CN103778281A - GaAs pHEMT管芯非线性模型参数提取方法 - Google Patents

GaAs pHEMT管芯非线性模型参数提取方法 Download PDF

Info

Publication number
CN103778281A
CN103778281A CN201410010775.7A CN201410010775A CN103778281A CN 103778281 A CN103778281 A CN 103778281A CN 201410010775 A CN201410010775 A CN 201410010775A CN 103778281 A CN103778281 A CN 103778281A
Authority
CN
China
Prior art keywords
neural network
tube core
gaas phemt
layer
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410010775.7A
Other languages
English (en)
Inventor
王志宇
王立平
徐秀琴
郁发新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201410010775.7A priority Critical patent/CN103778281A/zh
Publication of CN103778281A publication Critical patent/CN103778281A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明提供了一种GaAs pHEMT管芯非线性模型的参数提取方法。该方法首先对GaAs pHEMT管芯等效电路进行分析,提取其中的非线性元件参数。再由等效电路模型中非线性和线性元件的维度,设计适用的前馈型神经网络算法,进行非线性模型参数提取。将训练好的神经网络导入CAD软件,即可生成GaAs pHEMT管芯非线性模型,以实现对大信号的仿真。本发明结合了数据挖掘技术与器件等效电路建模技术,是一种有效的参数提取方法。

Description

GaAs pHEMT管芯非线性模型参数提取方法
技术领域
本发明属于微波技术领域,具体涉及一种GaAs pHEMT管芯非线性模型参数提取方法。
背景技术
在信息技术的众多领域中,以半导体材料为基础制作的各种各样的器件在人们的生活中几乎无处不在。它们不断改变着人们的生活方式、思维方式,提高了人类的生活质量,促进了社会的文明进步。半导体材料的迅速发展与电子产品的发展是互相促进,不可分开的。
砷化镓(GaAs)晶体是一种电学性能优越的化合物半导体材料,以它作为衬底的半导体器件及集成电路具有超高频、低功耗、低噪声等突出优点,并且得到广泛的应用。GaAs器件及其集成电路在微波通信和军事领域显示出它的重要性。
微波/毫米波器件和电路是当今微电子技术的一个重要发展方向。它在电子对抗、雷达、通信、导航等系统中有着广泛的应用。在民用方面也大量应用在移动电话、无线通信、近年来,微波功率放大器的发展速度很快,其总栅宽和耐压水平也正在逐步提高。一般情况下,制作微波功率放大器都会使用微波单片集成电路(MMIC)的形式,因为它的制作工艺比较成熟。
在MMIC设计中,器件模型起着至关重要的作用,我们不仅需要利用器件模型来仿真电路拓扑,用来验证所设计的电路是否达到预期的目标,还要根据电路的指标要求对器件工艺提出相关的性能要求。随着半导体器件的大小向着越来越小的方向发展,今后MMIC的集成度将越来越高,传统的以经验为主的电路设计方法已经不能再满足期间的发展要求,因而获得准确的期间模型将会成为电路设计的关键之一。
器件模型包括大信号非线性模型和小信号模型,其中,非线性模型包括非线性电流电压模型和非线性电容电压模型。小信号模型主要用于器件性能分析和反向工艺设计,大信号非线性模型则主要用于精确描述器件的非线性特性,需要尽量考虑器件中的物理过程。精确的小信号模型是研究大信号模型的基础,同时,不同的功能电路和应用频率对模型的要求是不同的。
直接从材料特性,工艺条件和器件的工作状态来确定模型参数是很困难的,因此通过实验测量来获得模型参数是比较实用的方法。在实际工作中,通常用从S参数提取的方法来确定等效电路的参数模型。常用的S参数提取方法主要有利用解析公式直接提取的方法和基于优化数据拟合的方法。直接提取的方法不能保证在全部频率范围内模型参数的一致性,基于优化的方法受测量误差较小,可以得到比直接提取的方法更为准确的参数值。
神经网络法是一种全局优化算法,它可以避免利用解析公式直接提取参数可能会产生的错误解问题。人工神经网络(ANN)是模仿人类脑神经活动的一种人工智能技术,是由大量的同时也是很简单的处理单元广泛连接构成的复杂网络系统。人工神经网络是建立在现代神经科学研究基础上的一种抽象的数学模型。人工神经网络可以通过学习掌握样本规律,在输入新的数据和状态信息时,可以用人工神经网络进行自动推理和控制。
发明内容
本发明提出了一种新的GaAs pHEMT管芯非线性模型参数提取方法, 以实现对大信号输入下GaAs pHEMT管芯电路响应的精确仿真。
该方法首先对GaAs pHEMT管芯等效电路进行分析,提取其中的非线性元件参数。再由等效电路模型中非线性和线性元件的维度,设计适用的前馈型神经网络算法,进行非线性模型参数提取。
本发明中采用的神经网络算法为前馈型神经网络,由输入层、隐含层和输出层三部分组成。通过分析GaAs pHEMT管芯等效电路模型,确定输入层、隐含层与输出层的节点。然后对该神经网络进行训练。训练好的神经网络即可用于GaAs pHEMT管芯非线性模型参数的提取。
本发明所述的GaAs pHEMT管芯非线性模型参数提取方法的步骤如下:
(1)、对GaAs pHEMT管芯等效电路进行分析,提取其中的非线性元件参数,建立5层前馈型神经网络。
(2)、由等效电路模型中非线性和线性元件的维度,确定前馈型神经网络输入层、隐含层与输出层的节点数。
(3)、通过实测的不同Vgs和Vds下管芯的S参数,及通过脉冲I-V测试得到的管芯的I-V特性曲线,导出等效电路模型中各元件值,作为训练神经网络的样本数据。
(4)、利用自适应学习速率法对网络进行训练。
(5)、将不同的Vgs和Vds偏压输入该训练好的神经网络,实现GaAs pHEMT管芯非线性模型参数的提取。
将训练好的神经网络可导入CAD软件,生成GaAs pHEMT管芯非线性模型。
本发明步骤(3)所述的 S参数又称为散射参数,它可以直接用网络分析仪器测量得到,可以用网络分析技术来计算。所述的脉冲I-V测试能够在施加电流脉冲的同时测量电压,使工程人员能够对器件进行I-V特征分析,与此同时,还能保护器件不受损坏。
本发明步骤(4)所述的自适应学习速率法有利于缩短学习时间。学习速率太小,收敛比较慢;学习速率太大,则有可能导致发散,因此选取自适应调整的改进算法,对神经网络进行训练。一旦训练达到了最大训练次数或者网络函数指标小于期望误差,或者超出规定计算时间,都会使网络停止学习。
本发明结合了数据挖掘技术与器件等效电路建模技术,实现了基于前馈型神经网络的GaAs pHEMT管芯非线性模型参数提取,是一种有效的参数提取方法。其创新与优势在于:
(1)、该方法与一般的直接测量方法相比,受测量误差影响较小,可以得到比直接提取方法更为准确的参数值。
(2)、该方法采用的前馈型神经网络算法受等效电路各参数维度的指导,是一种经过层结构优化的全局优化算法,资源占用较少,且最终解受初始值选取的影响较小,易于得到全局最优解。
 
附图说明
图1  GaAs pHEMT管芯等效电路图。
图2  GaAs pHEMT管芯非线性模型参数提取流程示意图。
具体实施方式
本发明提供了一种用于GaAs pHEMT管芯非线性模型参数提取方法。该方法首先对图1中所示的GaAs pHEMT管芯等效电路进行分析,提取其中的非线性元件参数。再由等效电路模型中非线性和线性元件的维度,设计适用的前馈型神经网络算法,进行非线性模型参数提取。将训练好的神经网络导入CAD软件,即可生成GaAs pHEMT管芯非线性模型,以实现对大信号的仿真。提取流程示意图如图2所示,其具体实施方式如下:
(1)、对GaAs pHEMT管芯等效电路进行分析,提取其中的非线性元件参数,建立5层前馈型神经网络。其中包括1输入层,3隐含层和1输出层。
(2)、将栅源偏压Vgs和漏源偏压Vds作为神经网络的输入层节点,将归一化后的电路非线性本征参数Cgs、Cgd、Cds、Ri、Rds、Gm作为网络输出层的节点。输入输出层之间设3层隐含层,将寄生电阻Rs、Rd、Rg,寄生电感Ls、Ld、Lg,以及寄生电容Cpg、Cpd的总维数8作为前馈型神经网络的第三层隐含层节点数,并将第一、第二层隐含层的节点数分别设为4和6。
(3)、通过实测不同Vgs和Vds下的管芯,得到管芯的S参数;并通过施加电流脉冲,测得管芯的I-V特性曲线,从而导出图1等效电路模型中各元件值,作为训练神经网络的样本数据。
(4)、利用自适应学习速率法对网络进行训练。首先进行初始化,即随机地设置各层权重系数;然后将训练样本的数据加到网络输入端,计算各层的输出,将输出值与期望值相比得到误差值;根据误差值重新调整连接权重;如果误差值小于预订误差,则认为网络已收敛,停止学习,反之,继续学习。可通过调整自适应学习速率参数有效地调整学习时间。
(5)、将不同的Vgs和Vds偏压输入该训练好的神经网络,即可实现GaAs pHEMT管芯非线性模型参数的提取。
将训练好的神经网络导入CAD软件,生成GaAs pHEMT管芯非线性模型,即可进行大信号仿真。
本发明是一种有效的参数提取方法。由于所设计的神经网络算法可得到全局最优解,所以测量误差对参数的影响较小。此外,初始值的选取也不影响最终解,所以通过该算法可有效得到最优的GaAs pHEMT管芯非线性模型参数。

Claims (1)

1. GaAs pHEMT管芯非线性模型参数提取方法,其特征在于该方法的具体步骤如下:
(1)、对GaAs pHEMT管芯等效电路进行分析,提取其中的非线性元件参数,建立5层前馈型神经网络;其中包括1输入层,3隐含层和1输出层;
(2)、将栅源偏压Vgs和漏源偏压Vds作为神经网络的输入层节点,将归一化后的电路非线性本征参数Cgs、Cgd、Cds、Ri、Rds、Gm作为网络输出层的节点;输入输出层之间设3层隐含层,将寄生电阻Rs、Rd、Rg,寄生电感Ls、Ld、Lg,以及寄生电容Cpg、Cpd的总维数8作为前馈型神经网络的第三层隐含层节点数,并将第一、第二层隐含层的节点数分别设为4和6;
(3)、通过实测不同Vgs和Vds下的管芯,得到管芯的S参数;并通过施加电流脉冲,测得管芯的I-V特性曲线,从而导出等效电路模型中各元件值,作为训练神经网络的样本数据;
(4)、利用自适应学习速率法对网络进行训练;通过调整自适应学习速率参数有效地调整学习时间;
(5)、将不同的Vgs和Vds偏压输入该训练好的神经网络,即可实现GaAs pHEMT管芯非线性模型参数的提取。
CN201410010775.7A 2014-01-09 2014-01-09 GaAs pHEMT管芯非线性模型参数提取方法 Pending CN103778281A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410010775.7A CN103778281A (zh) 2014-01-09 2014-01-09 GaAs pHEMT管芯非线性模型参数提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410010775.7A CN103778281A (zh) 2014-01-09 2014-01-09 GaAs pHEMT管芯非线性模型参数提取方法

Publications (1)

Publication Number Publication Date
CN103778281A true CN103778281A (zh) 2014-05-07

Family

ID=50570511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410010775.7A Pending CN103778281A (zh) 2014-01-09 2014-01-09 GaAs pHEMT管芯非线性模型参数提取方法

Country Status (1)

Country Link
CN (1) CN103778281A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104778307A (zh) * 2015-03-12 2015-07-15 浙江大学 基于GaAs PHEMT MMIC热仿真等效模型
CN105468803A (zh) * 2014-09-12 2016-04-06 上海华虹宏力半导体制造有限公司 大信号应用的器件模型参数提取方法
CN106446310A (zh) * 2015-08-06 2017-02-22 新加坡国立大学 基于人工神经网络的晶体管及系统建模方法
CN110380709A (zh) * 2019-07-12 2019-10-25 浙江大学 高速栅极脉冲调制电路及射频功率放大器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105468803A (zh) * 2014-09-12 2016-04-06 上海华虹宏力半导体制造有限公司 大信号应用的器件模型参数提取方法
CN105468803B (zh) * 2014-09-12 2018-07-20 上海华虹宏力半导体制造有限公司 大信号应用的器件模型参数提取方法
CN104778307A (zh) * 2015-03-12 2015-07-15 浙江大学 基于GaAs PHEMT MMIC热仿真等效模型
CN104778307B (zh) * 2015-03-12 2017-08-25 浙江大学 基于GaAs PHEMT MMIC热仿真等效模型
CN106446310A (zh) * 2015-08-06 2017-02-22 新加坡国立大学 基于人工神经网络的晶体管及系统建模方法
CN106446310B (zh) * 2015-08-06 2021-08-31 新加坡国立大学 基于人工神经网络的晶体管及系统建模方法
CN110380709A (zh) * 2019-07-12 2019-10-25 浙江大学 高速栅极脉冲调制电路及射频功率放大器

Similar Documents

Publication Publication Date Title
Kabir et al. Smart modeling of microwave devices
CN102314522B (zh) 一种模拟集成电路设计优化方法
CN103675629B (zh) 基于电场特征量的电极起晕电压预测方法
CN103778281A (zh) GaAs pHEMT管芯非线性模型参数提取方法
Zhang et al. EM-centric multiphysics optimization of microwave components using parallel computational approach
CN105787558A (zh) 基于ads的知识神经网络微带滤波器设计方法
CN108549767B (zh) 一种用于大信号功率晶体管的神经网络空间映射建模方法
CN106777620A (zh) 一种用于功率晶体管的神经网络空间映射建模方法
CN107636656A (zh) 基于大信号等效电路模型的GaN器件工艺参数统计分析方法
da Silva et al. Phasor estimation in power systems using a neural network with online training for numerical relays purposes
Vellingiri et al. Adaptive neuro fuzzy inference system-based power estimation method for CMOS VLSI circuits
CN110362881B (zh) 基于极限学习机的微波功率器件非线性模型方法
CN111967186A (zh) 一种用于功率晶体管大信号建模的神经网络空间映射方法
Khan et al. Singular perturbation‐based model reduction of power electronic circuits
Feng et al. Recent advances in parametric modeling of microwave components using combined neural network and transfer function
CN106909741A (zh) 一种微波GaN功率器件的建模方法
Xu et al. Deep‐learning‐based scenario generation strategy considering correlation between multiple wind farms
Rayas-Sánchez et al. On knowledge-based neural networks and neuro-space mapping
Cai et al. An artificial neural network based nonlinear behavioral model for RF power transistors
Sang et al. Modeling of GaN HEMT by using an improved k-nearest neighbors algorithm
CN105302968A (zh) 一种分布式功率放大器优化设计方法
Lei et al. X‐parameter modelling of GaN HEMT based on neural network
Gustafsson On marginal particle filters with linear complexity
CN106021670A (zh) 一种毫米波fet的建模方法
Gharehbaghi et al. Modelling and efficiency optimisation of UHF Dickson rectifiers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140507