CN103762412A - Onboard downward-looking 3D SAR sparse array antenna laying method - Google Patents

Onboard downward-looking 3D SAR sparse array antenna laying method Download PDF

Info

Publication number
CN103762412A
CN103762412A CN201310750198.0A CN201310750198A CN103762412A CN 103762412 A CN103762412 A CN 103762412A CN 201310750198 A CN201310750198 A CN 201310750198A CN 103762412 A CN103762412 A CN 103762412A
Authority
CN
China
Prior art keywords
mrow
msub
array
antenna
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310750198.0A
Other languages
Chinese (zh)
Other versions
CN103762412B (en
Inventor
谭维贤
王彦平
彭学明
鲍慊
洪文
吴一戎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronics of CAS
Original Assignee
Institute of Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronics of CAS filed Critical Institute of Electronics of CAS
Priority to CN201310750198.0A priority Critical patent/CN103762412B/en
Publication of CN103762412A publication Critical patent/CN103762412A/en
Application granted granted Critical
Publication of CN103762412B publication Critical patent/CN103762412B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention provides an onboard downward-looking 3D SAR sparse array antenna laying method. The method aims to solve the problems that according to onboard 3D SAR system antenna laying, a platform installation space is limited and a design method is complicated; according to the flight height of an aerial carrier, an observation area maximum height change range function, a radar system work wavelength and a resolution ratio in the array direction, antenna laying design is carried out. The method is simple in operation, free of complicated computation and capable of guaranteeing that a grating lobe of a target response function in the array direction of a system is controlled to be at a reasonable level.

Description

Airborne downward-looking3D SAR sparse array antenna layout method
Technical Field
The invention relates to an airborne downward-looking3D SAR sparse array antenna layout method.
Background
An airborne downward-looking array 3D SAR (Three-Dimensional Synthetic Aperture Radar, 3D SAR for short) realizes resolution by means of pulse compression in the wave propagation direction by observing a machine bottom area; the aperture synthesis is realized by means of the motion of the airborne platform in the track direction, and further the track direction resolution is realized; in the array direction, aperture synthesis is realized by arranging sparse array antennas along the wings and ventral of the aircraft, and thus, array direction resolution is realized (see non-patent documents 1 and 2).
If a large number of antenna subarrays are arranged uniformly along the wing and the belly, the aerodynamic performance of the aircraft and the like are greatly influenced on the one hand. On the other hand, uniformly arranging a large number of array elements also increases system cost and system complexity. In response to these problems, the skilled person has conducted a lot of research work on how to perform array-to-antenna sub-array layout, and for example, the following methods are disclosed in non-patent documents 3, 4, and 5. M multiplied by N equivalent phase centers are virtualized by M transmitting antenna units and N receiving antenna units, and the distance between the phase centers needs to be smaller than a half wavelength. However, the above method needs to use the antenna array element as an omnidirectional antenna as a premise, that is, all targets that can be observed by the array can be covered.
However, in actual observation, due to limitations of a system signal-to-noise ratio, a resolution, and the like, an array-to-observation range of the system is always limited to a certain observation range, not an array-to ± 90 °.
In addition, in the layout of the antenna subarrays, the actual size of the antenna array, the antenna installation space on the flight platform, and the layout relationship among the antenna subarrays are not considered, and the situation that the antennas are staggered in the track direction, especially the overlapping layout of part of the transmitting antennas and the receiving antennas is not beneficial to the system implementation, and the flexible installation of the antennas on the flight platform is not beneficial.
Furthermore, in prior art antenna layouts, the target elevation range effect has not been considered in the array element layout. Furthermore, it is also necessary to ensure that the grating lobe control of the system array to the response function is at a reasonable level.
Non-patent documents:
non-patent document 1: klare.a newwairborn rad for3D imaging-simulation study of art ino. eusar Dresden, Germany, 2006; w.m, e.j, e.a. pets o.an air airborne for the same dimensional imaging and optimization and status of artino.
Non-patent document 2: du, Y.P.Wang, W.hong, et al.A. Three-Dimensional transmission chemistry for down-pointing-viewing 3D-SAR with single-transmitting and multiple-receiving linear array antenna.
Non-patent document 3: klare, D.Cerutti-Maori, A.Brenner, J.Ender.image quality analysis of the ventilating space MIMO antenna array of the airframe 3D imaging radar ARTINO.2007.
Non-patent document 4: m.weiss, o.peters, j.end.a three-dimensional SAR system on an uav.igarss2007, Barcelona, Spain, 2008: 5315-5318.
Non-patent document 5: pengzhiming, Wanyanping, Tan Weixian, and the like, an airborne downward-looking MIMO3D-SAR three-dimensional imaging algorithm based on a cross-course sparse array, an electronic and information declaration, 2012 and 34 (4): 943-949.
The invention content is as follows:
technical problem to be solved
Aiming at the problems in the prior art, the invention provides an airborne downward-looking3D SAR sparse array antenna layout method, which solves the problems of complex design method of array-to-antenna layout, limited antenna layout space and the like in airborne downward-looking3D SAR imaging, particularly can carry out array-to-antenna layout design according to the system array directional resolution and the observation range, and can ensure that the grating lobe control of the system array to the response function is at a reasonable level.
(II) technical scheme
In order to achieve the above object, the invention provides an airborne downward-looking3D SAR sparse array antenna layout method, which comprises the following steps:
step S1, determining the azimuth dimension of the array antenna, the layout length of the array antenna and the half beam width of the array antenna unit according to the flight altitude of the aircraft, the maximum altitude variation range function of an observation area, the working wavelength of the radar system, the azimuth resolution and the array resolution which are taken as parameters of the airborne downward-looking3D SAR system;
step S2, determining the array direction size of the transmitting antenna unit, the distance between the transmitting antenna units and the array direction size of the receiving antenna unit based on the array direction antenna layout length and the array antenna unit half beam width;
step S3, calculating the number of transmitting antenna units, the number of receiving antenna units, the spacing of receiving antenna units, the distribution of the geometric center positions of transmitting antennas and the distribution of the geometric center positions of receiving antenna units according to the array-to-antenna layout length and the spacing of the transmitting antenna units;
step S4, establishing array-direction sampling point position coordinates according to the flight height of the aerial carrier and the half beam width of the array-direction antenna unit, and determining an array-direction response function f { X (k) -x) of a system airborne point target by using the array-direction sampling point position coordinates, the flight height of the aerial carrier and the working wavelength of the radar system0Array-wise response function of extreme edge target of observation area <math><mrow> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> <mo>}</mo> <mo>;</mo> </mrow></math>
Step S5, under the system, the array directional response function f { X (k) -x of the point target0Array directional response function of the most marginal target of the observation area <math><mrow> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> <mo>}</mo> </mrow></math> The grating lobe is positioned in the system imaging observation area +/-qLBesides, and
Figure BDA0000451970480000043
then, step S6 is executed, the array directional response function f { X (k) -x of the target under the system is0Array directional response function of the most marginal target of the observation area <math><mrow> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> <mo>}</mo> </mrow></math> The grating lobe of (2) falls in the system imaging observation area + -qLIn or on
Figure BDA0000451970480000045
Then, the number of the receiving antenna units is increased by one, and the process returns to step S3, where H is the flying height of the carrier and L is the flying height of the carriereFor array-wise antenna layout the effective aperture length, lcFor the operating wavelength of the radar system, rLThe array directional resolution;
step S6, outputting the array antenna direction size LAThe array directional size of the transmitting antenna units, the number of the transmitting antenna units, the distribution of the geometric center positions of the transmitting antennas, the array directional size of the transmitting antenna units, the number of the receiving antenna units and the distribution of the geometric center positions of the receiving antenna units; and
step S7, performing layout of the airborne downward-looking 3DSAR sparse array antenna according to the layout parameters output in the step S6.
(III) effects of the invention
According to the invention, the radar system index and the actual observation range are taken as input, the actual antenna array dimension, the antenna installation space on the flight platform and the antenna subarray layout relation are considered, the situation that the conventional antenna is staggered and arranged in the front and back directions of the track direction is solved, particularly the overlapping layout of part of the transmitting antenna and the receiving antenna is realized, and the flexible installation of the antenna on the flight platform is facilitated; in addition, the influence of the target elevation range is considered in the array element layout, and compared with the prior art, the method is simple to operate, does not need complex calculation, and can be effectively applied to radar system design.
Drawings
Fig. 1 is a flowchart illustrating an airborne look-down 3D SAR sparse array antenna layout method in an embodiment of the present invention.
Fig. 2 shows a procedure for antenna layout based on antenna layout parameters determined in an embodiment of the present invention.
Fig. 3 is a schematic diagram illustrating antenna layout based on the determined antenna layout parameters in the embodiment of the present invention.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is described in further detail below with reference to specific embodiments and the accompanying drawings.
It should be noted that in the drawings or the description, the same reference numerals are used for similar or identical parts. Implementations not depicted or described in the drawings are of a form known to those of ordinary skill in the art. Additionally, while exemplifications of parameters including particular values may be provided herein, it is to be understood that the parameters need not be exactly equal to the respective values, but may be approximated to the respective values within acceptable error margins or design constraints. In addition, directional terms such as "upper", "lower", "front", "rear", "left", "right", and the like, referred to in the following embodiments, are directions only referring to the drawings. Accordingly, the directional terminology is used for purposes of illustration and is in no way limiting.
In one exemplary embodiment of the invention, an airborne look-down 3D SAR sparse array antenna layout method is provided. Fig. 1 shows a flowchart of an airborne look-down 3D SAR sparse array antenna layout method in an embodiment of the present invention. As shown in fig. 1, the method for laying out an airborne downward-looking3D SAR sparse array antenna according to the present embodiment includes:
step S1: according to the flight height H of the airborne machine and the maximum height variation range function H of an observation area as the parameters of the airborne downward-looking3D SAR systemT(x) Working wavelength l of radar systemcAzimuthal resolution rAAnd array-wise resolution rLCalculating the azimuth dimension L of the array antennaAArray-to-antenna layout length L and array antenna element half-beam width qL
Where x represents an array-to-target position variable, and x ═ H-HT(x)]×tan(θx),θx∈[-θL,+θL]The parameters of the airborne downward-looking3D SAR system mainly comprise the flying height H of the airborne aircraft and the maximum height variation range function H of an observation areaT(x) Working wavelength l of radar systemcAnd array-wise resolution rL
Step S2: according to the length L of the array-oriented antenna layout and the half beam width q of the array antenna unitLCalculating directional size l of transmitting antenna unit arrayTThe distance Dl between the transmitting antenna unitsTThe array dimension l of the receiving antenna unitR
l T = l c tan ( 2 q L ) K b ;
Dl T = l c tan ( 2 q L ) K b ;
l R = l c tan ( 2 q L ) K b ;
Wherein, KbAs a function of the beam width factor, the current distribution over the antenna aperture, usually Kb=0.886;
Step S3: according to the length L of the array-oriented antenna layout and the interval Dl of the transmitting antenna unitsTCalculating the number M of transmitting antenna units, the number N of receiving antenna units and the distance Dl between the receiving antenna unitsRDistribution L of geometric center positions of transmitting antennasTx(M), M1, 2, M and distribution L of geometric center positions of the receiving antenna elementsRx(n),n=1,2,...,N;
Step S4: according to the distribution L of the geometric center positions of the antenna unitsxHalf-wave beam width q of array antenna unitLAnd radar system operating wavelength lcLower point target f of computer systemX(k)-x0Array-wise response function of extreme edge target of observation area <math><mrow> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> <mo>}</mo> <mo>,</mo> </mrow></math> Wherein,
Figure BDA0000451970480000072
is corresponding to qLTarget position coordinates of time, xnRepresenting the position coordinates of the under-machine point target, X (k) being the position coordinates of the array-wise sampling points, and the array-wise coordinates of the under-machine point target being
Figure BDA0000451970480000073
Also equal to the array towards the center of the antenna layout;
step S5: in the array-wise response function f { X (k) -x0And <math><mrow> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> <mo>}</mo> </mrow></math> the grating lobe is positioned in the system imaging observation area +/-qLBesides, andin which L iseFor array-wise antenna layout the effective aperture length, lcFor the operating wavelength of the radar system, rLFor array-directional resolution, H is the carrier flight height,
Figure BDA00004519704800000710
is corresponding to qLThe target position coordinates of time, then step S6 is executed; in an array-wise response function f { X { (k) -X0And <math><mrow> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> <mo>}</mo> </mrow></math> the grating lobe is positioned in the system imaging observation area +/-qLIn or on
Figure BDA0000451970480000078
In which
Figure BDA0000451970480000079
Is corresponding to qLThe current target position coordinates are obtained by adding 1 to the number N of receiving antenna elements, and the process returns to step S3;
step S6: outputting airborne downward-looking3D SAR sparse array antenna layout parameters including array antenna direction size LAArray dimension l of transmitting antenna elementTNumber of transmitting antenna units M, distribution of geometric center positions of transmitting antennas LTx(M), M1, 2.. M, dimension l of the array of receiving antenna elementsRThe number N of receiving antenna units and the distribution L of the geometric center positions of the receiving antenna unitsRx(n),n=1,2,...,N。
Step S7: and according to the layout parameters of the airborne downward-looking3D SAR sparse array antenna output in the step S6, carrying out layout of the airborne downward-looking3D SAR sparse array antenna.
In addition, the step S1 includes the following steps:
step S11: according to the flying height H of the carrier and the working wavelength l of the radar systemcAzimuthal resolution rAAnd array-wise resolution rLCalculating the azimuth dimension L of the array antennaAAnd array-to-antenna layout length L:
L = l c H 2 r L
L A = l c H 2 r A
the azimuth dimension of the array antenna comprises the azimuth dimension of a transmitting antenna unit and the azimuth dimension of a receiving antenna unit, the azimuth dimensions of the two antennas are equal, and both the azimuth dimensions are LA
Step S12: according to the flying height H of the carrier and the maximum height variation range function H of an observation areaT(x) Working wavelength l of radar systemcAnd array-wise imaging width WLCalculating half-wave beam width q of array antenna unitL
<math><mrow> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>=</mo> <mi>max</mi> <mo>{</mo> <mi>a</mi> <mi>tan</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>W</mi> <mi>L</mi> </msub> <mrow> <mn>2</mn> <mi>H</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> <mi>a</mi> <mi>tan</mi> <mrow> <mo>(</mo> <mfrac> <mi>x</mi> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>H</mi> <mo>-</mo> <mi>max</mi> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>}</mo> </mrow></math>
Where x represents an array-to-target position variable, and x is H × tan (θ)x),θx∈[-θL,+θL], Is corresponding to qLMax represents taking the maximum value.
In addition, the step S3 includes the following steps:
step S31: if step S5 has been executed, go to step S32; if step S5 has not been executed, the antenna layout length L and the transmitting antenna unit spacing Dl are determined according to the arrayTCalculating the number M of transmitting antenna units and the number N of receiving antenna units:
Figure BDA0000451970480000091
wherein a represents a variable of the number of transmitting antenna elements, b represents a variable of the number of receiving antenna elements, Δ lTThe transmit antenna element spacing is shown as,
Figure BDA0000451970480000092
the function of rounding up is represented by,representing a lower integer, M and N are respectively positive integers, and min (2a + b) represents taking a minimum value of (2a + b);
step S32: according to the number M of transmitting antenna units, the number N of receiving antenna units and the distance Dl between the transmitting antenna unitsTCalculating the distance Dl between the receiving antenna unitsR
Dl R = Dl T 2 M
Step S33: according to the transmitting antennaNumber of elements M, number of receiving antenna elements N, and distance between transmitting antenna elements DlTAnd the receiving antenna unit interval DlRGeometric center position distribution L of downward-looking transmitting antenna on computerTx(M), M1, 2, M and distribution L of geometric center positions of the receiving antenna elementsRx(n),n=1,2,...,N:
<math><mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>L</mi> <mi>Rx</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&Delta;l</mi> <mi>R</mi> </msub> <mo>&times;</mo> <mi>n</mi> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>N</mi> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>Tx</mi> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>L</mi> <mi>Rx</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mrow> <mo></mo> <mo></mo> <mo></mo> <mo></mo> <mo></mo> <mo></mo> <mi>&Delta;l</mi> </mrow> <mi>T</mi> </msub> <mo>&times;</mo> <mi>m</mi> <mo>;</mo> <mi>m</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mfrac> <mi>M</mi> <mn>2</mn> </mfrac> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>Rx</mi> </msub> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;l</mi> <mi>T</mi> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mfrac> <mi>M</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> <mi>m</mi> <mo>=</mo> <mrow> <mo>(</mo> <mfrac> <mi>M</mi> <mn>2</mn> </mfrac> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>M</mi> <mo>;</mo> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced></math>
Wherein Dl isRFor receiving the antenna element spacing, DlTIs the transmit antenna element spacing.
Step S34: l obtained according to step S33Rx(n) and LTx(m) generating an array-to-antenna layout effective aperture length LeAnd a virtual equivalent phase center LTRx(q),q=1,L,MN:
L e = L Tx ( M ) + L Rx ( N ) 2 - L Tx ( 1 ) + L Rx ( 1 ) 2 ;
for n=1∶N,
for m=1∶M,
<math><mrow> <msub> <mi>L</mi> <mi>TRx</mi> </msub> <mo>[</mo> <mi>q</mi> <mo>=</mo> <mrow> <mo>(</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&times;</mo> <mi>N</mi> <mo>+</mo> <mi>m</mi> <mo>]</mo> <mo>=</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mi>Rx</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mi>Tx</mi> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow></math>
end;
end;
LRx(n) and LTxAnd (m) performing antenna phase center equivalence in a circulating mode between every two antennas to obtain equivalent phase centers of MN antennas.
In addition, the step S4 includes the following steps:
step S41: according to the flying height H of the carrier and the half-wave beam width q of the array antenna unitLEstablishing position coordinates of array-oriented sampling points
Figure BDA0000451970480000103
Wherein,
Figure BDA0000451970480000104
and
Figure BDA0000451970480000105
respectively representing upper and lower rounded, DlTIn order to transmit the antenna element spacing,
Figure BDA0000451970480000106
for array-to-antenna layout center, qLHalf-wave beam width of the array-directional antenna unit;
step S42: according to the flying height H of the carrier and the working wavelength l of the radar systemcAnd determining an array-oriented response function f { X (k) -x of an off-machine point target of the system according to the position coordinates X (k) of the array-oriented sampling points0Array-wise response function of extreme edge target of observation area <math><mrow> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> <mo>}</mo> <mo>:</mo> </mrow></math>
<math><mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>}</mo> <msub> <mo>|</mo> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>MN</mi> </munderover> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mn>4</mn> <mi>&pi;</mi> <mfrac> <msqrt> <msup> <mrow> <mo>[</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mn>2</mn> </msup> </msqrt> <msub> <mi>&lambda;</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&times;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>+</mo> <mi>j</mi> <mn>4</mn> <mi>&pi;</mi> <mfrac> <msqrt> <msup> <mrow> <mo>[</mo> <msub> <mi>L</mi> <mi>TRx</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mn>2</mn> </msup> </msqrt> <msub> <mi>&lambda;</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced></math>
<math><mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>}</mo> <msub> <mo>|</mo> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>MN</mi> </munderover> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mn>4</mn> <mi>&pi;</mi> <mfrac> <msqrt> <msup> <mrow> <mo>[</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mn>2</mn> </msup> </msqrt> <msub> <mi>&lambda;</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&times;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>+</mo> <mi>j</mi> <mn>4</mn> <mi>&pi;</mi> <mfrac> <msqrt> <msup> <mrow> <mo>[</mo> <msub> <mi>L</mi> <mi>TRx</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mn>2</mn> </msup> </msqrt> <msub> <mi>&lambda;</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced></math>
Wherein x is1Indicating the array to target location coordinates, LTRx(q) is the virtual equivalent phase center q 1, L, MN, f { X ( k ) - x 0 } = f { X ( k ) - x 1 } | x 1 = x 0 ,
<math><mrow> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> <mo>}</mo> <mo>=</mo> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>}</mo> <msub> <mo>|</mo> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </msub> <mo>.</mo> </mrow></math>
fig. 2 shows the steps for performing an onboard look-down 3D SAR sparse array antenna layout based on the antenna layout parameters determined in the above-described embodiment of the present invention. Fig. 3 shows a schematic diagram of antenna layout based on antenna layout parameters determined in an embodiment of the invention.
Calculating the array dimension l of the transmitting antenna unit by the methodTNumber of transmitting antenna units M, distribution of geometric center positions of transmitting antennas LTx(M), M1, 2.. M, dimension l of the array of receiving antenna elementsRThe number N of receiving antenna units and the distribution L of the geometric center positions of the receiving antenna unitsRx(N), N is 1, 2.., N, and the step S7 further includes the following steps:
step S71: determining an antenna layout parameter list, wherein the determined antenna layout parameter list is shown in table 1;
TABLE 1
Array antenna layout parameters Symbol
Array antenna azimuth dimension LA
Array dimension of transmitting antenna unit lT
Number of transmitting antenna elements M
Distribution of geometrical center positions of transmitting antennas LTx(m)
Receiving antenna sheetDimension of element array lR
Number of receiving antenna units N
Distribution of geometric center positions of receiving antenna elements LRx(n)
Step S72: determining antenna layout marking points according to the antenna layout parameter list, selecting a platform to be laid out, and distributing L according to the geometric center position of a transmitting antennaTx(M) determining transmitting antenna mark points which can be distributed by the platform, and marking the transmitting antenna mark points as PosT (mt), wherein mt is 1Rx(N) determining receiving antenna marking points which can be laid out by a platform, and marking the receiving antenna marking points as PosR (nr), wherein nr is 1.
Step S73: the transmitting antenna and the receiving antenna are arranged, the transmitting antenna marking points PosT and the receiving antenna marking points PosR can be arranged according to the platform, and the transmitting antenna and the receiving antenna are respectively arranged according to the principle that the geometric center coincides with the marking points.
The embodiment of the invention is explained above, and the on-board look-down 3D SAR sparse array antenna layout method is based on radar system indexes and actual observation ranges, and takes into consideration the actual antenna array dimension, the antenna installation space on the flight platform, and the layout relationship between antenna subarrays, so that the situation that the conventional antenna is staggered and arranged in the front-back direction of the track can be solved, especially the overlapping layout of part of transmitting antennas and receiving antennas equivalent antennas is avoided, and the flexible installation of the antenna on the flight platform is facilitated.
The above-mentioned embodiments are intended to illustrate the objects, technical solutions and advantages of the present invention in further detail, and it should be understood that the above-mentioned embodiments are only exemplary embodiments of the present invention, and are not intended to limit the present invention, and any modifications, equivalents, improvements and the like made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (6)

1. An airborne look-down 3D SAR sparse array antenna layout method is characterized by comprising the following steps:
step S1, determining the azimuth dimension of the array antenna, the layout length of the array antenna and the half beam width of the array antenna unit according to the flight altitude of the aircraft, the maximum altitude variation range function of an observation area, the working wavelength of the radar system, the azimuth resolution and the array resolution which are taken as parameters of the airborne downward-looking3D SAR system;
step S2, determining the array direction size of the transmitting antenna unit, the distance between the transmitting antenna units and the array direction size of the receiving antenna unit based on the array direction antenna layout length and the array antenna unit half beam width;
step S3, calculating the number of transmitting antenna units, the number of receiving antenna units, the spacing of receiving antenna units, the distribution of the geometric center positions of transmitting antennas and the distribution of the geometric center positions of receiving antenna units according to the array-to-antenna layout length and the spacing of the transmitting antenna units;
step S4, establishing array-direction sampling point position coordinates according to the flight height of the aerial carrier and the half beam width of the array-direction antenna unit, and determining an array-direction response function f { X (k) -x) of a system airborne point target by using the array-direction sampling point position coordinates, the flight height of the aerial carrier and the working wavelength of the radar system0Array-wise response function of extreme edge target of observation area
<math> <mrow> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> <mo>}</mo> <mo>;</mo> </mrow> </math>
Step S5, under the system, the array directional response function f { X (k) -x of the point target0Array directional response function of the most marginal target of the observation area <math> <mrow> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> <mo>}</mo> <mo>;</mo> </mrow> </math> The grating lobe is positioned in the system imaging observation area +/-qLBesides, and
Figure FDA0000451970470000021
then, step S6 is executed, the array directional response function f { X (k) -x of the target under the system is0Array directional response function of the most marginal target of the observation area <math> <mrow> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> <mo>}</mo> </mrow> </math> The grating lobe of (2) falls in the system imaging observation area + -qLIn or on
Figure FDA0000451970470000023
Then, the number of the receiving antenna units is increased by one, and the process returns to step S3, where H is the flying height of the carrier and L is the flying height of the carriereFor array-wise antenna layout the effective aperture length, lcFor the operating wavelength of the radar system, rLThe array directional resolution;
step S6, outputting the directional size of the transmitting antenna element array, the number of transmitting antenna elements, the distribution of the geometric center positions of the transmitting antennas, the directional size of the receiving antenna element array, the number of receiving antenna elements, and the distribution of the geometric center positions of the receiving antenna elements;
step S7, performing layout of the airborne downward-looking 3DSAR sparse array antenna according to the layout parameters output in the step S6.
2. The method of claim 1, wherein the method comprises the steps of,
in the step S1, in the above step,
setting the flying height of the carrier to be H and the working wavelength of the radar system to be lcSetting the array-directional resolution to rLSetting the azimuth resolution as rASetting the azimuth dimension of the array antenna to LAWhen the length of the array antenna layout is set to L,
L = l c H 2 r L
L A = l c H 2 r A
setting the function of the maximum height variation range of the observation area as hT(x) Setting the imaging width of the array to be WLSetting the half-wave beam width of the array to the antenna unit as qLWhen the temperature of the water is higher than the set temperature,
<math> <mrow> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>=</mo> <mi>max</mi> <mo>{</mo> <mi>a</mi> <mi>tan</mi> <mrow> <mo>(</mo> <mfrac> <mi>W</mi> <mrow> <mn>2</mn> <mi>H</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> <mi>a</mi> <mi>tan</mi> <mrow> <mo>(</mo> <mfrac> <mi>x</mi> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>H</mi> <mo>-</mo> <mi>max</mi> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>}</mo> <mo>,</mo> </mrow> </math>
where x represents an array-to-target position variable, and x is H × tan (θ)x),θx∈[-θL,+θL],Is corresponding to qLThe target position coordinates of (2).
3. The method of airborne look-down 3D SAR sparse array antenna placement of claim 1,
in the step S2, the radar system operating wavelength is set to lcSetting the half beam width of the array antenna unit as qLSetting the array of transmit antenna elements to a dimension of/TSetting the transmitting antenna unit spacing to DlTSetting the array dimension of the receiving antenna unit to be lRWhen the temperature of the water is higher than the set temperature,
l T = l c tan ( 2 q L ) K b ; Dl T = l T ; l R = l c tan ( 2 q L ) K b ;
wherein, KbSetting K for the beam width factor in relation to the current distribution over the antenna apertureb=0.886。
4. The method of claim 1, wherein the method comprises the steps of,
the step S3 further includes:
step S31, if step S5 has been executed, go to step S32; if step S5 has not been executed, according to the array-to-antenna layout length and the transmitting antenna unit spacing DlTDetermining the number of transmit antenna elements and the number of receive antenna elements,
setting the array-to-antenna layout length as L and the transmitting antenna unit spacing as DlTWhen the number of the transmitting antenna units is set as M and the number of the receiving antenna units is set as N,
Figure FDA0000451970470000041
wherein a represents a variable of the number of transmitting antenna elements, b represents a variable of the number of receiving antenna elements, AlTThe transmit antenna element spacing is shown as,
Figure FDA0000451970470000042
the function of rounding up is represented by,representing a lower integer, M and N are respectively positive integers, and min (2a + b) represents taking a minimum value of (2a + b);
step S32, using the number of the transmitting antenna units and the transmitting antenna unit spacing in the step S31 to determine the receiving antenna unit spacing, setting the receiving antenna unit spacing to DlRWhen the temperature of the water is higher than the set temperature,
Dl R = Dl T 2 M ,
wherein Dl isTThe distance between the transmitting antenna units is defined, and M is the number of the transmitting antenna units;
step S33, determining the distribution L of the geometric center position of the transmitting antenna according to the number of the transmitting antenna units, the number of the receiving antenna units, the distance between the transmitting antenna units and the distance between the receiving antenna unitsTx(m)LTx(M), M1, 2, M and distribution L of geometric center positions of the receiving antenna elementsRx(n)LRx(n),n=1,2,...,N,
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>L</mi> <mi>Rx</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&Delta;l</mi> <mi>R</mi> </msub> <mo>&times;</mo> <mi>n</mi> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>N</mi> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>Tx</mi> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>L</mi> <mi>Rx</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&Delta;l</mi> <mi>T</mi> </msub> <mo>&times;</mo> <mi>m</mi> <mo>;</mo> <mi>m</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mfrac> <mi>M</mi> <mn>2</mn> </mfrac> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>L</mi> <mi>Rx</mi> </msub> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;l</mi> <mi>T</mi> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mfrac> <mi>M</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> <mi>m</mi> <mo>=</mo> <mrow> <mo>(</mo> <mfrac> <mi>M</mi> <mn>2</mn> </mfrac> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>M</mi> <mo>;</mo> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
Wherein M is the number of the transmitting antenna units, N is the number of the receiving antenna units, DlTFor transmitting antenna element spacing, DlRIs the receive antenna element spacing.
5. The method of claim 4, wherein the method comprises the steps of,
using the distribution L of the geometric center positions of the receiving antenna elementsRx(n) and the distribution L of the geometrical center positions of the transmitting antennasTx(m) generating an effective aperture length and a virtual equivalent phase center of an array-to-antenna layout, wherein the geometric center positions of the receiving antenna units are distributed in LRx(n) and the distribution L of the geometrical center positions of the transmitting antennasTxAnd (m) performing antenna phase center equivalence in a circulating mode between every two antennas to obtain equivalent phase centers of MN antennas.
6. The method of claim 1, wherein the method comprises the steps of,
in step S4, when the array-directional sampling point position coordinates are set to x (k),
<math> <mrow> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>+</mo> <mfrac> <msub> <mi>&Delta;l</mi> <mi>T</mi> </msub> <mn>2</mn> </mfrac> <mo>&times;</mo> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mo>-</mo> <mi>K</mi> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mn>0,1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>K</mi> <mo>,</mo> </mrow> </math>
wherein,
Figure FDA0000451970470000052
and
Figure FDA0000451970470000054
respectively representing an upper rounding function and a lower rounding function,representing the array towards the center of the antenna layout, DlTFor transmitting antenna element spacing, qLHalf-wave beam width of the array-directional antenna unit;
calculating an array directional response function f { X (k) -x of the system under-machine point target by using the array directional sampling point position coordinates X (k)0Array directional response function of the most marginal target of the observation area <math> <mrow> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> <mo>}</mo> </mrow> </math> When the temperature of the water is higher than the set temperature,
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>}</mo> <msub> <mo>|</mo> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>MN</mi> </munderover> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>exp</mi> <mrow> <mo>(</mo> <mi></mi> <mo>-</mo> <mi>j</mi> <mn>4</mn> <mi>&pi;</mi> <mfrac> <msqrt> <msup> <mrow> <mo>[</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>[</mo> <mi>H</mi> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mn>2</mn> </msup> </msqrt> <msub> <mi>&lambda;</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&times;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>+</mo> <mi>j</mi> <mn>4</mn> <mi>&pi;</mi> <mfrac> <msqrt> <msup> <mrow> <mo>[</mo> <msub> <mi>L</mi> <mi>TRx</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>[</mo> <mi>H</mi> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mn>2</mn> </msup> </msqrt> <msub> <mi>&lambda;</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>f</mi> <mo>{</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>}</mo> <msub> <mo>|</mo> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>{</mo> <mo>[</mo> <mi>H</mi> <mo>-</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>}</mo> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>MN</mi> </munderover> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mn>4</mn> <mi>&pi;</mi> <mfrac> <msqrt> <msup> <mrow> <mo>[</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>[</mo> <mi>H</mi> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mn>2</mn> </msup> </msqrt> <msub> <mi>&lambda;</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&times;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>+</mo> <mi>j</mi> <mn>4</mn> <mi>&pi;</mi> <mfrac> <msqrt> <msup> <mrow> <mo>[</mo> <msub> <mi>L</mi> <mi>TRx</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>[</mo> <mi>H</mi> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mn>2</mn> </msup> </msqrt> <msub> <mi>&lambda;</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
wherein H is the flying height of the carrier, lcFor the operating wavelength, x, of the radar system1The target array position coordinates.
CN201310750198.0A 2013-12-31 2013-12-31 Airborne lower regarding 3D SAR sparse array antenna layout method Active CN103762412B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310750198.0A CN103762412B (en) 2013-12-31 2013-12-31 Airborne lower regarding 3D SAR sparse array antenna layout method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310750198.0A CN103762412B (en) 2013-12-31 2013-12-31 Airborne lower regarding 3D SAR sparse array antenna layout method

Publications (2)

Publication Number Publication Date
CN103762412A true CN103762412A (en) 2014-04-30
CN103762412B CN103762412B (en) 2016-09-28

Family

ID=50529610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310750198.0A Active CN103762412B (en) 2013-12-31 2013-12-31 Airborne lower regarding 3D SAR sparse array antenna layout method

Country Status (1)

Country Link
CN (1) CN103762412B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269612A (en) * 2014-10-15 2015-01-07 内蒙古工业大学 Multiple-input multiple-output imaging antenna layout method of close-distance planar array
CN106054181A (en) * 2016-05-18 2016-10-26 中国电子科技集团公司第四十研究所 One-dimensional sparse array layout method for terahertz real-time imaging
CN107942295A (en) * 2017-10-23 2018-04-20 中国人民解放军西安通信学院 A kind of sparse antenna of forward sight array SAR system
CN108132466A (en) * 2017-12-22 2018-06-08 内蒙古工业大学 Three-D imaging method and system are regarded under a kind of airborne array antenna
CN108292949A (en) * 2015-09-10 2018-07-17 平流层平台有限公司 Process for being communicated with user antenna phased array and device
CN109029383A (en) * 2018-05-03 2018-12-18 山东省科学院海洋仪器仪表研究所 A kind of rationally distributed property evaluation method of oceanographic buoy erect-position based on spatial analysis
CN109599680A (en) * 2018-10-29 2019-04-09 福瑞泰克智能系统有限公司 A kind of thinned array mimo antenna
CN109659705A (en) * 2018-10-24 2019-04-19 厦门运晨科技有限公司 MIMO radar two dimension sparse antenna is structured the formation method, radar antenna, radar and storage medium
CN109696709A (en) * 2017-10-20 2019-04-30 中国工程物理研究院电子工程研究所 One-dimensional sparse array structure and its design method for human body safety check imaging
CN113013583A (en) * 2021-01-29 2021-06-22 中国电子科技集团公司第三十八研究所 Millimeter wave radar packaging module
CN116047509A (en) * 2022-12-05 2023-05-02 重庆邮电大学 Millimeter wave MIMO array scanning and imaging method for uniformly sampling equivalent half wavelength

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1707852A (en) * 2005-05-20 2005-12-14 中国科学院电子学研究所 Air borne interference synthetic aperture radar receiving-transmitting antenna separating structure
US20110163912A1 (en) * 2008-12-10 2011-07-07 U.S. Government As Represented By The Secretary Of The Army System and method for iterative fourier side lobe reduction
CN102221697A (en) * 2011-03-25 2011-10-19 电子科技大学 Airborne multi-antenna SAR chromatography three dimensional imaging system and imaging method thereof
CN103389497A (en) * 2012-05-11 2013-11-13 中国科学院电子学研究所 Airborne thinned array antenna downward-looking three-dimensional imaging radar system and imaging method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1707852A (en) * 2005-05-20 2005-12-14 中国科学院电子学研究所 Air borne interference synthetic aperture radar receiving-transmitting antenna separating structure
US20110163912A1 (en) * 2008-12-10 2011-07-07 U.S. Government As Represented By The Secretary Of The Army System and method for iterative fourier side lobe reduction
CN102221697A (en) * 2011-03-25 2011-10-19 电子科技大学 Airborne multi-antenna SAR chromatography three dimensional imaging system and imaging method thereof
CN103389497A (en) * 2012-05-11 2013-11-13 中国科学院电子学研究所 Airborne thinned array antenna downward-looking three-dimensional imaging radar system and imaging method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XUEMING PENG: "《Airborne Downward Looking Sparse Linear Array 3-D SAR Heterogeneous Parallel Simulation》", 《REMOTE SENSING》 *
YAOLONG QI等: "Application of Optimized Sparse Antenna Array in Near Range 3D Microwave Imaging", 《ANTENNAS AND PROPAGATION(ISAP),2012 INTERNATIONAL SYMPOSIUM ON》 *
彭学明等: "基于跨航向稀疏阵列的机载下视MIMO 3D-SAR 三维成像算法", 《电 子 与 信 息 学 报》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269612A (en) * 2014-10-15 2015-01-07 内蒙古工业大学 Multiple-input multiple-output imaging antenna layout method of close-distance planar array
CN104269612B (en) * 2014-10-15 2016-07-13 内蒙古工业大学 Closely planar array multiple-input and multiple-output imaging antenna layout method
CN108292949B (en) * 2015-09-10 2021-04-27 平流层平台有限公司 Apparatus for forming multiple simultaneous communication signals
CN108292949A (en) * 2015-09-10 2018-07-17 平流层平台有限公司 Process for being communicated with user antenna phased array and device
CN106054181A (en) * 2016-05-18 2016-10-26 中国电子科技集团公司第四十研究所 One-dimensional sparse array layout method for terahertz real-time imaging
CN106054181B (en) * 2016-05-18 2018-07-20 中国电子科技集团公司第四十一研究所 A kind of one-dimensional thinned array method for arranging for Terahertz real time imagery
CN109696709A (en) * 2017-10-20 2019-04-30 中国工程物理研究院电子工程研究所 One-dimensional sparse array structure and its design method for human body safety check imaging
CN107942295A (en) * 2017-10-23 2018-04-20 中国人民解放军西安通信学院 A kind of sparse antenna of forward sight array SAR system
CN107942295B (en) * 2017-10-23 2021-07-30 中国人民解放军西安通信学院 Sparse antenna of forward-looking array SAR system
CN108132466A (en) * 2017-12-22 2018-06-08 内蒙古工业大学 Three-D imaging method and system are regarded under a kind of airborne array antenna
CN108132466B (en) * 2017-12-22 2021-11-09 内蒙古工业大学 Airborne array antenna downward-looking three-dimensional imaging method and system
CN109029383A (en) * 2018-05-03 2018-12-18 山东省科学院海洋仪器仪表研究所 A kind of rationally distributed property evaluation method of oceanographic buoy erect-position based on spatial analysis
CN109659705A (en) * 2018-10-24 2019-04-19 厦门运晨科技有限公司 MIMO radar two dimension sparse antenna is structured the formation method, radar antenna, radar and storage medium
CN109659705B (en) * 2018-10-24 2022-07-29 纵目科技(上海)股份有限公司 MIMO radar two-dimensional sparse antenna array method, radar antenna, radar and storage medium
CN109599680A (en) * 2018-10-29 2019-04-09 福瑞泰克智能系统有限公司 A kind of thinned array mimo antenna
CN109599680B (en) * 2018-10-29 2021-07-20 福瑞泰克智能系统有限公司 Sparse array MIMO antenna
CN113013583A (en) * 2021-01-29 2021-06-22 中国电子科技集团公司第三十八研究所 Millimeter wave radar packaging module
CN113013583B (en) * 2021-01-29 2023-08-18 中国电子科技集团公司第三十八研究所 Millimeter wave radar packaging module
CN116047509A (en) * 2022-12-05 2023-05-02 重庆邮电大学 Millimeter wave MIMO array scanning and imaging method for uniformly sampling equivalent half wavelength

Also Published As

Publication number Publication date
CN103762412B (en) 2016-09-28

Similar Documents

Publication Publication Date Title
CN103762412B (en) Airborne lower regarding 3D SAR sparse array antenna layout method
CN104391276B (en) Transmit-receive split planar array phased-array radar antenna array and beam former
CN102221697A (en) Airborne multi-antenna SAR chromatography three dimensional imaging system and imaging method thereof
CN107783133B (en) Anti-collision system and anti-collision method for fixed-wing unmanned aerial vehicle of millimeter wave radar
CN104181531B (en) A kind of three-dimensional relevance imaging method based on phased-array radar
CN105223572B (en) A kind of positive forward sight Bistatic SAR image processing method based on PFA algorithms
CN110059422B (en) Electromagnetic scattering characteristic simulation method for frequency selective surface curved surface radome
CN108710111A (en) A kind of two-dimentional space-variant bearing calibration of airborne biradical Forward-looking SAR orientation phase
Laviada et al. Multistatic millimeter-wave imaging by multiview portable camera
CN113514827A (en) Synthetic aperture radar imaging processing method and application in unmanned aerial vehicle cluster mode
CN104062659B (en) Sliding spotlight SAR three-D imaging method based on compressed sensing
Wang et al. RCS computation and analysis of target using FEKO
Ibrahim et al. A 14-element printed planar antenna array embedded within a UAV structure
CN110244267B (en) Missile-borne millimeter wave tangential foresight SAR three-dimensional imaging model performance analysis method
CN105404712B (en) Motor platform biradical Forward-looking SAR cell site track boundary design method
Rizwan et al. Impact of UAV structure on antenna radiation patterns at different frequencies
Simon et al. Small and light 24 GHz multi-channel radar
CN109738890A (en) A method of distance figure is generated based on missile-borne Bistatic SAR range Doppler image
CN105204020B (en) The constant biradical Forward-looking SAR offline mode method for designing of shifting based on particle group optimizing
Corbin High frequency direction finding using structurally integrated antennas on a large airborne platform
CN108226926A (en) A kind of three-dimensional scattering distribution reconstructing method based on radar network
CN114942440A (en) SAR two-dimensional beam scanning method for rapidly imaging large wide area and electronic equipment
CN107515841A (en) The method for calculating electromagnetic wave direction of arrival
Yu et al. W-Band Co-Prime Array FMCW MIMO Radar With IPCE Algorithm for High-Angular Resolution
CN109597071B (en) Sliding type arc array microwave imaging method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Tan Weixian

Inventor after: Wang Yanping

Inventor after: Peng Xueming

Inventor after: Bao Qian

Inventor after: Hong Wen

Inventor after: Wu Yirong

Inventor after: Huang Pingping

Inventor before: Tan Weixian

Inventor before: Wang Yanping

Inventor before: Peng Xueming

Inventor before: Bao Qian

Inventor before: Hong Wen

Inventor before: Wu Yirong

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: TAN WEIXIAN WANG YANPING PENG XUEMING BAO QIE HONG WEN WU YIRONG TO: TAN WEIXIAN WANG YANPING PENG XUEMING BAO QIE HONG WEN WU YIRONG HUANG PINGPING

CB03 Change of inventor or designer information

Inventor after: Tan Weixian

Inventor after: Huang Pingping

Inventor after: Wang Yanping

Inventor after: Peng Xueming

Inventor after: Bao Qian

Inventor after: Hong Wen

Inventor after: Wu Yirong

Inventor before: Tan Weixian

Inventor before: Wang Yanping

Inventor before: Peng Xueming

Inventor before: Bao Qian

Inventor before: Hong Wen

Inventor before: Wu Yirong

Inventor before: Huang Pingping

COR Change of bibliographic data
C14 Grant of patent or utility model
GR01 Patent grant