CN103769600B - 一种表面高分散贵金属高指数晶面纳米颗粒的制备方法 - Google Patents

一种表面高分散贵金属高指数晶面纳米颗粒的制备方法 Download PDF

Info

Publication number
CN103769600B
CN103769600B CN201410014413.5A CN201410014413A CN103769600B CN 103769600 B CN103769600 B CN 103769600B CN 201410014413 A CN201410014413 A CN 201410014413A CN 103769600 B CN103769600 B CN 103769600B
Authority
CN
China
Prior art keywords
noble metal
miller index
index surface
preparation
nano particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410014413.5A
Other languages
English (en)
Other versions
CN103769600A (zh
Inventor
赵丹
王慧泽
邓圣军
肖卫明
陈超
张宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Zhishangying Stainless Steel Decoration Material Co ltd
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201410014413.5A priority Critical patent/CN103769600B/zh
Publication of CN103769600A publication Critical patent/CN103769600A/zh
Application granted granted Critical
Publication of CN103769600B publication Critical patent/CN103769600B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种表面高分散贵金属高指数晶面纳米颗粒的制备方法,是将合成体系组分中的铜或银纳米颗粒加入至2M浓度的KCl溶液中,再加入保护剂PVP和贵金属前体溶液,常温下搅拌2小时后静置30个小时,制得样品。本发明由于贵金属分布于基底金属颗粒表面,保证了贵金属的高分散度和高利用率,对于三种贵金属,在常温下通过较简单工艺即在合成过程中将实验条件控制为本申请所筛选出的体系组成、配比及制备步骤都可以构建出高分散度的高指数晶面,体现了本发明的体系和方法具有较好的普适性,为其推广应用奠定了基础。

Description

一种表面高分散贵金属高指数晶面纳米颗粒的制备方法
技术领域
本发明涉及一种在相对便宜的金属纳米颗粒表面构建贵金属高指数晶面的可控合成新方法,特别是使贵金属以具有特殊性能的高指数晶面形态存在的同时兼具高分散度或高利用率的突出优点。
背景技术
贵金属如金、铂、钯等对于很多工业生产过程特别是一些重要的多相化学化工过程如石油精制、精细化工品合成、氢能转化等方面仍是不可缺少或重要的催化材料,这些重要应用依赖于贵金属材料的表面性质。研究表明,以高指数晶面形态存在的贵金属表面具有显著优于一般晶面的特殊物理化学性质,因而其合成与应用备受关注。但是从目前的制备方法看来,所得具有高指数贵金属晶面的样品都是尺寸较大如50nm的纯贵金属颗粒,虽然其表面是具有特殊优点的高指数晶面,但从颗粒整体尺寸看来,大部分贵金属原子处于体相中不可被利用,其分散度或利用率非常低,导致这些颗粒难以真正实际应用。因此,开发能使贵金属以高指数晶面形态存在兼具高分散度或高利用率的合成体系和方法是一项充满挑战性而意义重大的工作。从目前研究现状看来,合成具有高指数晶面纯贵金属颗粒并提高贵金属分散度的努力方向在于尽量合成小尺寸的颗粒,但是这方面的进展非常困难,因为控制贵金属颗粒的高指数晶面分布与减小其尺寸在实际合成中表现为一对相互对立的方面,针对这一情况,本发明突破合成此类材料的常规,以相对便宜的金属(铜,银等)纳米颗粒为基底,引入贵金属氯代化合物,在贵金属盐与基底金属颗粒表面之间进行氧化还原过程即基底金属颗粒表面氧化蚀刻同时还原沉积贵金属的过程中,辅以PVP作为形貌保护剂,通过精细调控体系中的组分组成及其配比发现确定了将贵金属以高指数晶面形态高度分散于纳米颗粒表面的可控合成条件和方法。
发明内容
本发明的目的是针对难以获得兼具高指数晶面和高分散度贵金属颗粒这一问题,通过独特的控制合成体系即以相对便宜的金属(铜,银等)纳米颗粒为基底,在其表面氧化还原置换沉积贵金属提供了一种在便宜金属纳米颗粒表面构建贵金属高指数晶面的新方法,由此为解决贵金属高指数晶面样品利用率低以及支持其相关应用研究提供了新参考。
所采取的技术方案是:
本发明在含有事先合成的具有一定形貌特征的相对便宜金属如铜、银纳米颗粒的水分散体系中,于常温下直接将贵金属(Au,Pd,Pt)的氯代化合物前体引入,并辅以一定量的表面活性剂如PVP,通过精细调控体系中的组分组成及其配比实现了由贵金属原子置换基底金属颗粒的表层原子并以高指数晶面形态存在,由此获得了贵金属以高指数晶面存在且其分散度显著提高的样品。
制备方法:
(1)合成体系的组分为:
贵金属前体溶液:HAuCl4、Na2PdCl4或K2PtCl4水溶液,取10-20mL水溶液,每mL溶液中含贵金属0.01-0.1mg;
基底颗粒:粒径为5-50nm的Ag纳米颗粒或粒径为20-100nm的Cu纳米颗粒,5.0-20.0mg
保护剂:PVP0.2-1.0g
(2)制备步骤:
将合成体系组分中的铜或银纳米颗粒加入至20mL2M浓度的KCl溶液中,再加入保护剂PVP和贵金属前体溶液,常温下搅拌2小时后静置30个小时,制得样品。
合成体系的控制因素:
通过透射电子显微镜(TEM)和X射线衍射谱图(XRD)分析表明,控制贵金属前体与基底金属的原子比是将贵金属以高指数形态置换于基底金属颗粒表面的关键因素,而体系中的阴离子以及保护剂也是影响样品形貌的重要影响因素,总之,通过控制这些因素,可以将Au、Pd、Pt在基底金属颗粒表面构建为高度分散的高指数晶面。(具体见实施范例)。
本发明的有益效果:
(1)在相对便宜的金属颗粒表面构建出了贵金属的高指数晶面。
(2)由于贵金属分布于基底金属颗粒表面,保证了贵金属的高分散度和高利用率。
(3)对于三种贵金属,在常温下通过较简单工艺都可以构建出高分散度的高指数晶面,体现了本发明的体系和方法具有较好的普适性,为其推广应用奠定了基础。
具体实施方式
实施例一:表层为Au晶面的凹面(高指数晶面)Ag纳米立方颗粒之合成
3mL含有7mgAg纳米立方颗粒的水分散液加入至20mL2MKCl溶液中,而后加入600mgPVP和10mL0.5mMHAuCl4溶液,室温下搅拌2小时候避光静置,30小时后得到样品,形貌如图1TEM照片显示,HAuCl4引入后,Ag纳米立方颗粒变化成为了表层为Au晶面的凹面(高指数晶面)Ag纳米立方颗粒。
实施例二:表层为Pd晶面的凹面(高指数晶面)Ag纳米立方颗粒之合成
3mL含有7mgAg纳米立方颗粒的水分散液加入至20mL2MKCl溶液中,而后加入600mgPVP和10mL0.5mMNa2PdCl4溶液,室温下搅拌2小时候后避光静置,30小时后得到样品,形貌如图2TEM照片显示,Na2PdCl4引入后,Ag纳米立方颗粒变化成为了表层为Pd晶面的凹面(高指数晶面)Ag纳米立方颗粒。

Claims (1)

1.一种表面高分散贵金属高指数晶面纳米颗粒的制备方法,其特征是:
(1)合成体系的组分为:贵金属前体溶液:HAuCl4、Na2PdCl4或K2PtCl4水溶液,取10-20mL水溶液,每mL溶液中含贵金属0.01-0.1mg;
基底颗粒:粒径为5-50nm的Ag纳米颗粒或粒径为20-100nm的Cu纳米颗粒5.0-20.0mg;
保护剂:PVP0.2-1.0g
(2)制备步骤:
将合成体系组分中的铜或银纳米颗粒加入至20mL2M浓度的KCl溶液中,再加入保护剂PVP和贵金属前体溶液,常温下搅拌2小时后静置30个小时,制得样品。
CN201410014413.5A 2014-01-14 2014-01-14 一种表面高分散贵金属高指数晶面纳米颗粒的制备方法 Expired - Fee Related CN103769600B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410014413.5A CN103769600B (zh) 2014-01-14 2014-01-14 一种表面高分散贵金属高指数晶面纳米颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410014413.5A CN103769600B (zh) 2014-01-14 2014-01-14 一种表面高分散贵金属高指数晶面纳米颗粒的制备方法

Publications (2)

Publication Number Publication Date
CN103769600A CN103769600A (zh) 2014-05-07
CN103769600B true CN103769600B (zh) 2016-04-13

Family

ID=50562619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410014413.5A Expired - Fee Related CN103769600B (zh) 2014-01-14 2014-01-14 一种表面高分散贵金属高指数晶面纳米颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN103769600B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105033282A (zh) * 2015-09-07 2015-11-11 黑龙江省科学院石油化学研究院 催化Suzuki偶联反应的钯纳米粒子的制备方法
CN114073713B (zh) * 2020-08-21 2023-07-11 中国科学技术大学 一种钯银纳米颗粒以及其应用和制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483539A (zh) * 2003-07-29 2004-03-24 中国科学院上海光学精密机械研究所 利用金属置换反应制备金属纳米材料的方法
KR101479788B1 (ko) * 2009-04-08 2015-01-06 인스콘테크(주) 이온성 액체를 이용한 금속 나노구조체의 제조방법
CN102554262B (zh) * 2012-02-23 2013-10-09 山东大学 一种中空多孔球形铂银合金纳米材料及其制备方法

Also Published As

Publication number Publication date
CN103769600A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
Huang et al. Shape‐controlled synthesis of polyhedral nanocrystals and their facet‐dependent properties
Mehrabadi et al. A review of preparation methods for supported metal catalysts
Susman et al. Chemical deposition of Cu2O nanocrystals with precise morphology control
Herrmann et al. Multimetallic aerogels by template-free self-assembly of Au, Ag, Pt, and Pd nanoparticles
Wang et al. Clean synthesis of Cu2O@ CeO2 core@ shell nanocubes with highly active interface
Niu et al. Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes
US9878306B2 (en) Silver nanowires, methods of making silver nanowires, core-shell nanostructures, methods of making core-shell nanostructures, core-frame nanostructures, methods of making core-frame nanostructures
Xie et al. Catalysis on faceted noble-metal nanocrystals: both shape and size matter
Jana et al. Synthesis and modeling of hollow intermetallic Ni–Zn nanoparticles formed by the Kirkendall effect
Zhang et al. Highly selective synthesis of catalytically active monodisperse rhodium nanocubes
Xiong et al. Poly (vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions
Xie et al. Synthesis and characterization of Pd@ MxCu1− x (M= Au, Pd, and Pt) nanocages with porous walls and a yolk–shell structure through galvanic replacement reactions
Liu et al. Direct synthesis of palladium nanocrystals in aqueous solution with systematic shape evolution
Shin et al. Preparation of homogeneous gold− silver alloy nanoparticles using the apoferritin cavity as a nanoreactor
Park et al. Shape evolution and gram-scale synthesis of gold@ silver core–shell nanopolyhedrons
Wojtysiak et al. Synthesis of core–shell silver–platinum nanoparticles, improving shell integrity
Hou et al. One-pot synthesis of noble metal nanoparticles with a core–shell construction
KR20130054062A (ko) 그래파이트로부터 금속-그래핀 나노복합체를 제조하는 방법
Li et al. Scalable synthesis of Ag networks with optimized sub-monolayer Au-Pd nanoparticle covering for highly enhanced SERS detection and catalysis
Imura et al. Highly stable silica-coated gold nanoflowers supported on alumina
Naresh et al. Tailoring multi-metallic nanotubes by copper nanowires with platinum and gold via galvanic replacement route for the efficient methanol oxidation reaction
CN103769600B (zh) 一种表面高分散贵金属高指数晶面纳米颗粒的制备方法
CN104549263A (zh) 一种Pd/铌酸纳米片催化剂及其制备方法和应用
Swain et al. Facet dependent catalytic activity of Pd nanocrystals for the remedy of organic Pollutant: A mechanistic study
Castro et al. Gold, silver and platinum nanoparticles biosynthesized using orange peel extract

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220311

Address after: 226000 room 307, building 1, No. 109, Yongfu Road, Tangzha Town Street, Chongchuan District, Nantong City, Jiangsu Province

Patentee after: Nantong Zhifan Information Technology Co.,Ltd.

Address before: 999 No. 330031 Jiangxi province Nanchang Honggutan University Avenue

Patentee before: Nanchang University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220628

Address after: 528200 self compiled B16 of damatou River West, Pingsheng Industrial Zone, Guicheng Street, Nanhai District, Foshan City, Guangdong Province (residence declaration)

Patentee after: Foshan zhishangying stainless steel decoration material Co.,Ltd.

Address before: 226000 room 307, building 1, No. 109, Yongfu Road, Tangzha Town Street, Chongchuan District, Nantong City, Jiangsu Province

Patentee before: Nantong Zhifan Information Technology Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160413

CF01 Termination of patent right due to non-payment of annual fee