置图像数据,计算相应位置聚焦评价函数的值,直到聚焦评价函数值出现第一次减小为止;采用变步长的搜索方法,有效的减小搜索的时间,控制载物台反向运动,重复以上的搜索过程;取聚焦评价函数值达到最大的位置及其附近的5 个位置,利用这些位置进行曲线拟合,根据所得曲线得出聚焦评价函数值最大的位置,将其作为最后的确定的球体最高点位置,从而迅速的确定球体最高点位置。
2. 根据权利要求1 所述的具有自动检测球体最高点位置的激光打孔设备,其特征是:所述的 CCD 传感器光源与激光束光路同轴,并且所述的CCD 传感器支架应保证其轴线方向与载物台平面垂直,所述的CCD 传感器与所述的图像采集卡之间采用USB 接口进行连接,所述的图像采集卡和所述的高精度运动控制卡则直接插入计算机的PCI 插槽中,保证检测结果使得采用图像处理得到的球体最高点位置即为激光束聚焦位置。
3. 一种利用权利要求1 或2 所述的设备进行自动检测球体最高点位置实现激光打孔方法,其特征是:所述的通过高分辨率同轴CCD 传感器的准确识别、图像采集卡的模数转换、计算机图像处理软件的滤波处理及图像增强处理、高精度运动控制系统控制打孔机,实现打孔。
4. 根据权利要求3 所述的自动检测球体最高点位置实现激光打孔方法,其特征是:所述的通过高分辨率同轴CCD 传感器的准确识别,是指手动调整运动控制卡,将被测物体置于CCD 传感器的视场范围内,对被测物体进行照射,利用反射光透过物镜与CCD 感光部位成像,并使球体二维图像最清晰。
5. 根据权利要求3 或4 所述的自动检测球体最高点位置实现激光打孔方法,其特征是:所述的高精度运动控制系统控制打孔机,实现打孔的方法是通过PC 机发出触发信号控制运动控制卡X/Y 方向,步进电机驱动载物台准确的到达指定的圆心位置;在圆心位置控制载物台Z 方向的运动,即给一个步长使得CCD 传感器大致聚焦于球体最高点附近,选择相应的聚焦评价函数,沿聚焦评价函数值变大的方向搜索,直到出现聚焦评价函数值减小的情况,在所有的步长都要记录相应的载物台的位置,采用曲线拟合的方式获得载物台Z 向位置与聚焦评价函数值之间的曲线,求取曲线的极大点位置则为聚焦点位置,完成聚焦;控制激光器,在聚焦位置进行精确打孔。
6. 根据权利要求3 或4 所述的自动检测球体最高点位置实现激光打孔方法,其特征是:所述的计算机图像处理软件的滤波处理及图像增强处理是通过PCI 接口,将数字图像送入PC 机,利用图像处理软件先对图像进行滤波处理、图像增强处理,提高图像与背景之间的对比度;对图像处理后的图像进行智能边缘提取,利用边缘提取的采集点进行曲线拟合,准确的得出球体二维图像的圆心位置。
CN201410047588.6A 2014-02-11 2014-02-11 具有自动检测球体最高点位置的激光打孔设备及打孔方法 Active CN103785956B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410047588.6A CN103785956B (zh) 2014-02-11 2014-02-11 具有自动检测球体最高点位置的激光打孔设备及打孔方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410047588.6A CN103785956B (zh) 2014-02-11 2014-02-11 具有自动检测球体最高点位置的激光打孔设备及打孔方法

Publications (2)

Publication Number Publication Date
CN103785956A CN103785956A (zh) 2014-05-14
CN103785956B true CN103785956B (zh) 2015-08-19

Family

ID=50662239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410047588.6A Active CN103785956B (zh) 2014-02-11 2014-02-11 具有自动检测球体最高点位置的激光打孔设备及打孔方法

Country Status (1)

Country Link
CN (1) CN103785956B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104942452B (zh) * 2015-05-22 2018-05-22 广东正业科技股份有限公司 一种激光打孔机及利用激光打孔机的打孔方法
CN104858553B (zh) * 2015-06-22 2017-05-17 上海定向材料科技有限公司 一种基于视觉识别的蜂窝陶瓷自动打孔设备
CN106001941B (zh) * 2016-05-05 2018-06-05 张玉峰 一种激光拉丝模打孔机及其线性变频控制方法
CN108088680B (zh) * 2016-11-22 2020-09-01 上海汽车集团股份有限公司 一种发动机台架标定试验系统
CN107378263A (zh) * 2017-08-08 2017-11-24 江苏大金激光科技有限公司 一种激光切割机图像摄取装置
CN108968142B (zh) * 2018-04-17 2021-11-02 江苏瑞驰机电科技有限公司 烟纸或者烟支激光打孔的监测装置和判别检测方法
CN110210162B (zh) * 2019-06-12 2023-06-09 上海森松制药设备工程有限公司 一种开孔方法、装置、开孔机及存储介质
US20230035853A1 (en) * 2020-02-06 2023-02-02 Abb Schweiz Ag Apparatus and method for cutting opening from workpiece
CN113210895A (zh) * 2021-04-07 2021-08-06 武汉中谷联创光电科技股份有限公司 宝石打孔的视觉定位装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408526B1 (en) * 1999-04-12 2002-06-25 The Regents Of The University Of California Ultra-precision positioning assembly
CN100999220A (zh) * 2006-12-18 2007-07-18 杭州电子科技大学 车辆轮对直径在线检测方法及装置
CN101134266A (zh) * 2007-10-10 2008-03-05 厦门大学 带有测量装置的多功能激光加工刀具
CN201848648U (zh) * 2010-09-27 2011-06-01 珠海市铭语自动化设备有限公司 一种自动对焦激光加工装置
CN202571610U (zh) * 2012-04-06 2012-12-05 成都康弘药业集团股份有限公司 一种渗透泵药片激光打孔机
CN102962589A (zh) * 2012-11-28 2013-03-13 江苏金方圆数控机床有限公司 一种脉冲激光穿孔装置及其穿孔方法
CN202894598U (zh) * 2012-11-23 2013-04-24 天津市激光技术研究所 新型激光打孔机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172316A (ja) * 1997-08-28 1999-03-16 M C Electron Kk Icリードの平坦度計測装置
KR20130056427A (ko) * 2011-11-22 2013-05-30 주식회사 고려반도체시스템 레이저 드릴링 장치 및 이를 이용한 레이저 드릴링 가공 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408526B1 (en) * 1999-04-12 2002-06-25 The Regents Of The University Of California Ultra-precision positioning assembly
CN100999220A (zh) * 2006-12-18 2007-07-18 杭州电子科技大学 车辆轮对直径在线检测方法及装置
CN101134266A (zh) * 2007-10-10 2008-03-05 厦门大学 带有测量装置的多功能激光加工刀具
CN201848648U (zh) * 2010-09-27 2011-06-01 珠海市铭语自动化设备有限公司 一种自动对焦激光加工装置
CN202571610U (zh) * 2012-04-06 2012-12-05 成都康弘药业集团股份有限公司 一种渗透泵药片激光打孔机
CN202894598U (zh) * 2012-11-23 2013-04-24 天津市激光技术研究所 新型激光打孔机
CN102962589A (zh) * 2012-11-28 2013-03-13 江苏金方圆数控机床有限公司 一种脉冲激光穿孔装置及其穿孔方法

Also Published As

Publication number Publication date
CN103785956A (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
CN103785956B (zh) 具有自动检测球体最高点位置的激光打孔设备及打孔方法
CN103674839B (zh) 一种基于光斑检测的可视化样品定位操作系统及方法
CN101839696B (zh) 一种影像式半径样板自动检定仪
CN100501312C (zh) 基于机器视觉的宝石三维切工检测方法
CN104224212A (zh) Ct系统、其扫描定位方法及校准方法
CN104181685A (zh) 基于显微镜的数字切片自动聚焦装置及其方法
JP2014207645A5 (zh)
WO2017197919A1 (zh) 一种无线充电定位方法、装置、系统及电动汽车
CN103376065B (zh) 类条形码引伸计系统及其测量应力应变全曲线的方法
CN110930442B (zh) 基于标定块的机器人手眼标定中关键点位置确定方法与装置
CN107345789A (zh) 一种pcb板孔位检测装置及方法
CN107202555B (zh) 一种连杆加工旋转盘夹具视觉检测装置和检测方法
CN104567674A (zh) 双边拟合共焦测量方法
CN113134683A (zh) 基于机器学习的激光标刻方法及装置
CN105654001A (zh) 基于不同景深的二维码扫描设备性能的测试方法
CN110091217A (zh) 一种基于机器视觉的车削颤振加速度采集系统及方法
CN110836641A (zh) 一种零件异形表面微结构三维尺寸的检测方法及检测设备
CN104316530A (zh) 一种零部件检测方法及应用
CN103323216B (zh) 一种检测平行光管视差的装置及方法
CN101907490B (zh) 基于二维细分法的微小光斑强度分布测量方法
CN103084927A (zh) 一种在线测量系统及其在线测量方法
CN104907690A (zh) 激光焦点定位装置及方法
CN202582485U (zh) 可自动输入产品信息的影像测量仪
CN211331676U (zh) 一种航空叶片打孔机加装气膜孔孔位孔径在线检测的装置
CN201773041U (zh) 球压实验压痕尺寸测量装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant