近接感测方法及装置
技术领域
本发明涉及一种侦测方法及装置,特别是涉及一种侦测物体是否接近的近接感测方法及装置。
背景技术
近年来,近接感测装置被广泛应用于具有触控面板的电子装置,例如行动电话上。参见图1所示,以往的近接感测装置设置在行动电话(图未示)的一触控面板40下方,其主要包括一红外线发光二极管41、一与红外线发光二极管41相邻且以一隔光机构42相阻隔的光传感器43,以及一处理器44。红外线发光二极管41会发射一光信号E,光传感器43接收该光信号E由一物体50反射回来的一反射光信号R并传给处理器44,处理器44将该反射光信号R数位化为一光强度值。一般来说,如图2所示,该光强度值会随着物体50与光传感器43之间的距离渐短而渐强,直到趋近于一最大值2000。因此,处理器44会根据预设的一临界距离,例如70mm,设定一临界值,例如500,并判断得到的光强度值是否大于该临界值,若是,则判定物体50接近行动电话,则关闭触控面板40,以避免物体50误触触控面板40而导致电子装置产生误动作。
惟,如图3及图4所示,当物体60是一反射率很低的物体,例如黑卡或使用者的黑发时,会发现当物体60相当贴近行动电话时,例如与行动电话的距离在2-3mm的范围时,由物体60反射的反射光信号的光强度值会高于临界值500,但是当物体60与行动电话的距离短于2mm时,由物体60反射的反射光信号的强度值反而急剧地衰减至低于临界值500,导致处理器44误判物体60与行动电话远离而开启触控面板40。
发明内容
本发明的目的在于提供一种可避免因物体的反射率太低而误判物体没有靠近的近接感测方法及装置。
本发明第一种近接感测方法预设有相邻的一第一发光元件及一光传感器,以及一与该光传感器间隔一预定距离的第二发光元件,并进行步骤包括:(A)令该第一发光元件发射一第一光信号,使该光传感器感测该第一光信号的一第一反射光信号;(B)判断该第一反射光信号的强度是否大于一临界值,若是,判定有物体接近;(C)再判断该第一反射光信号的强度是否持续大于一临界值,若否,令该第二发光元件发射一第二光信号,使该光传感器感测该第二光信号的一第二反射光信号;及(D)判断该第一反射光信号的强度与该第二反射光信号的强度的一比值是否大于一预设值,若是,判定有物体接近。
较佳地,在步骤(B)中,当判断该第一反射光信号的强度小于或等于该临界值,则判定没有物体接近。
较佳地,在步骤(D)中,当判断该比值小于或等于该预设值,则判定没有物体接近,并关闭该第二发光元件。
较佳地,在步骤(D)中,该第一发光元件及该第二发光元件是交错地发射该第一光信号及第二光信号。
本发明第二种近接感测方法预设有相邻的一第一发光元件及一光传感器,以及一与该光传感器间隔一预定距离的第二发光元件,并进行步骤包括:(A)令该第一发光元件发射一第一光信号,使该光传感器感测该第一光信号的一第一反射光信号;(B)判断该第一反射光信号的强度是否大于一临界值,若是,判定有物体接近,并令该第二发光元件发射一第二光信号,使该光传感器感测该第二光信号的一第二反射光信号;及(C)判断该第一反射光信号的强度与该第二反射光信号的强度的一比值是否大于一预设值,若是,判定有物体接近,否则判定没有物体接近。
本发明第三种近接感测方法预设有相邻的一第一发光元件及一光传感器,以及一与该光传感器间隔一预定距离的第二发光元件,并进行步骤包括:(A)令该第一发光元件与该第二发光元件交错地发射一第一光信号及一第二光信号,使该光传感器分别感测该第一光信号的一第一反射光信号,以及感测该第二光信号的一第二反射光信号;及(B)判断该第一反射光信号的强度与该第二反射光信号的强度的一比值是否大于一预设值,若是,判定有物体接近,否则判定没有物体接近。
而本发明实现上述第一种方法的第一种近接感测装置,包括一第一发光元件,一与该第一发光元件相邻的光传感器,一与该光传感器间隔一预定距离的第二发光元件,一控制器及一处理器;该控制器控制该第一发光元件发射一第一光信号,使该光传感器感测该第一光信号的一第一反射光信号,且该处理器判断该第一反射光信号的强度大于一临界值时,判定有物体接近,并在后续判断该第一反射光信号的强度小于或等于该临界值时,令该控制器控制该第二发光元件发射一第二光信号,使该光传感器感测该第二光信号的一第二反射光信号,且该处理器判断该第一反射光信号的强度与该第二反射光信号的强度的一比值大于一预设值时,则判定有物体接近。
较佳地,该处理器一开始判断该第一反射光信号的强度小于或等于该临界值时,则判定没有物体接近。
较佳地,该处理器判断该比值小于或等于该预设值,则判定没有物体接近,并令该控制器关闭该第二发光元件。
较佳地,当该第二发光元件发射该第二光信号时,该控制器控制该第一发光元件及该第二发光元件交错发射该第一光信号及该第二光信号。
较佳地,该第二发光元件设在该第一发光元件远离该光传感器的一侧,且该近接感测装置还包括一设在该第一发光元件与该光传感器之间的第一隔光机构,以及一设在该第二发光元件的接近该第二发光元件的一侧的第二隔光机构。
本发明实现上述第二种方法的第二种近接感测装置,包括一第一发光元件,一与该第一发光元件相邻的光传感器,一与该光传感器间隔一预定距离的第二发光元件,一控制器及一处理器;该控制器控制该第一发光元件发射一第一光信号,使该光传感器感测该第一光信号的一第一反射光信号,且该处理器判断该第一反射光信号的强度大于一临界值时,判定有物体接近,并令该控制器控制该第二发光元件发射一第二光信号,使该光传感器感测该第二光信号的一第二反射光信号,且该处理器判断该第一反射光信号的强度与该第二反射光信号的强度的一比值大于一预设值时,则判定有物体接近。
本发明实现上述第三种方法的第三种近接感测装置,包括一第一发光元件,一与该第一发光元件相邻的光传感器,一与该光传感器间隔一预定距离的第二发光元件,一控制器及一处理器;该控制器控制该第一发光元件与该第二发光元件交错地发射一第一光信号及一第二光信号,使该光传感器分别感测该第一光信号的一第一反射光信号,以及感测该第二光信号的一第二反射光信号,且该处理器判断该第一反射光信号的强度与该第二反射光信号的强度的一比值大于一预设值时,则判定有物体接近,否则判定没有物体接近。
本发明的有益效果在于:借由设置一近一远的两个发光元件搭配一个光传感器或者设置一近一远的两个光传感器搭配一个发光元件,并在只开启较近的该发光元件或光传感器时,发现由物体反射的反射光强度从大于临界值变成小于临界值时,可借由再开启较远的该发光元件或光传感器,求得在此情况下由物体反射的一近一远两个反射光强度的与物体和近接感测装置之间的距离成反比的一比值,并借由判断该比值是否大于一预设值,即可进一步确定物体是相对近接感测装置靠近或远离,避免因物体的反射率低而误判的情况发生。
附图说明
图1是显示以往的近接感测装置的组成元件示意图;
图2是显示以往的近接感测装置感测一物体时,由该物体反射的反射光信号的强度通常会与该物体和近接感测装置之间的距离成反比的曲线图;
图3是显示一低反射率的物体贴近以往的近接感测装置的示意图;
图4是显示当一低反射率的物体非常靠近以往的近接感测装置时,其反射光信号的强度反而迅速衰减的曲线图;
图5是显示本发明近接感测装置的第一较佳实施例的组成元件示意图;
图6是显示本发明近接感测方法的第一较佳实施例的流程图;
图7显示第一实施例的近接感测装置中的第一发光元件发射的第一光信号从物体反射回来的第一反射光信号的光强度值与物体和近接感测装置之间的距离的对应关系的一第一光强度值曲线S1,第二发光元件发射的一第二光信号从物体反射回来的第二反射光信号的光强度值与物体和近接感测装置之间的距离的对应关系的一第二光强度值曲线S2,以及第一光强度值曲线S1与第二光强度值曲线S2的一比值曲线S3;
图8是显示一低反射率的物体贴近第一实施例的近接感测装置的示意图;
图9是显示本发明近接感测方法的第二较佳实施例的流程图;
图10是显示本发明近接感测方法的第三较佳实施例的流程图;
图11是显示本发明近接感测装置的第二较佳实施例的组成元件示意图;
图12是显示本发明近接感测方法的第四较佳实施例的流程图;
图13是显示本发明近接感测方法的第五较佳实施例的流程图;
图14是显示本发明近接感测方法的第六较佳实施例的流程图。
具体实施方式
下面结合附图及实施例对本发明进行详细说明:
参见图5所示,本发明近接感测装置可应用在一设有一触控屏幕20的电子装置(图未示),例如行动电话上,其第一较佳实施例包括设在一印刷电路板10上且位于触控屏幕20下方的一第一发光元件11,一与第一发光元件11相邻且以一隔光机构12相隔的光传感器13,一与光传感器13间隔一预定距离D的第二发光元件14,一与第一发光元件11及第二发光元件14电耦接的控制器15,以及一与控制器15及触控屏幕20电耦接的处理器16。其中预定距离D至少是第一发光元件11和光传感器13的距离的2倍(以上)。
其中第一发光元件11及第二发光元件14是发出红外光的红外线发光二极管,且光传感器13是一红外光传感器,隔光机构12是用以避免第一发光元件11发出的光线未经物体反射即直接被光传感器13接收。又第二发光元件14是设在第一发光元件11的与光传感器13相反的一侧,且第二发光元件14的靠近第一发光元件11的一侧还设有另一隔光机构17,用以避免第二发光元件14发出的光线未经物体反射即直接被光传感器13接收。
且近接感测装置的第一实施例实现本发明近接感测方法的第一较佳实施例,如图6的步骤S61所示,首先,控制器15控制第一发光元件11发射一第一光信号E1,如图5所示,使光传感器13感测第一光信号E1从一物体30反射回来的一第一反射光信号R1并传给处理器16,然后,如步骤S62,处理器16将第一反射光信号R1进行类比/数位转换成一第一光强度值V1。且设若物体30是一低反射率物体,则可得到如图7所示,第一光信号E1从物体30反射回来的第一反射光信号R1的光强度值与物体30和近接感测装置之间的距离的对应关系的一第一光强度值曲线S1。又假设处理器16预先设定一第一临界值,例如1000,以借由判断第一光强度值V1是否大于第一临界值来决定是否关闭或开启触控屏幕20。
因此,在步骤S62中,处理器16判断第一光强度值V1是否大于第一临界值(1000),若是,如步骤S63,处理器16判定物体30接近,则对应产生一关闭信号关闭该触控屏幕20,并进行步骤S64,继续判断光传感器13感测第一反射光信号R1所对应产生的第一光强度值V1是否大于一预设的第二临界值,该第二临界值可以等于或小于第一临界值,例如600,若是,则持续重复步骤S63及S64,直到发现第一光强度值V1小于或等于第二临界值。且由图7所示可知,由于物体30具有低反射率的特性,故当物体30如图8所示非常靠近光传感器13时,或者如图5所示远离光传感器13时,都会导致第一光强度值V1下降。
又如图5及图7所示,当控制第一发光元件11与第二发光元件14交错(轮流)发射第一光信号E1及第二光信号E2,可得到第二发光元件14发射的一第二光信号E2从物体30反射回来的第二反射光信号R2的光强度值与物体30和近接感测装置之间的距离的对应关系的一第二光强度值曲线S2,且处理器16以第一光强度值曲线S1的数值除以第二光强度值曲线S2的数值,可以得到图7所示的一比值曲线S3,且该比值曲线S3的高低变化与物体30和近接感测装置的距离成反比,尤其是物体30越靠近近接感测装置时,比值越高,故处理器16可进一步借由比值来判断物体30是更靠近还是远离,因此,处理器16设定一对应于图7中的该第二临界值(600)的第三临界值,例如1.74。
借此,在步骤S64中,当处理器16发现第一光强度值V1从大于第二临界值变成小于(或等于)第二临界值时,为了确定此时物体30是更接近还是远离,如步骤S65,处理器16令控制器15控制第二发光元件14发射第二光信号E2,且第二光信号E2与第一光信号E1是由第一发光元件11和第二发光元件14分别,例如交错(轮流)发射,故光传感器13会分别接收并感测第一光信号E1由物体30反射回来的第一反射光信号R1及第二光信号E2由物体30反射回来的一第二反射光信号R2,并将第一反射光信号R1及第二反射光信号R2分别传送给处理器16。则如步骤S66,处理器16将第一反射光信号R1与第二反射光信号R2进行类比/数位转换成第一光强度值V1及一第二光强度值V2,并求得第一光强度值V1与第二光强度值V2的一比值,即V1/V2,并判断该比值是否大于该第三临界值(1.74),若是,表示物体30更接近,则回到步骤S63,令触控屏幕20持续关闭;若否,表示物体30确实朝远离方向移动,则执行步骤S67,关闭第二发光元件14,以节省电力消耗,并如步骤S68,判定物体30远离光传感器13,则产生一开启信号令触控屏幕20开启,并重复步骤S62。
值得一提的是,在步骤S65中,第一发光元件11与第二发光元件14也可以同时以不同的频率分别发射第一光信号及第二光信号,则处理器16收到第一反射光信号R1及第二反射光信号R2时,即可从两者频率的不同而辨别出这两者是分别由第一光信号及第二光信号反射而得。
又在步骤S62中,当处理器16判断第一光强度值V1小于或等于第一临界值时,则进行步骤S68,判定物体20没有接近光传感器13,且令触控屏幕20持续开启,并且重复步骤S62,持续判断光传感器13所感测到的第一反射光信号R1。
借此,有效解决低反射率的物体30靠近时,不致因为由物体30反射的反射光强度下降而误判物体远离,而对应开启电子装置的触控屏幕20,导致触控屏幕20被误触的情况发生。当然本实施例近接感测装置并不限于触控屏幕的应用,其亦可根据物体接近或远离产生触发信号控制电子装置中需要与物体的接近或远离产生连动(或互动)的其它零组件或功能。
再参见图9所示,是本实施例近接感测装置实现本发明近接感测方法的第二较佳实施例,其与第一实施例相同处在于:步骤S91至S93与图6的步骤S61至S63相同,步骤S94至S97与图6的步骤S65至S68相同,其与第一实施例不同处在于:省略图6中的步骤S64,亦即在步骤S93中,当处理器16判定物体30接近光传感器13后,即执行步骤S94(对应图6的步骤S65),令控制器15控制第一发光元件11与第二发光元件14分别,例如交错发射第一光信号E1及第二光信号E2,并进行步骤S95,处理器16判断第一光信号E1对应产生的第一光强度值V1与第二光信号E2对应产生的第二光强度值V2的比值V1/V2,是否大于该第三临界值(1.74),若是,则回到步骤S93,判定物体30接近,并令触控屏幕20持续关闭,若否,则执行步骤S96,关闭第二发光元件14,并如步骤S97,判定物体30未接近,并产生一开启信号令触控屏幕20开启。
另参见图10所示,是本实施例近接感测器实现本发明近接感测方法的第三较佳实施例,由于处理器16已知第一发光元件11发射的第一光信号E1由物体30反射至光传感器13的第一反射光信号R1与第二发光元件14发射的第二光信号E2由物体30反射回来的第二反射光信号R2,两者经数位化后产生的比值曲线S3与物体30和光传感器13之间的距离成反比,因此,本实施例的处理器16其实也可以直接根据该第三临界值(1.74)来判断物体30是否接近,亦即如图10的步骤S101,由控制器15控制第一发光元件11与第二发光元件14交错地发射第一光信号E1及第二光信号E2,使光传感器13分别感测第一光信号E1由物体30反射回来的第一反射光信号R1,以及感测第二光信号E2由物体30反射回来的第二反射光信号R2并分别传送给处理器16,再进行步骤S102,处理器16将第一反射光信号R1和第二反射光信号R2分别数位化为第一光强度值V1及第二光强度值V2并求得两者的比值V1/V2后,判断该比值是否大于该第三临界值(1.74),若是,则如步骤S103,判定物体30接近,并关闭触控屏幕20,否则,如步骤S104,判定物体30未接近,则开启触控屏幕20(亦即令触控屏幕20维持开启状态)。
值得一提的是,图9的步骤S92中的“第一临界值”是对应于本发明申请专利范围第6及14项中的”临界值”,且图9的步骤S95中的”第三临界值”是对应于本发明申请专利范围第6及14项中的”预设值”;又图10的步骤S102中的”第三临界值”是对应于本发明申请专利范围第7及15项中的”预设值”。
再参见图11所示,是本发明近接感测装置的第二较佳实施例,与第一实施例不同处在于第一实施例是以两个发光元件11、14搭配一光传感器13,而第二实施例则是一个发光元件21搭配两个光传感器22、23(以下称第一光传感器22及第二光传感器23),其余元件皆相同。发光元件21与第一光传感器22相邻并以一隔光机构24相阻隔,第二光传感器23设在第一光传感器22的与发光元件21相反的另一侧并以一隔光机构25与第一光传感器22相阻隔。
且如图12所示,近接感测装置的第二实施例实施本发明近接感测方法的第四较佳实施例与图6不同处在于:步骤S121(对应于图6的步骤S61)是开启发光元件21与第一光传感器22,使第一光传感器22接受发光元件21发射的光信号E1’由物体30反射回来的第一反射光信号R1’并传送给处理器16,使处理器16在步骤S122及S124中根据第一反射光信号R1’数位化后的第一光强度值V1’判断物体30是否接近电子装置的触控屏幕20,若该第一光强度值V1’大于相应临界值,则如步骤S123判定有物体接近,在步骤S125(对应于图6的步骤S65)中,处理器16令控制器15开启第二光传感器23,使接受发光元件21发射的光信号E1’由物体30反射回来的第二反射光信号R2’并传送给处理器16,且在步骤S126(对应图6的步骤S66)中,处理器16是将第一光传感器22和第二光传感器23分别传来的第一反射光信号R1’及第二反射光信号R2’数位化成第一光强度值V1’及第二光强度值V2’并求得两者的比值V1’/V2’,则后续判断方式则与前述图6的步骤S66相同。另外,在步骤S126中,当处理器16判断比值V1’/V2’小于该第三临界值,例如1.74时,则执行步骤S127(对应图6的步骤S67)关闭第二光传感器23,以节省电力消耗,并如步骤S128,判定物体30没有接近。
再参见图13所示,近接感测装置的第二实施例实施本发明近接感测方法的第五较佳实施例与图12实施例不同处在于省略图12的步骤S124,其余步骤S131至S137相同,故不再赘述。
又参见图14所示,近接感测装置的第二实施例实施本发明近接感测方法的第六较佳实施例与图10类似,其不同处在于:在步骤S141(对应图10的步骤S101)中,控制器15控制第一光传感器22与第二光传感器23同时开启,以分别感测发光元件21产生的光信号E1’由物体30反射回来的第一反射光信号R1’及第二反射光信号R2’并传送给处理器16,且在步骤S144(对应图10的步骤S104)中,控制器15是关闭第二光传感器23,其余步骤S142、S143则与图10的步骤S102、S103雷同,故于此不再赘述。
值得一提的是,图13的步骤S132中的”第一临界值”是对应于本发明申请专利范围第17及20项中的”临界值”,且图13的步骤S135中的”第三临界值”是对应于本发明申请专利范围第17及20项中的”预设值”;又图14的步骤S142中的”第三临界值”是对应于本发明申请专利范围第8及21项中的”预设值”。
综上所述,本实施例的近接感测装置借由设置一近一远的两个发光元件搭配一个光传感器或者设置一近一远的两个光传感器搭配一个发光元件,并在只开启较近的该发光元件或光传感器时,发现由物体反射的反射光强度从大于临界值变成小于临界值时,可借由再开启较远的该发光元件或光传感器,并求得在此情况下由物体反射的一近一远两个反射光强度的与物体和近接感测装置之间的距离成反比的一比值,而借由判断该比值是否大于一预设值,即可进一步确定物体是相对近接感测装置靠近或远离,避免了因物体的反射率低而误判的情况发生,确实达成本发明的功效和目的。
惟以上所述的内容,仅为本发明的较佳实施例而已,应当不能以此限定本发明实施的范围,即凡依本发明申请专利范围及发明说明内容所作的简单的等效变化与修饰,皆仍属本发明专利涵盖的范围内。