CN103728690A - 阶跃高斯复合型折射率分布双包层光纤 - Google Patents

阶跃高斯复合型折射率分布双包层光纤 Download PDF

Info

Publication number
CN103728690A
CN103728690A CN201310739255.5A CN201310739255A CN103728690A CN 103728690 A CN103728690 A CN 103728690A CN 201310739255 A CN201310739255 A CN 201310739255A CN 103728690 A CN103728690 A CN 103728690A
Authority
CN
China
Prior art keywords
refractive index
fiber
gauss
fiber core
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310739255.5A
Other languages
English (en)
Other versions
CN103728690B (zh
Inventor
马晓辉
金亮
邹永刚
徐莉
张贺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN201310739255.5A priority Critical patent/CN103728690B/zh
Publication of CN103728690A publication Critical patent/CN103728690A/zh
Application granted granted Critical
Publication of CN103728690B publication Critical patent/CN103728690B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

阶跃高斯复合型折射率分布双包层光纤属于光纤技术领域。现有阶跃型双包层光纤在光纤弯曲时,光束基模光场偏移较大;现有高斯型双包层光纤模场面积较小。本发明其特征在于,纤芯折射率其分布划分为两个区域,纤芯半径R1范围内的0~R0圆形区域为阶跃区,R0为阶跃区半径,R0<R1,在阶跃区内纤芯折射率分布为阶跃型,纤芯折射率为最大值n1;纤芯半径R1范围内的R0~R1圆环区域为高斯区,在高斯区内纤芯折射率分布为高斯型,纤芯折射率n′1由下式决定:
Figure DDA0000447110790000011
式中:r为纤芯半径变量,且R0<r<R1,n2为双包层光纤内包层折射率。光纤性能得到全面优化。

Description

阶跃高斯复合型折射率分布双包层光纤
技术领域
本发明涉及一种阶跃高斯复合型折射率分布双包层光纤,具有较大模场面积,并且,当光纤弯曲时,模场偏移较小,适用于大功率增益、传输光纤,属于光纤技术领域。
背景技术
双包层光纤自里向外依次为纤芯1、内包层2、外包层3、保护层4,如图1所示,纤芯1、外包层3为圆形,纤芯1半径为R1,内包层2一般采用异形结构,其截面形状有椭圆形、矩形、梅花形、D形及六边形等,常用矩形,如正方形,此时,内包层2半径R2指正方形内切圆半径。纤芯1、内包层2、外包层3的折射率依次为n1、n2、n3,并且n1>n2>n3。双包层光纤按其纤芯折射率分布形式划分为阶跃折射率(SI)光纤和渐变折射率(GI)光纤。所述纤芯折射率分布形式是指纤芯1的折射率n1沿半径r方向自中心向周边是否变换或者呈现怎样的变化。与本发明最接近的现有纤芯折射率分布形式有以下两种类型。一是阶跃型,如图2所示,沿r方向自中心向周边n1不变。二是高斯型,如图3所示,所述n1此时为纤芯1折射率最大值,随着纤芯1径向尺寸沿r方向自中心向周边在R′1范围内变化,纤芯1折射率在n′1范围内非线性递减,直到等于n2
阶跃型双包层光纤具有较大的模场面积,当大功率工作时,功率密度不会因此而变得很大,这样一是能够避免光纤损毁,二是能够减轻非线性效应,如多波长现象,保证光束质量。但是,当阶跃型双包层光纤弯曲时,光束基模光场偏移较大,如图4所示,包括泵浦光在内的光功率损耗较大,因此,增益光束或者传输光束光能量损失较大。虽然当高斯型双包层光纤阶弯曲时光束基模光场偏移较小,如图5所示,但是,高斯型双包层光纤具有较小的模场面积,当大功率工作时,功率密度会因此而变得很大,这样一是容易损毁光纤,二是导致多波长等非线性效应的产生,降低光束质量。如果通过增大芯径来增大高斯型双包层光纤模场面积,会伴随着光的模式的多模化,严重降低光束质量。
发明内容
本发明的目的在于,在纤芯芯径不变的前提下,在增大双包层光纤模场面积的同时减小光纤弯曲时发生的基模光场偏移,为此,我们发明了一种阶跃高斯复合型折射率分布双包层光纤,全面优化现有双包层光纤。
本发明之阶跃高斯复合型折射率分布双包层光纤其特征在于,如图6、图7所示,纤芯折射率其分布划分为两个区域,纤芯半径R1范围内的0~R0圆形区域为阶跃区5,R0为阶跃区半径,R0<R1,在阶跃区5内纤芯折射率分布为阶跃型,纤芯折射率为最大值n1;纤芯半径R1范围内的R0~R1圆环区域为高斯区6,在高斯区6内纤芯折射率分布为高斯型,纤芯折射率n′1由下式决定:
n 1 &prime; ( r ) = { n 2 2 [ 1 + n 1 2 - n 2 2 n 2 2 exp ( - ( r - R 0 ) 2 ( R 1 - R 0 ) 2 ) ] } 1 2 ,
式中:r为纤芯半径变量,且R0<r<R1,n2为双包层光纤内包层2折射率。
本发明其技术效果在于,相比于现有阶跃型折射率分布双包层光纤,基模光场偏移减小,相比于现有高斯型折射率分布双包层光纤,模场面积有所增大,如图6所示,光纤性能得到全面优化,该方案如果用于增益光纤,能够使光纤激光器在MW级脉冲工作条件下依然具有良好的输出特性和稳定性。
附图说明
图1是双包层光纤结构横截面示意图。图2是现有阶跃型光纤折射率分布图。图3是现有高斯型光纤折射率分布图。图4是现有阶跃型折射率分布双包层光纤基模光场分布图。图5是现有高斯型折射率分布双包层光纤在相同条件下的基模光场分布图。图6是本发明之阶跃高斯复合型折射率分布双包层光纤在相同条件下的基模光场分布图。图7是本发明之阶跃高斯复合型折射率分布双包层光纤折射率分布图,该图同时作为摘要附图。
具体实施方式
本发明之阶跃高斯复合型折射率分布双包层光纤纤芯折射率其分布划分为两个区域,如图6、图7所示,纤芯折射率其分布划分为两个区域,纤芯半径R1范围内的0~R0圆形区域为阶跃区5,R0为阶跃区半径,R0<R1,在阶跃区5内纤芯折射率分布为阶跃型,纤芯折射率为最大值n1;纤芯半径R1范围内的R0~R1圆环区域为高斯区6,在高斯区6内纤芯折射率分布为高斯型,纤芯折射率n′1由下式决定:
n 1 &prime; ( r ) = { n 2 2 [ 1 + n 1 2 - n 2 2 n 2 2 exp ( - ( r - R 0 ) 2 ( R 1 - R 0 ) 2 ) ] } 1 2 ,
式中:r为纤芯1半径变量,且R0<r<R1,n2为双包层光纤内包层2折射率。
所述阶跃高斯复合型折射率分布双包层光纤为一种非零色散G.655光纤,采用改进气相沉积法MCVD(ModifiedChemicalVapourDeposition)制作光纤预制棒,实现径向折射率分布(RIP)的精确控制。纤芯折射率最大值n1=1.4500,内包层2折射率n2=1.4485。阶跃区半径R0占纤芯半径R1
Figure BDA0000447110770000023
如纤芯半径R1=32.5μm,阶跃区半径R0=15μm。同样制作现有阶跃型折射率分布双包层光纤、现有高斯型折射率分布双包层光纤,纤芯半径仍均为R1=32.5μm,阶跃型折射率分布双包层光纤纤芯折射率以及高斯型折射率分布双包层光纤纤芯最大折射率均与n1相同,即1.4500。
就现有阶跃型折射率分布双包层光纤、现有高斯型折射率分布双包层光纤以及本发明之阶跃高斯复合型折射率分布双包层光纤三者比较而言,在模场面积的大小、基模光场分布方面呈现以下不同。不论从计算结果看,还是从光斑检测结果观察,如图4~5所示,现有阶跃型折射率分布双包层光纤具有最大模场面积,如1.132×103μm2,现有高斯型折射率分布双包层光纤具有最小模场面积,如0.48×103μm2,而本发明之阶跃高斯复合型折射率分布双包层光纤模场面积介于二者之间,如1.051×103μm2。当光纤弯曲半径均为20cm,现有阶跃型折射率分布双包层光纤基模光场偏移最大,如图4所示,位移量为36.8μm,部分基模光场偏移至内包层2中,严重降低功率输出;现有高斯型折射率分布双包层光纤基模光场偏移最小,如图5所示,位移量仅为1.316μm;而本发明之阶跃高斯复合型折射率分布双包层光纤模场面积介于二者之间,如图6所示,位移量为14.2μm。可见,本发明之阶跃高斯复合型折射率分布双包层光纤在在模场面积的大小、基模光场分布方面得到兼顾,实现优化。

Claims (2)

1.一种阶跃高斯复合型折射率分布双包层光纤,其特征在于,纤芯折射率其分布划分为两个区域,纤芯半径R1范围内的0~R0圆形区域为阶跃区(5),R0为阶跃区半径,R0<R1,在阶跃区(5)内纤芯折射率分布为阶跃型,纤芯折射率为最大值n1;纤芯半径R1范围内的R0~R1圆环区域为高斯区(6),在高斯区(6)内纤芯折射率分布为高斯型,纤芯折射率n′1由下式决定:
n 1 &prime; ( r ) = { n 2 2 [ 1 + n 1 2 - n 2 2 n 2 2 exp ( - ( r - R 0 ) 2 ( R 1 - R 0 ) 2 ) ] } 1 2 ,
式中:r为纤芯半径变量,且R0<r<R1,n2为双包层光纤内包层(2)折射率。
2.根据权利要求1所述的阶跃高斯复合型折射率分布双包层光纤,其特征在于,阶跃区半径R0占纤芯半径R1
Figure FDA0000447110760000012
CN201310739255.5A 2013-12-26 2013-12-26 阶跃高斯复合型折射率分布双包层光纤 Expired - Fee Related CN103728690B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310739255.5A CN103728690B (zh) 2013-12-26 2013-12-26 阶跃高斯复合型折射率分布双包层光纤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310739255.5A CN103728690B (zh) 2013-12-26 2013-12-26 阶跃高斯复合型折射率分布双包层光纤

Publications (2)

Publication Number Publication Date
CN103728690A true CN103728690A (zh) 2014-04-16
CN103728690B CN103728690B (zh) 2015-09-30

Family

ID=50452841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310739255.5A Expired - Fee Related CN103728690B (zh) 2013-12-26 2013-12-26 阶跃高斯复合型折射率分布双包层光纤

Country Status (1)

Country Link
CN (1) CN103728690B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112551885A (zh) * 2021-01-06 2021-03-26 长春理工大学 一种四芯微结构光纤预制棒排丝模具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1427272A (zh) * 2001-12-18 2003-07-02 古河电气工业株式会社 光放大器用的光纤
US20050144986A1 (en) * 2003-12-30 2005-07-07 Bookbinder Dana C. Method of making an optical fiber preform
CN1842499A (zh) * 2003-08-29 2006-10-04 康宁股份有限公司 含碱金属氧化物的光纤及制造该光纤的方法和设备
CN101506703A (zh) * 2006-08-24 2009-08-12 康宁股份有限公司 含碱金属氧化物的光纤
CN102826750A (zh) * 2011-06-15 2012-12-19 住友电气工业株式会社 光纤制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1427272A (zh) * 2001-12-18 2003-07-02 古河电气工业株式会社 光放大器用的光纤
CN1842499A (zh) * 2003-08-29 2006-10-04 康宁股份有限公司 含碱金属氧化物的光纤及制造该光纤的方法和设备
US20050144986A1 (en) * 2003-12-30 2005-07-07 Bookbinder Dana C. Method of making an optical fiber preform
CN101506703A (zh) * 2006-08-24 2009-08-12 康宁股份有限公司 含碱金属氧化物的光纤
CN102826750A (zh) * 2011-06-15 2012-12-19 住友电气工业株式会社 光纤制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
金亮等: "双包层光折射率研究与纤芯结构优化设计", 《强激光与粒子束》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112551885A (zh) * 2021-01-06 2021-03-26 长春理工大学 一种四芯微结构光纤预制棒排丝模具

Also Published As

Publication number Publication date
CN103728690B (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
Kashiwagi et al. Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers
US9645309B2 (en) Large core holey fibers
US8189977B2 (en) Optical fibers and optical fiber devices with total dispersion greater than material dispersion
JP4904241B2 (ja) ホーリーファイバ
Jørgensen et al. Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier
CN104483735B (zh) 一种全光纤模式转换器的光系统
Grüner-Nielsen et al. A stretcher fiber for use in fs chirped pulse Yb amplifiers
Matsuo et al. Recent progress on multi-core fiber and few-mode fiber
US10107957B2 (en) Multimode optical fibers operating over an extended wavelength range and system incorporating such
US9557476B2 (en) Multi-core fiber
CN104635296A (zh) 一种长距离激光能量传输光纤
CN113031147B (zh) 一种多层正方形结构的匀化光纤
Prudenzano et al. Optimization of pump absorption in MOF lasers via multi-long-period gratings: design strategies
CN103439763A (zh) 一种大模场面积全固体光纤及其制造方法
US10871648B2 (en) Optical fiber design method
CN103728690A (zh) 阶跃高斯复合型折射率分布双包层光纤
Tan et al. Study of ultraflattened dispersion square-lattice photonic crystal fiber with low confinement loss
CN204287535U (zh) 一种全光纤模式转换器及光系统
CN110780378A (zh) 一种泄漏高阶模的多层折射率沟壑梯度光纤
Sun et al. Bending performance of modified multi-trench fibers with gaps
Aleshkina et al. All-glass hybrid fibers for dispersion management
CN202602078U (zh) 渐近芯耦合主动锁相大功率光纤激光器
Likhachev et al. Low-loss dispersion-shifted solid-core photonic bandgap Bragg fiber
Limpert Large-pitch fibers: pushing very large mode areas to highest powers
Kashiwagi et al. Practically deployable and effectively single mode all-solid photonic bandgap fiber with large effective area

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150930

Termination date: 20161226