CN103773150A - Microporous nano paint - Google Patents

Microporous nano paint Download PDF

Info

Publication number
CN103773150A
CN103773150A CN201410037820.8A CN201410037820A CN103773150A CN 103773150 A CN103773150 A CN 103773150A CN 201410037820 A CN201410037820 A CN 201410037820A CN 103773150 A CN103773150 A CN 103773150A
Authority
CN
China
Prior art keywords
solution
nano
porous material
nanometer
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410037820.8A
Other languages
Chinese (zh)
Other versions
CN103773150B (en
Inventor
李春涛
李申
申峰
邱俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANTONG GUANGTAI BIOCHEMICAL PRODUCT Co Ltd
Original Assignee
NANTONG GUANGTAI BIOCHEMICAL PRODUCT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANTONG GUANGTAI BIOCHEMICAL PRODUCT Co Ltd filed Critical NANTONG GUANGTAI BIOCHEMICAL PRODUCT Co Ltd
Priority to CN201410037820.8A priority Critical patent/CN103773150B/en
Publication of CN103773150A publication Critical patent/CN103773150A/en
Application granted granted Critical
Publication of CN103773150B publication Critical patent/CN103773150B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a microporous nano paint which is characterized by comprising (1) 1-40% of porous material, (2) 1-40% of nanoparticle, (3) 5-80% of film forming matter, (4) 1-2% of dispersing agent, 1-2% of defoaming agent and 1-3% of thickener as additives, and (5) 5-15% of deionized water, wherein the nanoparticle is selected from nano titanium oxide, nano silver, nano aluminum or composition thereof; the film forming matter is acrylate resin; and the thickener is selected from hydroxyethyl cellulose with the molecular weight of 30-100 thousand. The nanoparticles inside the coated film can also perform the adsorptive and catalytic functions, and the antibacterial substances can be sequentially released easily, so that the coating has the long-acting effects of adsorbing and degrading harmful substances and resisting bacteria.

Description

A kind of microporous nano coating
Technical field
The invention belongs to nano material technology, be specifically related to a kind of microporous nano coating.
Background technology
Composite nano materials is integrated together by the nano material of difference in functionality, thereby obtain the synergistic effect outside single-material physico-chemical property, functionalization as easier in surface, more binding site, higher specific surface area, absorption band gap and the catalytic activity etc. of more high-k, variation.Wherein, the nano composite structure of metal and inorganics, because combine high conductivity and the intrinsic physical and chemical performance of inorganic materials of metal, has wide research and application prospect (Shanghai Communications University's Ph D dissertation in 2009 in fields such as energy storage, Industrial Catalysis, function ceramics, bio-pharmaceuticals; Desalination, 2013,308:15~33).And in various nanostructures, porous material is owing to having higher surface-area and being beneficial to the advantage such as duct of gas solution infiltration, and be widely studied application.Therefore, the porous nanometer structure of development of metallic/inorganic materials has important Research Significance and application prospect.
At present, nano material has started to have had application widely in coating.Because nanoparticle has quantum size effect, small-size effect, surface effects and macro quanta tunnel effect, thereby show much special character.When these materials are added among traditional coating, just can produce good effect, as long acting antibiotic performance, uv-shielding capacity, photocatalysis performance etc., and increase some inherent naturies of coating simultaneously, as film snappiness, coating hardness, sticking power, petrol-resistance, performances such as alkali-resistivity etc.Porous material of the present invention is the three-dimensional open-framework that carbon coated copper/metal oxide has nano-scale, product pattern homogeneous, controlled, and preparation method is simple, with low cost, environmental friendliness, and set it as a component and add in coating, nanoparticle can easily be adsorbed and to be difficult for absorption mutually agglomerating by porous mass.The existence of porous mass, can in coating, form effective micro channel, make the nanoparticle of film inside also can bring into play the effect of absorption and catalysis, be also conducive to the orderly release of antimicrobial substance, thereby make coating there is effect of long-acting absorption degradation objectionable impurities and long acting antibiotic simultaneously.
Summary of the invention
The object of the present invention is to provide a kind of microporous nano coating, it is characterized in that comprising following component:
(1) porous material, the content of described porous material is 1-40%.
(2) nanoparticle, content is 1-40%, described nanoparticle be selected from nano-titanium oxide, nanometer silver, nano aluminum or its composition.
(3) filmogen, content is 5-80%, described filmogen is acrylic resin.
(4) additive, described additive comprises the thickening material of 1-2% dispersion agent, 1-2% defoamer and 1-3%, and described thickening material is selected from, and molecular weight is the Natvosol of 3-10 ten thousand.
(5) deionized water, the content of described deionized water is 5-15%.
Described porous material is prepared by following methods:
Step 1, chooses nano metal mixture
Described nano metal mixture is by nanometer cadmium acetate and nanometer neutralized verdigris phosphor composing, and the mol ratio of described cadmium acetate and neutralized verdigris is 2:1.
Step 2, the preparation of the first solution
The nano metal mixture of step 1 is mixed with tensio-active agent and ethylene glycol solution, mass ratio is: nano metal mixture: tensio-active agent: ethylene glycol solution=(5-7): (3-5): 300, mixed solution speed with 600-1000r/min in 60-90 ℃ of oil bath is stirred to 10-30 minute, and naturally cooling makes the first solution.
Step 3: the preparation of the second solution
Ethylene glycol and oxalic acid are mixed under normal temperature, make the second solution, the mass ratio of described ethylene glycol and oxalic acid is 100:3.
Step 4: the preparation of composite precursor
Prepared step 3 the second solution is splashed in prepared the first solution of step 2 with the speed of dripping of 3-10mL/min, stir 8h with the speed 60-100 ℃ of constant temperature of 600-1000r/min; After reaction finishes, resultant of reaction is respectively washed 3 times with deionized water and dehydrated alcohol respectively, centrifugal collection, in baking oven, 80 ℃ of dry 6h, obtain composite precursor.The mass ratio of described the second solution and the first solution is: 1:3-4.
Step 5: the preparation of the coated Cu/CdO composite porous material of carbon
By obtained step 4 composite precursor as in tube furnace, passing to hydrogen volume content is the X/H2 atmosphere of 1-10%, be warming up to 200 ℃ with the speed of 5 ℃/min, constant temperature keeps 2h, then rise to 450 ℃ with 5 ℃/min, constant temperature keeps 2h, obtains the coated Cu/CdO composite porous material of carbon, described X is that purity is not less than the one in 99.9% nitrogen, argon gas, helium, and the volume content of hydrogen is at 1%-10%.
2. a kind of microporous nano coating as claimed in claim 1, is characterized in that the particle diameter of described nanometer cadmium acetate and nanometer neutralized verdigris powder is 1-50nm, and the porosity of prepared porous material is more than 86%, and the size of hole is 1-25nm.
3. a kind of microporous nano coating as claimed in claim 1, it is characterized in that described tensio-active agent be selected from a kind of in polyvinylpyrrolidone (PVP), cetyl trimethylammonium bromide (CTAB), chlorination trimethylammonium cetyltrimethyl ammonium (CTAC), polyethylene oxide-poly(propylene oxide)-polyethylene oxide triblock copolymer (P123), polyoxyethylene-poly-oxypropylene polyoxyethylene triblock polymer (F127) or with arbitrarily than mixture.
4. a kind of microporous nano coating as claimed in claim 1, the particle diameter that it is characterized in that described nanoparticle is 1-10nm.Beneficial effect of the present invention is mainly:
Porous material of the present invention is the three-dimensional open-framework that carbon coated copper/metal oxide has nano-scale, product pattern homogeneous, controlled, and preparation method is simple, with low cost, environmental friendliness, and set it as a component and add in coating, nanoparticle can easily be adsorbed and to be difficult for absorption mutually agglomerating by porous mass.The existence of porous mass, can in coating, form effective micro channel, make the nanoparticle of film inside also can bring into play the effect of absorption and catalysis, be also conducive to the orderly release of antimicrobial substance, thereby make coating there is effect of long-acting absorption degradation objectionable impurities and long acting antibiotic simultaneously.
Embodiment
A kind of microporous nano coating, is characterized in that comprising following component:
(1) porous material, the content of described porous material is 1-40%.
(2) nanoparticle, content is 1-40%, described nanoparticle be selected from nano-titanium oxide, nanometer silver, nano aluminum or its composition.
(3) filmogen, content is 5-80%, described filmogen is acrylic resin.
(4) additive, described additive comprises the thickening material of 1-2% dispersion agent, 1-2% defoamer and 1-3%, and described thickening material is selected from, and molecular weight is the Natvosol of 3-10 ten thousand.
(5) deionized water, the content of described deionized water is 5-15%.
Described porous material is prepared by following methods:
Step 1, chooses nano metal mixture
Described nano metal mixture is by 0.02mol nanometer cadmium acetate and 0.02mol nanometer neutralized verdigris phosphor composing.
Step 2, the preparation of the first solution
The nano metal mixture of step 1 is mixed with 4g tensio-active agent and 300mL ethylene glycol solution, mixed solution speed with 800r/min in 80 ℃ of oil baths is stirred 150 minutes, naturally cooling makes the first solution.
Step 3: the preparation of the second solution
100 ethylene glycol and 0.03ml oxalic acid are mixed under normal temperature, make the second solution.
Step 4: the preparation of composite precursor
Prepared step 3 the second solution is splashed in prepared the first solution of step 2 with the speed of dripping of 5mL/min, stir 8h with 80 ℃ of constant temperature of speed of 800r/min; After reaction finishes, resultant of reaction is respectively washed 3 times with deionized water and dehydrated alcohol respectively, centrifugal collection, in baking oven, 80 ℃ of dry 6h, obtain composite precursor.
Step 5: the preparation of the coated Cu/CdO composite porous material of carbon
By obtained step 4 composite precursor as in tube furnace, passing to hydrogen volume content is the X/H2 atmosphere of 1-10%, be warming up to 200 ℃ with the speed of 5 ℃/min, constant temperature keeps 2h, then rise to 450 ℃ with 5 ℃/min, constant temperature keeps 2h, obtains the coated Cu/CdO composite porous material of carbon, described X is that purity is not less than the one in 99.9% nitrogen, argon gas, helium, and the volume content of hydrogen is at 1%-10%.
The particle diameter of described nanometer cadmium acetate and nanometer neutralized verdigris powder is 1-50nm, and the porosity of prepared porous material is more than 86%, and the size of hole is 1-25nm.
Described tensio-active agent be selected from a kind of in polyvinylpyrrolidone (PVP), cetyl trimethylammonium bromide (CTAB), chlorination trimethylammonium cetyltrimethyl ammonium (CTAC), polyethylene oxide-poly(propylene oxide)-polyethylene oxide triblock copolymer (P123), polyoxyethylene-poly-oxypropylene polyoxyethylene triblock polymer (F127) or with arbitrarily than mixture.
The particle diameter of described nanoparticle is 1-10nm.
Choose 800 object 40g porous materials, 16g nano-titanium oxide, 4 grams of nano-silver powders, 80g acrylic resin, 3g dispersion agent and 3g defoamer, 4g Natvosol and 30g deionized water, as in container, adopt mechanical stirring to mix, and form stable coating.Described coating has more micro channel, has long-acting absorption, the organic obnoxious flavour of catalyzed degradation and bactericidal property.Described coating water at normal temperature contact angle is greater than 120 degree.
The water-fast experimental results of GB/T1733-93 is 360 hours nothing difference;
Alcohol resistance (60% ethanolic soln) test result of GB1727-79 is 100 hours nothing difference.
Below in conjunction with specific embodiment, technical scheme of the present invention is done further and introduced in detail; but protection scope of the present invention is not limited to this; those skilled in the art makes some nonessential improvement and adjustment according to the content of the invention described above, all belongs to protection domain of the present invention.

Claims (4)

1. a microporous nano coating, is characterized in that comprising following component:
(1) porous material, the content of described porous material is 1-40%.
(2) nanoparticle, content is 1-40%, described nanoparticle be selected from nano-titanium oxide, nanometer silver, nano aluminum or its composition.
(3) filmogen, content is 5-80%, described filmogen is acrylic resin.
(4) additive, described additive comprises the thickening material of 1-2% dispersion agent, 1-2% defoamer and 1-3%, and described thickening material is selected from, and molecular weight is the Natvosol of 3-10 ten thousand.
(5) deionized water, the content of described deionized water is 5-15%.
Described porous material is prepared by following methods:
Step 1, chooses nano metal mixture
Described nano metal mixture is by nanometer cadmium acetate and nanometer neutralized verdigris phosphor composing, and the mol ratio of described cadmium acetate and neutralized verdigris is 2:1.
Step 2, the preparation of the first solution
The nano metal mixture of step 1 is mixed with tensio-active agent and ethylene glycol solution, mass ratio is: nano metal mixture: tensio-active agent: ethylene glycol solution=(5-7): (3-5): 300, mixed solution speed with 600-1000r/min in 60-90 ℃ of oil bath is stirred to 10-30 minute, and naturally cooling makes the first solution.
Step 3: the preparation of the second solution
Ethylene glycol and oxalic acid are mixed under normal temperature, make the second solution, the mass ratio of described ethylene glycol and oxalic acid is 100:3.
Step 4: the preparation of composite precursor
Prepared step 3 the second solution is splashed in prepared the first solution of step 2 with the speed of dripping of 3-10mL/min, stir 8h with the speed 60-100 ℃ of constant temperature of 600-1000r/min; After reaction finishes, resultant of reaction is respectively washed 3 times with deionized water and dehydrated alcohol respectively, centrifugal collection, in baking oven, 80 ℃ of dry 6h, obtain composite precursor.The mass ratio of described the second solution and the first solution is: 1:3-4.
Step 5: the preparation of the coated Cu/CdO composite porous material of carbon
By obtained step 4 composite precursor as in tube furnace, passing to hydrogen volume content is the X/H2 atmosphere of 1-10%, be warming up to 200 ℃ with the speed of 5 ℃/min, constant temperature keeps 2h, then rise to 450 ℃ with 5 ℃/min, constant temperature keeps 2h, obtains the coated Cu/CdO composite porous material of carbon, described X is that purity is not less than the one in 99.9% nitrogen, argon gas, helium, and the volume content of hydrogen is at 1%-10%.
2. a kind of microporous nano coating as claimed in claim 1, is characterized in that the particle diameter of described nanometer cadmium acetate and nanometer neutralized verdigris powder is 1-50nm, and the porosity of prepared porous material is more than 86%, and the size of hole is 1-25nm.
3. a kind of microporous nano coating as claimed in claim 1, it is characterized in that described tensio-active agent be selected from a kind of in polyvinylpyrrolidone (PVP), cetyl trimethylammonium bromide (CTAB), chlorination trimethylammonium cetyltrimethyl ammonium (CTAC), polyethylene oxide-poly(propylene oxide)-polyethylene oxide triblock copolymer (P123), polyoxyethylene-poly-oxypropylene polyoxyethylene triblock polymer (F127) or with arbitrarily than mixture.
4. a kind of microporous nano coating as claimed in claim 1, the particle diameter that it is characterized in that described nanoparticle is 1-10nm.
CN201410037820.8A 2014-01-26 2014-01-26 A kind of microporous nano coating Active CN103773150B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410037820.8A CN103773150B (en) 2014-01-26 2014-01-26 A kind of microporous nano coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410037820.8A CN103773150B (en) 2014-01-26 2014-01-26 A kind of microporous nano coating

Publications (2)

Publication Number Publication Date
CN103773150A true CN103773150A (en) 2014-05-07
CN103773150B CN103773150B (en) 2016-03-23

Family

ID=50565933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410037820.8A Active CN103773150B (en) 2014-01-26 2014-01-26 A kind of microporous nano coating

Country Status (1)

Country Link
CN (1) CN103773150B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL424621A1 (en) * 2018-02-19 2019-08-26 Fabryka Kart Trefl-Kraków Spółka Z Ograniczoną Odpowiedzialnością Method for obtaining bioactive dispersion varnish, particularly for production of varnish coatings with biocidal properties
CN110869449A (en) * 2017-07-11 2020-03-06 陶氏环球技术有限责任公司 Aqueous dispersion and aqueous coating composition comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1369529A (en) * 2002-03-12 2002-09-18 深圳市尊业纳米材料有限公司 Microporous nano composite paint
CN1375358A (en) * 2002-03-22 2002-10-23 深圳市尊业纳米材料有限公司 Microporous nano composite material
CN1821320A (en) * 2006-03-23 2006-08-23 沈阳化工学院 Organic nano paint of nano mesoporous silicon dioxide particle and its preparing method
CN102660191A (en) * 2012-05-03 2012-09-12 长沙桑威科技实业有限公司 Powdery high-temperature resistant nano coating and preparation method thereof
CN103268929A (en) * 2013-06-04 2013-08-28 山东大学 Carbon/copper/metal oxide composite porous material and preparation method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1369529A (en) * 2002-03-12 2002-09-18 深圳市尊业纳米材料有限公司 Microporous nano composite paint
CN1375358A (en) * 2002-03-22 2002-10-23 深圳市尊业纳米材料有限公司 Microporous nano composite material
CN1821320A (en) * 2006-03-23 2006-08-23 沈阳化工学院 Organic nano paint of nano mesoporous silicon dioxide particle and its preparing method
CN102660191A (en) * 2012-05-03 2012-09-12 长沙桑威科技实业有限公司 Powdery high-temperature resistant nano coating and preparation method thereof
CN103268929A (en) * 2013-06-04 2013-08-28 山东大学 Carbon/copper/metal oxide composite porous material and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110869449A (en) * 2017-07-11 2020-03-06 陶氏环球技术有限责任公司 Aqueous dispersion and aqueous coating composition comprising the same
PL424621A1 (en) * 2018-02-19 2019-08-26 Fabryka Kart Trefl-Kraków Spółka Z Ograniczoną Odpowiedzialnością Method for obtaining bioactive dispersion varnish, particularly for production of varnish coatings with biocidal properties

Also Published As

Publication number Publication date
CN103773150B (en) 2016-03-23

Similar Documents

Publication Publication Date Title
CN103268929B (en) Carbon/copper/metal oxide composite porous material and preparation method and application thereof
CN103740210B (en) A kind of microporous nano coating
CN103755993B (en) A kind of preparation method of Antibiotic Membrane
CN109399603B (en) Method for preparing nitrogen-doped porous carbon for supercapacitor by using metal organic framework compound
CN113522317B (en) Preparation method and application of cobalt-based bimetallic sulfur/carbon catalyst derived from MOFs (metal-organic frameworks)
CN103740211B (en) A kind of preparation method of microporous nano coating
CN103756488B (en) A kind of preparation method of microporous nano coating
CN103756487A (en) Microporous nano-coating
CN103756589B (en) A kind of preparation method of nanometer functional film
CN103773150B (en) A kind of microporous nano coating
CN103722841B (en) Antimicrobial film
CN103753928B (en) A kind of preparation method of nanometer functional film
CN103820048A (en) Functional nanometer thin film
CN103772729B (en) A kind of preparation method of Antibiotic Membrane
CN105056948A (en) Ozone elimination catalyst with porous substrate as carrier and preparation method thereof
CN103305063A (en) Preparation method for curdlan-nano-copper compound antibacterial gel
CN103740209B (en) A kind of preparation method of microporous nano coating
CN103820047A (en) Functional nanometer thin film
CN103739865B (en) A kind of Antibiotic Membrane
CN103755991B (en) A kind of Antibiotic Membrane
CN103276474A (en) Method for preparing (Ga1-xZnx)(N1-xOx) nano fiber by electrostatic spinning method
CN103831221B (en) Method for preparing antibacterial film
CN103773262A (en) Nano functional film
CN105977477A (en) Preparation method of silicon carbon electrode material with micro-nano structure
CN103770427B (en) A kind of preparation method of nanometer functional film

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant