CN103774230A - 一种无氨化制备氮化镓纳米线的方法 - Google Patents

一种无氨化制备氮化镓纳米线的方法 Download PDF

Info

Publication number
CN103774230A
CN103774230A CN201410036791.3A CN201410036791A CN103774230A CN 103774230 A CN103774230 A CN 103774230A CN 201410036791 A CN201410036791 A CN 201410036791A CN 103774230 A CN103774230 A CN 103774230A
Authority
CN
China
Prior art keywords
gallium nitride
nitride nano
wire
substrate
centimetres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410036791.3A
Other languages
English (en)
Other versions
CN103774230B (zh
Inventor
王如志
赵军伟
张跃飞
严辉
张铭
王波
宋雪梅
朱满康
侯育冬
刘晶冰
汪浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201410036791.3A priority Critical patent/CN103774230B/zh
Publication of CN103774230A publication Critical patent/CN103774230A/zh
Application granted granted Critical
Publication of CN103774230B publication Critical patent/CN103774230B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种无氨化制备氮化镓纳米线的方法,属于无机化合物半导体材料制备与生长领域。Ga2O3粉末与炭粉混合,研磨2min以上得到前驱物粉体;在经清洗和氢氟酸处理后烘干的衬底上镀厚度5nm-30nm的金属催化剂薄膜;将前驱物粉体和衬底放入等离子增强化学气相沉积系统中进行制备:采用N2和H2反应气压10-100Pa;衬底温度800℃-1100℃;射频电源功率40-90W,调节电源功率至得到稳定的亮黄紫色辉光的等离子气体。本发明摒弃对环境和设备存在污染和腐蚀的NH3,采用简单的实验设备和价格低廉且易获得的原料制备出表面光滑的单晶六方纤锌矿结构氮化镓纳米线,具有典型的纳米线光致发光特性和优异的场发射性能。

Description

一种无氨化制备氮化镓纳米线的方法
技术领域
本发明为一种无氨化制备氮化镓纳米线的方法,属于无机化合物半导体材料制备与生长方法领域。
背景技术
GaN与SiC、金刚石等宽带隙化合物半导体材料,是继第一代Ge、Si元素半导体、第二代GaAs、InP化合物半导体之后的第三代半导体材料。GaN作为一种第三代宽禁带直接带隙半导体材料,室温下禁带宽度达3.39eV,同时具有较大的电子迁移率、良好的导电导热性、高的击穿场强、较好的抗辐射性和耐高温及抗化学腐蚀性等诸多特性,已成为高能、高温及对工作环境要求较高电子元器件的优选材料。由于以GaN为基体的Ⅲ族氮化物多元合金带隙连续可调性使得GaN在蓝、绿及紫外发光二极管;全色显示;激光器和传感器等领域的应用逐渐受到人们的重视。
目前,制备原料价格偏贵,且对环境和设备存在一定程度的腐蚀和污染,同时制备出的GaN纳米线大多方向性极差,这严重制约了其性能的提高。如何找到一种简单低廉同时对形貌易于调控的制备方法已成为解决GaN纳米线能否应用于纳电子器件关键,也是该领域科研工作者不懈追求的目标。
发明内容
本发明的目的是提供一种无氨化制备氮化镓纳米线的方法。即在等离子增强化学气相沉积系统中,以混有炭粉的Ga2O3粉末为镓源,以离子态氮为氮源,以镀有催化剂(Ni、Au等)的硅片为衬底,在玻璃管中通过直接反应生成氮化镓纳米线。摒弃对环境和设备存在污染和腐蚀的NH3,采用简单易操作的实验设备和价格低廉且易获得的原料制备高质量氮化镓纳米线,且反应过程中通过炭及氢气的还原成功解决了镓源中含氧的难题,同时也降低了反应对真空度的要求。
本发明提供的一种无氨化制备氮化镓纳米线的方法,其特征在于,包括以下步骤:
(1)Ga2O3粉末与炭粉以摩尔比不高于1:1的比例进行混合,研磨2min以上得到前驱物粉体;
(2)使用镀膜仪,在经过清洗和氢氟酸处理后烘干的衬底上镀厚度为5nm-30nm的金属催化剂薄膜;
(3)将采用上述方法制备的前驱物粉体和衬底放入等离子增强化学气相沉积系统中进行制备:反应气压10-100Pa;衬底温度800℃-1100℃;N2流速20厘米3/分钟-30厘米3/分钟,H2流速10厘米3/分钟-60厘米3/分钟;射频电源功率40-90W,调节电源功率至得到稳定的亮黄紫色辉光的等离子气体。
进一步,所述衬底包括Si或石英。
进一步,所述金属催化剂包括Au或Ni。
进一步,Ga2O3粉末与炭粉以摩尔比1:1-1:4比例进行混合。
进一步,Ga2O3粉末与炭粉混合后研磨5min-2h得到前驱物粉体。
对制得的氮化镓纳米线的结晶性、微结构、形貌、光学性能、场发射性能进行分析和对比。采用X射线衍射仪分析氮化镓的物相;通过扫描电子显微镜和透射电子显微镜分析氮化镓的形貌和结晶性;使用拉曼测试系统分析实验条件对氮化镓形貌和性能产生的影响。光学性能和场发射性能分别以荧光光谱仪和场发射测试系统进行测试。
本发明具有以下优点和效益:
(1)采用搭建简单,易操作的等离子增强化学气相沉积系统,以无毒无污染的离子态N为氮源,通过炭粉和氢气还原采用Ga2O3在低真空度条件下制备出长度3-5μm,直径20nm左右的单晶氮化镓纳米线。
(2)制备的氮化镓纳米线具有典型的纳米线光致发光特征。
(3)氮化镓纳米线场发射性能优异,当定义开启电场为10μA/cm2时开启电场为9.3V/μm。
附图说明
图1为实施例1制备的氮化镓纳米线的SEM图谱
图2为实施例2制备的氮化镓纳米线的SEM图谱
图3为实施例2制备的氮化镓纳米线的XRD图谱
图4为实施例3制备的氮化镓纳米线的SEM图谱
图5为实施例3制备的氮化镓纳米线的XRD图谱
图6为实施例4制备的单根氮化镓纳米线的SEM图谱
图7为实施例4制备的氮化镓纳米线的PL图谱
图8为实施例4制备的氮化镓纳米线的场发射电流密度图谱
具体实施方式:
下面通过实施例对本发明近行进一步说明,本发明绝非局限于所陈述的实施例。
实施例1
(1)Ga2O3粉末与炭粉以摩尔比1:1的比例进行混合,研磨5min得到前驱物粉体;
(2)将经清洗后烘干的硅片使用SBC-12小型离子溅射仪镀Au30s,得到表面有30nm左右金膜的衬底;
(3)将采用上述方法制备的Ga2O3粉末和衬底,采用等离子增强化学气相沉积法:在反应气压50Pa,衬底温度900℃,N2流速30厘米3/分钟,H2流速60厘米3/分钟,调节射频电源功率至40W得到稳定的亮黄紫色辉光,反应时间40min条件下得到处于形核状态的氮化镓纳米线。其SEM图谱见图1。
实施例2
(1)Ga2O3粉末与炭粉以摩尔比1:4的比例进行混合,研磨1h得到前驱物粉体;
(2)将经清洗和氢氟酸处理2h的硅片烘干后使用SBC-12小型离子溅射仪镀Au10s,得到表面有5nm左右金膜的衬底;
(3)将采用上述方法制备的Ga2O3粉末和衬底,采用等离子增强化学气相沉积法:在反应气压50Pa,衬底温度800℃,N2流速20厘米3/分钟,H2流速10厘米3/分钟,调节射频电源功率至60W得到稳定的亮黄紫色辉光,反应时间1h条件下得到纤维状氮化镓纳米线。其SEM图谱见图2,XRD图谱见图3。
实施例3
(1)Ga2O3粉末与炭粉以摩尔比1:4的比例进行混合,研磨1h得到前驱物粉体;
(2)将经清洗和氢氟酸处理20min的硅片烘干后使用SBC-12小型离子溅射仪镀Au10s,得到表面有5nm左右金膜的衬底;
(3)将采用上述方法制备的Ga2O3粉末和衬底,采用等离子增强化学气相沉积法:在反应气压50Pa,衬底温度900℃,N2流速20厘米3/分钟,H2流速10厘米3/分钟,调节射频电源功率至60W得到稳定的亮黄紫色辉光,反应时间1h条件下得到具有尖端形貌的氮化镓纳米线。其SEM图谱见图4,XRD图谱见图5。
实施例4
(1)Ga2O3粉末与炭粉以摩尔比1:4的比例进行混合,研磨2h得到前驱物粉体;
(2)将经和氢氟酸处理2h的硅片烘干后使用SBC-12小型离子溅射仪镀Au10s,得到表面有5nm左右金膜的衬底;
(3)将采用上述方法制备的Ga2O3粉末和衬底,采用等离子增强化学气相沉积法:在反应气压50Pa,衬底温度1050℃,N2流速20厘米3/分钟,H2流速10厘米3/分钟,调节射频电源功率至60W得到稳定的亮黄紫色辉光,反应时间1h条件下得到表面光滑的氮化镓纳米线。其单根纳米线SEM图谱见图6,PL图谱见图7,场发射电流密度图谱见图8。

Claims (5)

1.一种无氨化制备氮化镓纳米线的方法,其特征在于,包括以下步骤:
(1)Ga2O3粉末与炭粉以摩尔比不高于1:1的比例进行混合,研磨2min以上得到前驱物粉体;
(2)使用镀膜仪,在经过清洗和氢氟酸处理后烘干的衬底上镀厚度为5nm-30nm的金属催化剂薄膜;
(3)将采用上述方法制备的前驱物粉体和衬底放入等离子增强化学气相沉积系统中进行制备:反应气压10-100Pa;衬底温度800℃-1100℃;N2流速20厘米3/分钟-30厘米3/分钟,H2流速10厘米3/分钟-60厘米3/分钟;射频电源功率40-90W,调节电源功率至得到稳定的亮黄紫色辉光的等离子气体。
2.根据权利要求1所述的一种无氨化制备氮化镓纳米线的方法,其特征在于:所述衬底为Si或石英。
3.根据权利要求1所述的一种无氨化制备氮化镓纳米线的方法,其特征在于:所述金属催化剂为Au或Ni。
4.根据权利要求1所述的一种无氨化制备氮化镓纳米线的方法,其特征在于:Ga2O3粉末与炭粉以摩尔比1:1-1:4比例进行混合。
5.根据权利要求1所述的一种无氨化制备氮化镓纳米线的方法,其特征在于:Ga2O3粉末与炭粉混合后研磨5min-2h得到前驱物粉体。
CN201410036791.3A 2014-01-25 2014-01-25 一种无氨化制备氮化镓纳米线的方法 Active CN103774230B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410036791.3A CN103774230B (zh) 2014-01-25 2014-01-25 一种无氨化制备氮化镓纳米线的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410036791.3A CN103774230B (zh) 2014-01-25 2014-01-25 一种无氨化制备氮化镓纳米线的方法

Publications (2)

Publication Number Publication Date
CN103774230A true CN103774230A (zh) 2014-05-07
CN103774230B CN103774230B (zh) 2016-07-06

Family

ID=50566964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410036791.3A Active CN103774230B (zh) 2014-01-25 2014-01-25 一种无氨化制备氮化镓纳米线的方法

Country Status (1)

Country Link
CN (1) CN103774230B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105040096A (zh) * 2015-06-25 2015-11-11 广东工业大学 一种新型螺旋状GaN单晶纳米线及其制备方法
CN107699863A (zh) * 2017-09-19 2018-02-16 北京工业大学 一种MPCVD制备GaN纳米线的方法
CN108611679A (zh) * 2018-04-11 2018-10-02 北京工业大学 一种绿色无催化剂法制备氮化镓纳米线的方法
CN113930745A (zh) * 2021-09-30 2022-01-14 北京工业大学 一种高结晶GaN薄膜的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936006A (zh) * 2012-10-24 2013-02-20 北京工业大学 一种低成本低污染的氮化镓纳米线的制备生成方法
CN103387213A (zh) * 2012-05-09 2013-11-13 国家纳米科学中心 一种氮化镓纳米线及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387213A (zh) * 2012-05-09 2013-11-13 国家纳米科学中心 一种氮化镓纳米线及其制备方法
CN102936006A (zh) * 2012-10-24 2013-02-20 北京工业大学 一种低成本低污染的氮化镓纳米线的制备生成方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
B.B. WANG,等: "Structure and electrical property of gallium nitride nanowires synthesized in plasma-enhanced hot filament chemical vapor deposition system", 《JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS》 *
H.Y. PENG,等: "Bulk-quantity GaN nanowires synthesized from hot filament chemical vapor deposition", 《CHEMICAL PHYSICS LETTERS》 *
SHIRO SHIMADA,等: "Growth of GaN crystals from the vapor phase", 《JOURNAL OF CRYSTAL GROWTH》 *
TUNG-HSIEN WU,等: "Suppressing the lateral growth of gallium nitride nanowires by introducing hydrogen plasma", 《THIN SOLID FILMS》 *
Y.Q. WANG,等: "Structure and surface effect of field emission from gallium nitride nanowires", 《APPLIED SURFACE SCIENCE》 *
YU-QING WANG,等: "From powder to nanowire: a simple and environmentally friendly strategy for optical and electrical GaN nanowire films", 《CRYSTENGCOMM》 *
李敏: "化学气相沉积法制备GaN相关的纳米材料", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
赵军伟,等: "PECVD制备GaN纳米线及其场发射性能研究", 《中国电子学会真空电子学分会第十九届学术年会论文集(下册)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105040096A (zh) * 2015-06-25 2015-11-11 广东工业大学 一种新型螺旋状GaN单晶纳米线及其制备方法
CN105040096B (zh) * 2015-06-25 2018-02-02 广东工业大学 一种螺旋状GaN单晶纳米线及其制备方法
CN107699863A (zh) * 2017-09-19 2018-02-16 北京工业大学 一种MPCVD制备GaN纳米线的方法
CN108611679A (zh) * 2018-04-11 2018-10-02 北京工业大学 一种绿色无催化剂法制备氮化镓纳米线的方法
CN113930745A (zh) * 2021-09-30 2022-01-14 北京工业大学 一种高结晶GaN薄膜的制备方法

Also Published As

Publication number Publication date
CN103774230B (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
Xu et al. Catalyst-free direct vapor-phase growth of Zn 1− x Cu x O micro-cross structures and their optical properties
Zhou et al. Low-temperature growth of ZnO nanorods on PET fabrics with two-step hydrothermal method
CN103774230A (zh) 一种无氨化制备氮化镓纳米线的方法
Wang et al. Ti3C2T X MXene Beaded SiC Nanowires for Efficient Microwave Absorption
US9551086B2 (en) Method of preparing silicon carbide powder comprising converting a liquid SiC precursor to a B-phase SiC particulate material
CN107032331B (zh) 一种基于绝缘基底的石墨烯制备方法
CN106348277A (zh) 杂原子掺杂碳材料及其制备方法
Yu et al. Synthesis and properties of boron doped ZnO nanorods on silicon substrate by low-temperature hydrothermal reaction
Zeng et al. Well-aligned ZnO nanowires grown on Si substrate via metal–organic chemical vapor deposition
Li et al. Synthesis of ZnO nanowire arrays and their photoluminescence property
CN104150912B (zh) 一种在氧化物陶瓷粉体表面包覆金属纳米粒子的方法
CN101613881A (zh) 一种制备SiC纳米线阵列的方法
CN107699863B (zh) 一种MPCVD制备GaN纳米线的方法
Xiong et al. Fabrication and optical properties of silicon nanowire/Cu2O nano-heterojunctions by electroless deposition technique
CN103205729B (zh) 用ald设备生长氮化镓薄膜的方法
CN103801285A (zh) 一种具有可见光响应能力核壳结构光催化材料及制备方法
CN104310370B (zh) 一种在碳质载体表面直接制备碳纳米管的方法
CN104495766B (zh) 一种氮化铝一维纳米结构材料的制备方法
Simmons et al. Functionalization of nitrogen-doped carbon nanotubes with gallium to form Ga-CNx-multi-wall carbon nanotube hybrid materials
Chen et al. Soft-chemistry based fabrication of gallium nitride nanoparticles
He et al. Decisive role of Au layer on the oriented growth of ZnO nanorod arrays via a simple aqueous solution method
Somvanshi et al. Catalyst free growth of ZnO nanorods by thermal evaporation method
CN115626639B (zh) 一种大面积氮化硼/石墨烯垂直异质结薄膜及其制备方法
CN101863458B (zh) 一种制备GaN纳米线的方法
CN109607596B (zh) 一种基于氧化镓/氧化亚铜结构的纳米复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant