CN103728691A - Gain fiber with step and gauss composite ion doping concentration distribution - Google Patents
Gain fiber with step and gauss composite ion doping concentration distribution Download PDFInfo
- Publication number
- CN103728691A CN103728691A CN201310739272.9A CN201310739272A CN103728691A CN 103728691 A CN103728691 A CN 103728691A CN 201310739272 A CN201310739272 A CN 201310739272A CN 103728691 A CN103728691 A CN 103728691A
- Authority
- CN
- China
- Prior art keywords
- ion concentration
- radius
- fiber
- doping
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 51
- 239000002131 composite material Substances 0.000 title abstract description 6
- 150000002500 ions Chemical class 0.000 claims abstract description 48
- -1 rare earth ions Chemical class 0.000 claims abstract description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 5
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000013307 optical fiber Substances 0.000 claims 1
- 239000002019 doping agent Substances 0.000 abstract description 23
- 238000005253 cladding Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000001629 suppression Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
阶跃高斯复合型掺杂离子浓度分布增益光纤属于光纤激光技术领域。现有技术在增益光输出中基模光功率比例不高。本发明之阶跃高斯复合型掺杂离子浓度分布增益光纤为一种大芯径多模光纤,具有双包层结构,在纤芯掺杂半径R'1内掺杂稀土离子,其特征在于,掺杂离子浓度N其分布划分为两个区域,纤芯半径R1范围内的0~R0圆形区域为阶跃区,R0为阶跃区半径,R0<R'1,在阶跃区内掺杂离子浓度N分布为阶跃型,掺杂离子浓度N为最大值Nmax;纤芯半径R1范围内的R0~R'1圆环区域为高斯区,在高斯区内掺杂离子浓度N分布为高斯型,掺杂离子浓度N由下式决定:
式中:r为所述增益光纤的光纤半径。The invention relates to a Gaussian composite type doping ion concentration distribution gain fiber which belongs to the technical field of fiber laser. In the prior art, the proportion of the fundamental mode light power in the gain light output is not high. The step-Gaussian composite type doping ion concentration distribution gain fiber of the present invention is a kind of large-core-diameter multimode fiber, has a double-clad structure, and is doped with rare earth ions in the fiber core doping radius R'1 , and is characterized in that, The distribution of the dopant ion concentration N is divided into two areas, the circular area from 0 to R 0 within the range of the core radius R 1 is the step area, R 0 is the radius of the step area, R 0 <R' 1 , in the step The dopant ion concentration N distribution in the jump region is step-type, and the dopant ion concentration N is the maximum value N max ; the R 0 ~ R' 1 ring area within the range of the core radius R 1 is a Gaussian region, and in the Gaussian region The distribution of doping ion concentration N is Gaussian, and the doping ion concentration N is determined by the following formula:
In the formula: r is the fiber radius of the gain fiber.Description
技术领域technical field
本发明涉及一种阶跃高斯复合型掺杂离子浓度分布增益光纤,属于光纤激光技术领域。The invention relates to a step-Gauss compound type doping ion concentration distribution gain fiber, which belongs to the technical field of fiber laser.
背景技术Background technique
增益光纤用作波长转换器、光放大器、光纤激光器等,具有双包层结构,光纤自里向外依次为纤芯1、内包层2、外包层3、保护层4,如图1所示,纤芯1、外包层3为圆形,纤芯1的半径为纤芯半径R1,内包层2一般采用异形结构,其截面形状有椭圆形、矩形、梅花形、D形及六边形等,常用矩形,如正方形,此时,内包层2半径R2指正方形内切圆半径,矩形内包层2能使激光转换效率提高到50%。纤芯1、内包层2、外包层3的折射率依次为n1、n2、n3,并且n1>n2>n3。在纤芯1掺杂半径R'1内掺杂稀土离子,掺杂半径R'1小于纤芯半径R1。泵浦源为两个或者四个高功率半导体激光器,泵浦光自双包层光纤两端进入内包层2,由内包层2与外包层3的界面多次全反射,穿越纤芯1,为掺杂离子提供泵浦能量,获得增益光,单根光纤已经实现了1000W的增益光单模连续输出。Gain fibers are used as wavelength converters, optical amplifiers, fiber lasers, etc., and have a double-clad structure. The fibers are
作为功率器件的增益光纤,为了符合大功率工作状态的要求,通常设计为一种大芯径多模光纤,由于模式竞争,使得增益光中含有高阶模。掺杂离子在纤芯1中的浓度分布通常为阶跃型,如图2所示,也就是在掺杂半径R'1内,各处掺杂离子浓度N均为一个相同的掺杂离子浓度最大值Nmax。因此,在光增益过程中,呈现为基模、高阶模同时增益和输出的形态,增益光质量不高;同时也浪费泵浦能量。为了解决这个问题,在现有技术中出现了一种抛物线型掺杂离子浓度分布方案,如图3所示,在掺杂半径R'1内,掺杂离子浓度N随光纤半径r自中心O开始的增大,从掺杂离子浓度最大值Nmax沿抛物线递减,当光纤半径r达到掺杂半径R'1时,掺杂离子浓度N递减为零。依该方案,处在模场周边区域的高阶模增益得到抑制。然而,在掺杂离子浓度最大值Nmax相同的前提下,处在模场中心区域的基模增益相对于阶跃型也有所降低。况且,单边抛物线无拐点,为一个完整的凸曲线,掺杂离子浓度N未能随光纤半径r自中心O开始的增大而快速递减,对高阶模增益的抑制效果并未达到最佳。The gain fiber used as a power device is usually designed as a large-core multimode fiber in order to meet the requirements of high-power working conditions. Due to mode competition, the gain light contains high-order modes. The concentration distribution of dopant ions in the
发明内容Contents of the invention
为了提高大芯径多模增益光纤的基模增益,抑制高阶模增益,提高增益光质量,我们发明了一种阶跃高斯复合型掺杂离子浓度分布增益光纤。In order to improve the fundamental mode gain of the large-core multimode gain fiber, suppress the high-order mode gain, and improve the quality of the gain light, we invented a step-Gaussian composite doped ion concentration distribution gain fiber.
本发明之阶跃高斯复合型掺杂离子浓度分布增益光纤为一种大芯径多模光纤,具有双包层结构,在纤芯1掺杂半径R'1内掺杂稀土离子,其特征在于,如图4所示,掺杂离子浓度N其分布划分为两个区域,纤芯半径R1范围内的0~R0圆形区域为阶跃区,R0为阶跃区半径,R0<R'1,在阶跃区内掺杂离子浓度N分布为阶跃型,掺杂离子浓度N为最大值Nmax;纤芯半径R1范围内的R0~R'1圆环区域为高斯区,在高斯区内掺杂离子浓度N分布为高斯型,掺杂离子浓度N由下式决定:The step-Gaussian composite type doped ion concentration distribution gain fiber of the present invention is a large-core multimode fiber with a double-clad structure, and is doped with rare earth ions within the
式中:r为所述增益光纤的光纤半径。In the formula: r is the fiber radius of the gain fiber.
本发明的效果在于,由于在纤芯1的阶跃区内掺杂离子浓度N的值处处均为最大值Nmax,因此,基模增益具有现有阶跃型增益光纤的高增益水平。并且,在高斯区内掺杂离子浓度N随着随光纤半径r自中心O开始的增大,掺杂离子浓度N从最大值Nmax沿高斯曲线递减,当光纤半径r达到掺杂半径R'1时,掺杂离子浓度N递减为零,而高斯曲线与抛物线相比具有拐点,随着光纤半径r的增大,掺杂离子浓度N递减速度加快,高阶模得到更为有效的抑制。在增益光中光功率的基模比例增加,有效避免因模式竞争而产生的脉冲展宽和非线性效应,匀化了光功率在纤芯1的分布,使输出光束质量和输出功率均得到提高。The effect of the present invention is that since the value of dopant ion concentration N in the step region of the
附图说明Description of drawings
图1是双包层光纤结构横截面示意图。图2是现有阶跃型掺杂离子浓度分布图。图3是现有抛物线型掺杂离子浓度分布图。图4本发明之阶跃高斯复合型掺杂离子浓度分布增益光纤掺杂离子浓度分布图,该图同时作为摘要附图。Figure 1 is a schematic cross-sectional view of a double-clad fiber structure. Fig. 2 is a distribution diagram of the existing step-type dopant ion concentration. Fig. 3 is a prior art parabolic dopant ion concentration distribution diagram. Fig. 4 is a step-Gaussian complex type doping ion concentration distribution diagram of the gain fiber doping ion concentration distribution diagram of the present invention, which is also used as a summary drawing.
具体实施方式Detailed ways
本发明之阶跃高斯复合型掺杂离子浓度分布增益光纤为一种大芯径多模光纤,具有双包层结构,在纤芯1掺杂半径R'1内掺杂稀土离子,如图4所示,掺杂离子浓度N其分布划分为两个区域,纤芯半径R1范围内的0~R0圆形区域为阶跃区,R0为阶跃区半径,R0<R'1,且阶跃区半径R0与掺杂半径R'1的具体关系为:R0=0.5~0.7R'1,在阶跃区内掺杂离子浓度N分布为阶跃型,掺杂离子浓度N为最大值Nmax;纤芯半径R1范围内的R0~R'1圆环区域为高斯区,在高斯区内掺杂离子浓度N分布为高斯型,掺杂离子浓度N由下式决定:The step-Gaussian composite doped ion concentration distribution gain fiber of the present invention is a large-core multimode fiber with a double-clad structure, and rare earth ions are doped in the
式中:r为所述增益光纤的光纤半径。In the formula: r is the fiber radius of the gain fiber.
掺杂离子为Yb3+,输出波长为1.064μm。R0=0.7R'1,R'1=15μm。增益光纤的折射率分布为阶跃型。通过数值计算得到在基模的相对增益系数最大的前提下,高阶模的相对抑制系数达到最大,如0.2088,而在同样条件下,抛物线型掺杂浓度分布增益光纤的高阶模相对抑制系数仅有0.1418。The dopant ion is Yb 3+ , and the output wavelength is 1.064 μm. R 0 =0.7R' 1 , R' 1 =15 μm. The refractive index profile of the gain fiber is a step type. Through numerical calculation, it is found that under the premise that the relative gain coefficient of the fundamental mode is the largest, the relative suppression coefficient of the high-order mode reaches the maximum, such as 0.2088, while under the same conditions, the relative suppression coefficient of the high-order mode of the parabolic doping concentration distribution gain fiber is only 0.1418.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310739272.9A CN103728691B (en) | 2013-12-26 | 2013-12-26 | Step Gauss compound Doped ions CONCENTRATION DISTRIBUTION gain fibre |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310739272.9A CN103728691B (en) | 2013-12-26 | 2013-12-26 | Step Gauss compound Doped ions CONCENTRATION DISTRIBUTION gain fibre |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103728691A true CN103728691A (en) | 2014-04-16 |
CN103728691B CN103728691B (en) | 2015-09-30 |
Family
ID=50452842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310739272.9A Expired - Fee Related CN103728691B (en) | 2013-12-26 | 2013-12-26 | Step Gauss compound Doped ions CONCENTRATION DISTRIBUTION gain fibre |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103728691B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022247395A1 (en) * | 2021-05-28 | 2022-12-01 | 华为技术有限公司 | Erbium-doped fiber and preparation method for erbium-doped fiber |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109031516B (en) * | 2018-07-11 | 2020-12-29 | 烽火通信科技股份有限公司 | Large-mode-field double-cladding ytterbium-doped optical fiber |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1427272A (en) * | 2001-12-18 | 2003-07-02 | 古河电气工业株式会社 | Optical fibre for light amplifier |
US20050129376A1 (en) * | 2003-12-12 | 2005-06-16 | Hanson Benjamin Z. | Alkali-doped optical fiber preform and method of making same |
CN1692086A (en) * | 2002-08-28 | 2005-11-02 | 康宁股份有限公司 | Low loss optical fiber and method for making same |
CN1842499A (en) * | 2003-08-29 | 2006-10-04 | 康宁股份有限公司 | Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same |
CN101506703A (en) * | 2006-08-24 | 2009-08-12 | 康宁股份有限公司 | Optical fiber containing alkali metal oxide |
US7822077B2 (en) * | 2007-09-13 | 2010-10-26 | Northrop Grumman Systems Corporation | Thulium doped fiber configuration for enhanced high power operation |
-
2013
- 2013-12-26 CN CN201310739272.9A patent/CN103728691B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1427272A (en) * | 2001-12-18 | 2003-07-02 | 古河电气工业株式会社 | Optical fibre for light amplifier |
CN1692086A (en) * | 2002-08-28 | 2005-11-02 | 康宁股份有限公司 | Low loss optical fiber and method for making same |
CN1842499A (en) * | 2003-08-29 | 2006-10-04 | 康宁股份有限公司 | Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same |
US20050129376A1 (en) * | 2003-12-12 | 2005-06-16 | Hanson Benjamin Z. | Alkali-doped optical fiber preform and method of making same |
CN101506703A (en) * | 2006-08-24 | 2009-08-12 | 康宁股份有限公司 | Optical fiber containing alkali metal oxide |
US7822077B2 (en) * | 2007-09-13 | 2010-10-26 | Northrop Grumman Systems Corporation | Thulium doped fiber configuration for enhanced high power operation |
Non-Patent Citations (1)
Title |
---|
金亮等: "光纤折射率研究及纤芯结构优化设计", 《强激光与粒子束》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022247395A1 (en) * | 2021-05-28 | 2022-12-01 | 华为技术有限公司 | Erbium-doped fiber and preparation method for erbium-doped fiber |
Also Published As
Publication number | Publication date |
---|---|
CN103728691B (en) | 2015-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8433168B2 (en) | Active optical fiber and method for fabricating an active optical fiber | |
CN108879301B (en) | Stochastic distributed Rayleigh feedback fiber laser based on double-clad weakly ytterbium-doped fiber | |
CN103257394B (en) | Gain optical fiber for outputting specific single-mode lasers | |
CN104092087A (en) | A High Energy Short Pulse Fiber Laser Amplifier | |
CN102967981A (en) | Super-continuous spectrum light source based on multicore photonic crystal fiber | |
CN110187437A (en) | A kind of triply coated fiber, pump combiner, fiber grating and optical fiber laser | |
CN108761635B (en) | Double-clad ytterbium-doped optical fiber | |
CN101320109A (en) | A Rare Earth Ion Doped Ring Double-clad Optical Fiber | |
CN100587528C (en) | Gain photon crystal fiber waveguide and its device | |
CN102116897A (en) | Cladded pumping optical fiber capable of efficiently adsorbing pumping light | |
CN108152883A (en) | Negative double clad tapered active optical fiber | |
CN103490271A (en) | Optical fiber and fiber laser comprising optical fiber | |
CN103474867A (en) | Large-mode-area high-power fiber laser device | |
CN202995205U (en) | Multicore photonic crystal fiber based supercontinuum source | |
CN104635296A (en) | Long-distance laser energy transmission optical fiber | |
CN201877671U (en) | Photonic bandgap fiber and photonic bandgap fiber laser | |
CN103439763B (en) | A kind of total solid optical fiber with large-mode field area and manufacture method thereof | |
CN103728691B (en) | Step Gauss compound Doped ions CONCENTRATION DISTRIBUTION gain fibre | |
CN108459371B (en) | Ytterbium-doped polarization maintaining optical fiber | |
CN1971323A (en) | Large mode field double-cladding single-mode optical fiber | |
Jain et al. | First demonstration of single trench fiber for delocalization of higher order modes | |
CN101285910A (en) | Multi-core optical fiber including photosensitive single core and preparation method thereof | |
CN102289031B (en) | Method for improving optical fiber self-focusing threshold power and optical fiber | |
CN213484177U (en) | Three-cladding phosphorus-doped optical fiber and Raman fiber laser based on phosphorus-doped optical fiber | |
CN117293629A (en) | High-brightness rare earth doped large-mode-field optical fiber and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150930 Termination date: 20161226 |
|
CF01 | Termination of patent right due to non-payment of annual fee |