CN103770840A - 一种前纵梁的设计方法 - Google Patents

一种前纵梁的设计方法 Download PDF

Info

Publication number
CN103770840A
CN103770840A CN201310039923.3A CN201310039923A CN103770840A CN 103770840 A CN103770840 A CN 103770840A CN 201310039923 A CN201310039923 A CN 201310039923A CN 103770840 A CN103770840 A CN 103770840A
Authority
CN
China
Prior art keywords
front side
side member
acceleration
accel
designing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310039923.3A
Other languages
English (en)
Other versions
CN103770840B (zh
Inventor
王玉超
岳鹏
陈琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Automobile Group Co Ltd
Original Assignee
Guangzhou Automobile Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Automobile Group Co Ltd filed Critical Guangzhou Automobile Group Co Ltd
Priority to CN201310039923.3A priority Critical patent/CN103770840B/zh
Publication of CN103770840A publication Critical patent/CN103770840A/zh
Application granted granted Critical
Publication of CN103770840B publication Critical patent/CN103770840B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

本发明提供一种前纵梁的设计方法,包括S1、获取对标车正面碰撞时的加速度-时间曲线和压溃距离-时间曲线;S2、目标车前纵梁最前端到动力总成前端的长度为X;结合压溃距离-时间曲线获取开始产生压溃时的第一时刻t0,以及压溃距离为X时对应的第二时刻t1;S3、获取在t0-t1时间段内对标车的恒定等效加速度a;S4、获取目标车试验质量m;获取目标车在t0-t1时间段内受到的等效平均碰撞力F;S5、根据在前纵梁最前端到动力总成前端的吸能段内前纵梁所承担的碰撞力的比重,获取前纵梁在t0-t1时间段内受到的等效碰撞力;S6、根据前纵梁在t0-t1时间段内受到的等效碰撞力获取前纵梁横截面的长度、宽度、壁厚及材料参数。该设计方法效率高,成本低。

Description

一种前纵梁的设计方法
技术领域
本发明涉及一种前纵梁的设计方法。
背景技术
当前国内外主流的前纵梁结构设计思路是“对标车参考-初版结构数模-结构改进”。该设计思路的具体方法步骤为:首先,整车集成工程师对目标车进行动力总成选型、底盘定型以及发动机舱布置等;其次,车身设计工程师参考大量同级别的汽车,选定某一具有代表性的汽车作为对标车,然后参考对标车的尺寸、材料,再辅以工程师以往的经验,设计出目标车的初版车身结构CAD三维数模。再综合获得工程样车CAD数模,并进行工程样车的试制试验,即在设计出工程样车后进行碰撞试验,如果不合格,再进行工艺性调整,重复进行工程样车CAD数模建立、工程样车试制试验;直至性能达标,获得可以进行量产的汽车车身数模,最终实现汽车量产。
但是上述方法效率低下,而且成本较高。
发明内容
为克服现有技术中前纵梁的设计方法效率低,成本高的问题,本发明提供了一种前纵梁的设计方法,其效率高,成本低。
本发明公开的前纵梁的设计方法包括:
S1、获取对标车正面碰撞时的加速度-时间曲线和压溃距离-时间曲线;
S2、目标车前纵梁最前端到动力总成前端的长度为X;结合压溃距离-时间曲线获取开始产生压溃时的第一时刻t0,以及压溃距离为X时对应的第二时刻t1
S3、结合加速度-时间曲线,获取在t0-t1时间段内对标车的恒定等效加速度a;
S4、获取目标车试验质量m;结合恒定等效加速度a和目标车试验质量m,通过F=ma计算出目标车在t0-t1时间段内受到的等效平均碰撞力F;
S5、根据在前纵梁最前端到动力总成前端的吸能段内前纵梁所承担的碰撞力的比重,获取前纵梁在t0-t1时间段内受到的等效碰撞力;
S6、根据承力部件在t0-t1时间段内受到的等效碰撞力获取前纵梁横截面的长度、宽度、壁厚及材料参数。
在实现本发明的过程中,发明人发现现有技术至少存在如下问题:
由于目标车与对标车在底盘、动力总成、造型等诸多方面的不同,导致基于经验和对标设计得出的目标车初版车身结构往往存在局部甚至全局的缺陷,例如碰撞性能不能满足要求等。因此,在设计出初版车身结构数模后仍需做大量的结构优化,导致后续仍需多批次的工程样车实验验证,整车开发成本较高。
为了减少目标车初版车身结构上的缺陷,传统设计方法可借助仿真分析手段优化车身结构,逐步更新出多批次的工程样车三维数模,通过多次的“仿真优化-实验验证”方式将汽车结构的缺陷消除。但由于底盘总布置先于车身结构数模的具体设计,导致为了达到底盘总布置的要求,后期的工程样车数模设计缺陷甚至是难以消除的。
另外,传统设计方法下,必须等全部数模设计完成后,才能进行结构碰撞仿真优化,此时由于发动机各总布置已经趋于完成,优化改动方案往往难以实施。此方法可简称为“先经验设计,后分析优化”模式,后期的结构(仿真)优化处于被动的地位。
由前述可知,采用“经验设计-优化分析”方法对车身前部承力结构进行设计时,车身工程师对承力部件的设计仅凭自己的经验,对承力部件的截面尺寸、厚度及材料没有一个概念的指导,因此,设计出的承力部件难以满足目标要求,有时甚至需要重新设计,既浪费了车身工程师和仿真工程师的精力,又造成效率低下,影响到车型开发的时间节点。
因此,发明人认为,如果可以在车身设计开始之前,利用仅有的数据,准确地获得承力部件的结构设计参数,不仅可以避免承力部件的设计缺陷,提高设计效率,而且能够提高碰撞性能。
本发明结合对标车的碰撞曲线,将对标车碰撞过程中的加速度进行等效处理,优化车身前部结构的设计。本发明通过获取达到较好碰撞性能的对标车的加速度曲线,获得良好的车身安全“基因”,因此,依本发明方法设计方法获得的车身前部结构更加合理,缺陷更少,有利于汽车后续设计的进行。
同时,本发明直接将数模的合理设计提前到与底盘总布置同时进行,联合已选好型的发动机和底盘开展硬点总布置,各硬点位置充分根据本发明设计出的车身前部结构布置,此时两项工作相互协调可以在整车开发的初期即获得较好的车身结构及总布置方案。
并且,车身数模经过本发明设计已经比较合理,具备较好的碰撞安全性基础,后续需要改动的可能性小,便于减少后续碰撞样车试制试验的次数,大大减少开发费用。
采用本发明设计方法,已经计算出纵梁在整车碰撞中的承载力(通过力),因此可在此数模的基础上开展相当细化的结构仿真优化分析。因此采用本发明设计方法后,仿真是与底盘总布置同时进行的“主动仿真”。
另外,本发明公开的设计方法无需经过复杂的微积分及最小二乘法等计算,简单易行。
进一步的,在前纵梁最前端到动力总成前端的吸能段内,前纵梁所承担的碰撞力的比重下限为d1,比重上限为d2;所述步骤S5中,前纵梁在t0-t1时间段内受到的等效碰撞力下限为F*d1,等效碰撞力上限为F*d2;所述步骤S6中,根据F*d1≤Fi≤F*d2的原则获取前纵梁的实际平均通过力Fi,根据Fi获取前纵梁横截面的长度、宽度、壁厚及材料参数。
进一步的,所述前纵梁最前端到动力总成前端的吸能段内,前纵梁所承担的碰撞力的比重为55%-70%。
进一步的,所述对标车的加速度-时间曲线和压溃距离-时间曲线以对标车的车身B柱与门槛梁相交处为测试点测试得到。
进一步的,恒定等效加速度a通过如下方法获得:根据加速度-时间曲线获取对标车在t0-t1时间段内的速度变化量V0-1,然后通过a=V0-1/(t1-t0)计算出恒定等效加速度a。
进一步的,实际平均通过力Fi通过如下公式计算得到:Fi=9.5675[(b+d)/(2h)]1/3h2σb;其中,b为矩形薄壁管梁的横截面长度,d为矩形薄壁管梁的横截面宽度,h为矩形薄壁管梁的壁厚,σb为矩形薄壁管梁的极限拉伸强度。
进一步的,所述前纵梁包括前纵梁前段和前纵梁后段,所述前纵梁前段结构刚度小于或等于前纵梁后段结构刚度。
按上述条件设置前纵梁的前后段强度,可保证在碰撞过程中,前纵梁按照一定方向进行溃缩,提高了溃缩过程的可控性。
进一步的,所述前纵梁前段上具有弱化槽。
附图说明
图1是本发明提供的实施例中加速度-时间曲线示意图。
图2是本发明提供的实施例中压溃距离-时间曲线示意图。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明公开的车身前部承力部件的设计方法包括:
S1、获取对标车正面碰撞时的加速度-时间曲线和压溃距离-时间曲线;
S2、目标车前纵梁最前端到动力总成前端的长度为X;结合压溃距离-时间曲线获取开始产生压溃时的第一时刻t0,以及压溃距离为X时对应的第二时刻t1
S3、结合加速度-时间曲线,获取在t0-t1时间段内对标车的恒定等效加速度a;
S4、获取目标车试验质量m;结合恒定等效加速度a和目标车试验质量m,通过F=ma计算出目标车在t0-t1时间段内受到的等效平均碰撞力F;
S5、根据在前纵梁最前端到动力总成前端的吸能段内前纵梁所承担的碰撞力的比重,获取前纵梁在t0-t1时间段内受到的等效碰撞力;
S6、根据承力部件在t0-t1时间段内受到的等效碰撞力获取前纵梁横截面的长度、宽度、壁厚及材料参数。
步骤S1中,采用对标车进行正面碰撞,获得相关数据是本领域对车身进行设计时常用的手段。对标车碰撞后可通过相关专业软件(例如HyperGraph等软件)绘制得到对标车碰撞的加速度-时间曲线和压溃距离-时间曲线。其中,一次对标车正碰测试即可获得加速度-时间曲线和压溃距离-时间曲线。并且,获得的加速度-时间曲线中,产生加速度的时刻与压溃距离-时间曲线中开始产生压溃的时刻为同一时刻。即加速度-时间曲线和压溃距离-时间曲线的时间起点相同。上述加速度-时间曲线中,产生加速度的时刻为加速度坐标首次发生变化的时刻。类似的,压溃距离-时间曲线中,开始产生压溃的时刻为压溃距离产生变化的时刻。
通常,加速度-时间曲线和压溃距离-时间曲线中,t0时刻具体坐标值为0ms。可以理解的,当曲线的起始点在碰撞溃缩之前,则t0时刻具体坐标值不为0。
上述对标车的加速度-时间曲线和压溃距离-时间曲线以对标车的车身B柱与门槛梁相交处为测试点测试得到。
采用本发明公开的方法进行设计时,先根据设计需要,确定目标车前纵梁最前端到动力总成前端的长度为X。
上述X的取值可根据以往的设计经验或采用本领域通常采用的结构,也可以借鉴对标车的设计。
根据本发明,在获知目标车前纵梁最前端到动力总成前端的长度(碰撞时的溃缩长度)之后,可以结合对标车碰撞的压溃距离-时间曲线,读取开始产生压溃时对应的第一时刻t0,以及压溃距离为X时对应的第二时刻t1。具体到压溃距离-时间曲线中,第一时刻t0为压溃距离-时间曲线的压溃距离坐标发生变化的时刻。
然后,如步骤S3,结合加速度-时间曲线,获取在t0-t1时间段内对标车的恒定等效加速度a。
在加速度-时间曲线中,在t0-t1时间段内曲线的面积即为在t0-t1时间段内对标车速度的变化量V1-0。加速度-时间曲线为不规则曲线,但某一时间段内曲线的面积可由软件直接计算得到。
本发明中,对在t0-t1时间段内对标车的加速度进行等效处理,即将该时间段内对标车的加速度视为某一恒定的加速度a。由于在t0-t1时间段内对标车的速度变化量V0-1是已知的定值,则,t0-t1时间段内对标车的恒定等效加速度a可通过公式a=V0-1/(t1-t0)计算得到。
如步骤S4,在已知恒定等效加速度a的情况下,再获知目标车试验质量m,即可通过力学公式F=m*a计算出对标车在t0-t1时间段内受到的总等效平均碰撞力F。在目标车的设计中,以该总等效平均碰撞力F为基准进行设计。
其中,目标车试验质量m的计算方法为本领域公知的,例如,目标车试验质量m=整车整备质量+两个50%分位的男性假人+5%分位的女性假人+儿童假人及座椅。
通常,在车辆纵向上(车辆前后方向),保险杠基本没有溃缩吸能,在前纵梁最前端到动力总成前端的吸能段内,包括前纵梁、发动机罩、翼子板支承梁等部件共同承力吸能。本领域内,上述吸能段内,各个部件的承力比重具有一公知的范围,对于前纵梁,上述前纵梁最前端到动力总成前端的吸能段内,前纵梁所承担的碰撞力的比重为55%-70%。
在前纵梁最前端到动力总成前端的吸能段内,前纵梁所承担的碰撞力的比重下限为d1,比重上限为d2。即d1为55%,d2为70%。
在获知前纵梁最前端到动力总成前端的吸能段内,前纵梁所承担的碰撞力的比重之后,可采用现有的方式确定前纵梁可承受的实际碰撞力的范围。
例如,可通过前纵梁所承担的碰撞力的比重的上限和下限,计算出前纵梁所承受的等效碰撞力的上限和下限,然后以等效碰撞力的上限和下限作为前纵梁实际平均通过力Fi的范围。
或者在前纵梁所承担的碰撞力的比重范围内,选定合适的比重值,然后以该确定的比重值,计算出前纵梁在t0-t1时间段内受到的等效碰撞力。通常,理想状态下获取的碰撞力都偏大,所以,可以以该等效碰撞力为基础,选定比等效碰撞力稍小的值作为前纵梁实际平均通过力Fi的下限,以计算出的等效碰撞力作为前纵梁实际平均通过力Fi的上限。
本发明中,优选第一种方法,即,所述步骤S5中,前纵梁在t0-t1时间段内受到的等效碰撞力下限为F*d1,等效碰撞力上限为F*d2
在设计时,对目标车上前纵梁的实际平均通过力Fi取值在上述范围内进行设计,即根据前纵梁实际平均通过力Fi为F*d1≤Fi≤F*d2的原则获取前纵梁的横截面的长度、宽度、壁厚及材料参数。
需要注意的是,对于前纵梁,车身上通常平行设置有两根,所以,对于单根前纵梁的设计而言,其实际平均通过力应为Fi/2。
一定结构的管梁可承受的通过力可通过如下公式计算得到:
Fi=9.5675[(b+d)/2h]1/3h2σb
其中,b为矩形薄壁管梁的横截面长度,d为矩形薄壁管梁的横截面宽度,h为矩形薄壁管梁的壁厚,σb为矩形薄壁管梁的极限拉伸强度。
轿车前纵梁材料为现有的,轿车前纵梁钣材厚度h经常选用1.8mm、2.0mm、2.5mm;截面尺寸经常选用65mm×100mm、70mm×105mm、80mm×100mm、75mm×120mm、80mm×130mm,材料经常选用普通钢H220BD+ZF和高强度钢H340LAD+ZF、HC420LA。
已知三种材料的屈服应力σy和极限应力σb见表1。
表1
材料 屈服应力σy/Mpa 极限应力σb/Mpa
H220BD+ZF 218.09 384
H340LAD+ZF 371 455
HC420LA 423.39 500
当h分别为1.8mm、2.0mm和2.5mm时,前纵梁在不同截面积情况下可承受的碰撞力分别见表1-表3。
表1(h=1.8mm)
Figure BDA00002801368900081
表2(h=2.0mm)
表3(h=2.5mm)
Figure BDA00002801368900093
Figure BDA00002801368900101
如本领域公知的,前纵梁包括前纵梁前段和前纵梁后段,所述前纵梁前段所能承担的碰撞力小于前纵梁后段所能承担的碰撞力。
通常,可在所述前纵梁前段上设置弱化槽,使前纵梁前段所能承担的碰撞力小于前纵梁后段所能承担的碰撞力。
本实施方式中对本发明公开的前纵梁的设计方法进行说明。
欲开发一款A级车型,选择碰撞性能较好的对标车M,进行100%全正面碰撞,M车的B柱下方的加速度-时间曲线见图1(图中虚线),压溃距离-时间曲线见图2。
根据总布置,初步确定目标车的前纵梁前端到动力总成前端的长度为330mm。
依照图2,求出上述前纵梁开始溃缩的时间点t0为0,压溃距离为330mm时的时间为t1=27.1ms。
图2中t2示出的是车辆溃缩程度最大的时间点。
图1中t3示出的是车辆碰撞过程结束的时间点。
按照前述的方法计算得到t0-t1时刻的恒定等效加速度a为15g,其中g为重力加速度,本发明中,g取值为10m/s2
根据设计,目标车型的整车试验质量约为1500kg,则碰撞力为:
F=ma=1500kg×15×10m/s2=225000N
在前纵梁前端到动力总成前端的吸能段内,前纵梁所承担的碰撞力的比重55%-70%,对于单根前纵梁而言:
F*d1÷2=225000N×55%÷2=61.875kN
F*d2÷2=225000N×70%÷2=78.75kN
因此,前纵梁的实际通过力的范围设置在[61.875kN,78.75kN]。
根据表1-表3可知,满足这一条件的结构见表4:
表4
Figure BDA00002801368900111
由于61.875kN和78.75kN为边界条件,出于总布置、成本及重量等因素考虑,通常选用碰撞力居中的材料。
同时,从轻量化角度考虑,最终选择了纵梁材料为HC420LA,截面尺寸为65mm×100mm×2mm,从而前纵梁的概念设计阶段完成。
经过多轮的仿真优化分析,前纵梁的材料为HC420LA,前纵梁前段为65mm×100mm×1.8mm,前纵梁后段部分为65mm×100mm×2mm,采用激光拼焊的工艺连接而成。
通过上述方法设计的前纵梁经过C-NCAP(中国新车评价规程)100%碰撞后,溃缩正常。
其中,全正碰假人得分为14.78分,40%偏置碰假人得分为15.68分,两者的得分占正碰总得分的84.6%,达到了C-NCAP五星碰撞水平,证明了采用此方法所设计的纵梁能够很好地承受碰撞力。
下面进一步验证本发明公开的设计方法设计的前纵梁在碰撞过程中的安全性。
提供台车有限元,包括部分乘员舱白车身、转向管柱和方向盘、座椅、IP(中控系统)、假人、气囊和安全带,共有326260个单元,其中,壳单元193087个,实体单元131173个,一维单元700个等。
其中,假人采用FTSS(First Technology Safety Systems)公司的Hybrid Ⅲ50th,与试验假人具有良好的仿真度,假人的定位按照试验假人的定位要求,达到仿真假人与试验假人姿态一致。
以对标车的实际碰撞数据和本发明公开的方法获得的数据为基础,在台车模型中分析获取假人伤害值,并对假人伤害值进行结果对比,见表5。
表5按C-NCAP具体对比了各部位的伤害值。
可见,本发明公开的方法的设计结果与碰撞性能较好的对标车的碰撞安全性能相当接近,说明本发明公开的方法是正确可行的。
表5
Figure BDA00002801368900131
综上所述,本发明提供的前纵梁的设计方法非常可靠,设计得到的前纵梁的安全性能非常高。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种前纵梁的设计方法,其特征在于,包括:
S1、获取对标车正面碰撞时的加速度-时间曲线和压溃距离-时间曲线;
S2、目标车前纵梁最前端到动力总成前端的长度为X;结合压溃距离-时间曲线获取开始产生压溃时的第一时刻t0,以及压溃距离为X时对应的第二时刻t1
S3、结合加速度-时间曲线,获取在t0-t1时间段内对标车的恒定等效加速度a;
S4、获取目标车试验质量m;结合恒定等效加速度a和目标车试验质量m,通过F=ma计算出目标车在t0-t1时间段内受到的等效平均碰撞力F;
S5、根据在前纵梁最前端到动力总成前端的吸能段内,前纵梁所承担的碰撞力的比重,获取前纵梁在t0-t1时间段内受到的等效碰撞力;
S6、根据前纵梁在t0-t1时间段内受到的等效碰撞力获取前纵梁横截面的长度、宽度、壁厚及材料参数。
2.根据权利要求1所述的设计方法,其特征在于,在前纵梁最前端到动力总成前端的吸能段内,前纵梁所承担的碰撞力的比重下限为d1,比重上限为d2
所述步骤S5中,前纵梁在t0-t1时间段内受到的等效碰撞力下限为F*d1,等效碰撞力上限为F*d2
所述步骤S6中,根据F*d1≤Fi≤F*d2的原则获取前纵梁的实际平均通过力Fi,根据Fi获取前纵梁横截面的长度、宽度、壁厚及材料参数。
3.根据权利要求2所述的设计方法,其特征在于,所述前纵梁最前端到动力总成前端的吸能段内,前纵梁所承担的碰撞力的比重为55%-70%。
4.根据权利要求1-3中任意一项所述的设计方法,其特征在于,所述对标车的加速度-时间曲线和压溃距离-时间曲线以对标车的车身B柱与门槛梁相交处为测试点测试得到。
5.根据权利要求1-3中任意一项所述的设计方法,其特征在于,恒定等效加速度a通过如下方法获得:根据加速度-时间曲线获取对标车在t0-t1时间段内的速度变化量V0-1,然后通过a=V0-1/(t1-t0)计算出恒定等效加速度a。
6.根据权利要求5所述的设计方法,其特征在于,实际平均通过力Fi通过如下公式计算得到:Fi=9.5675[(b+d)/(2h)]1/3h2σb
其中,b为矩形薄壁管梁的横截面长度,d为矩形薄壁管梁的横截面宽度,h为矩形薄壁管梁的壁厚,σb为矩形薄壁管梁的极限拉伸强度。
7.根据权利要求1-3、6中任意一项所述的设计方法,其特征在于,所述前纵梁包括前纵梁前段和前纵梁后段,所述前纵梁前段结构刚度小于或等于前纵梁后段结构刚度。
8.根据权利要求7所述的设计方法,其特征在于,所述前纵梁前段上具有弱化槽。
CN201310039923.3A 2013-01-31 2013-01-31 一种前纵梁的设计方法 Active CN103770840B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310039923.3A CN103770840B (zh) 2013-01-31 2013-01-31 一种前纵梁的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310039923.3A CN103770840B (zh) 2013-01-31 2013-01-31 一种前纵梁的设计方法

Publications (2)

Publication Number Publication Date
CN103770840A true CN103770840A (zh) 2014-05-07
CN103770840B CN103770840B (zh) 2014-12-24

Family

ID=50563726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310039923.3A Active CN103770840B (zh) 2013-01-31 2013-01-31 一种前纵梁的设计方法

Country Status (1)

Country Link
CN (1) CN103770840B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106709151A (zh) * 2016-11-28 2017-05-24 吉林大学 汽车正面25%重叠率碰撞的车身前端结构设计方法
CN108133068A (zh) * 2017-05-11 2018-06-08 中国北方车辆研究所 一种桁架式无人车辆车体轻量化设计方法
CN106347461B (zh) * 2016-08-26 2018-10-30 北京长城华冠汽车科技股份有限公司 一种电动汽车前纵梁变形引导机构的确定方法和装置
CN109543259A (zh) * 2018-11-09 2019-03-29 中国汽车技术研究中心有限公司 一种构建等效实车碰撞波形的方法
CN112793525A (zh) * 2019-11-13 2021-05-14 广州汽车集团股份有限公司 一种汽车前纵梁截面设计方法及汽车前纵梁

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270107A (ja) * 1988-04-21 1989-10-27 Okuma Mach Works Ltd 数値制御加工装置のプログラム作成装置
KR20050095405A (ko) * 2004-03-26 2005-09-29 임중연 기준모델과 해석적 기법을 활용한 모터스포츠형카트프레임의 설계방법
CN101241521A (zh) * 2008-03-06 2008-08-13 上海交通大学 基于支持向量机的轿车车身综合性能指标建模方法
CN102201017A (zh) * 2010-03-23 2011-09-28 帝特汽车技术(上海)有限公司 汽车车身的优化设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270107A (ja) * 1988-04-21 1989-10-27 Okuma Mach Works Ltd 数値制御加工装置のプログラム作成装置
KR20050095405A (ko) * 2004-03-26 2005-09-29 임중연 기준모델과 해석적 기법을 활용한 모터스포츠형카트프레임의 설계방법
CN101241521A (zh) * 2008-03-06 2008-08-13 上海交通大学 基于支持向量机的轿车车身综合性能指标建模方法
CN102201017A (zh) * 2010-03-23 2011-09-28 帝特汽车技术(上海)有限公司 汽车车身的优化设计方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106347461B (zh) * 2016-08-26 2018-10-30 北京长城华冠汽车科技股份有限公司 一种电动汽车前纵梁变形引导机构的确定方法和装置
CN106709151A (zh) * 2016-11-28 2017-05-24 吉林大学 汽车正面25%重叠率碰撞的车身前端结构设计方法
CN106709151B (zh) * 2016-11-28 2020-06-23 吉林大学 汽车正面25%重叠率碰撞的车身前端结构设计方法
CN108133068A (zh) * 2017-05-11 2018-06-08 中国北方车辆研究所 一种桁架式无人车辆车体轻量化设计方法
CN109543259A (zh) * 2018-11-09 2019-03-29 中国汽车技术研究中心有限公司 一种构建等效实车碰撞波形的方法
CN109543259B (zh) * 2018-11-09 2023-03-31 中国汽车技术研究中心有限公司 一种构建等效实车碰撞波形的方法
CN112793525A (zh) * 2019-11-13 2021-05-14 广州汽车集团股份有限公司 一种汽车前纵梁截面设计方法及汽车前纵梁

Also Published As

Publication number Publication date
CN103770840B (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
CN103569236B (zh) 一种汽车车身前部结构的设计方法及其汽车的设计方法
CN103770840B (zh) 一种前纵梁的设计方法
CN106709151B (zh) 汽车正面25%重叠率碰撞的车身前端结构设计方法
CN107169164B (zh) 考虑碰撞工况的适用于汽车早期设计的简化模型建模方法
CN103699734A (zh) 基于集中参数化模型的汽车正面碰撞概念设计方法
CN101727518A (zh) 汽车正面碰撞的非线性动力学模型
CN204064606U (zh) 汽车仪表板动态刚度实验冲击器
CN106055849A (zh) 一种吸力储能防撞负泊松比结构汽车车架及设计方法
CN106997417B (zh) 一种基于行人保护的汽车缓冲吸能a柱及其优化方法
CN103017722A (zh) 一种基于cae的正面碰撞仿真测量车身变形量的方法
CN112257188A (zh) 一种混合动力客车骨架的轻量化设计方法
CN104843068B (zh) 车架碰撞安全性的优化方法以及车架、车辆
CN110422134A (zh) 一种轻型货车隔板装置及其设计方法
CN103577618B (zh) 一种汽车吸能盒设计方法及汽车设计方法
Favre et al. Static coupling between detached-eddy simulations and vehicle dynamic simulations of a generic road vehicle model with different rear configurations in unsteady crosswind
Stein et al. Parametric modelling of simplified car models for assessment of frontal impact compatibility
Ramasubramanian et al. Design and development of roll cage for all terrain vehicles
Lavanya et al. Design and analysis of a single seater race car chassis frame
CN107967370A (zh) 基于cae仿真技术扩展偏置碰撞力传递路径的方法
CN105677982A (zh) 前机舱溃缩空间尺寸确定方法及装置
Iozsa et al. Influence of crash box on automotive crashworthiness
SCURTU et al. Frontal crash simulation of a chassis frame
Galipeau-Belair Design and development of side underride protection devices (SUPD) for heavy vehicles
Elmarakbi et al. Development of a new crash/dynamics control integrated mathematical model for crashworthiness enhancement of vehicle structures
Khore et al. Impact crashworthiness of rear under run protection device in heavy vehicle using finite element analysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Wang Yuchao

Inventor after: Huang Xiangdong

Inventor after: Yue Peng

Inventor after: Chen Qi

Inventor before: Wang Yuchao

Inventor before: Yue Peng

Inventor before: Chen Qi

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: WANG YUCHAO YUE PENG CHEN QI TO: WANG YUCHAO HUANG XIANGDONG YUE PENG CHENQI

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant